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Abstract—Software supply chain security has now become a
critical concern in the software industry (and beyond) following
the large impact of recent attacks: hackers injected malicious
code into Solarwinds components and Octopus scanner, which
eventually infected a wide range of downstream dependencies,
affecting a massive number of users. Since supply chain vulnera-
bilities are a well-known concern, especially with open source sys-
tems, approaches in the literature mainly focus on identifying and
patching such vulnerability. Frequently, however, a vulnerability
patch is not immediately propagated to earlier releases that have
been inherited by dependents, leaving residual vulnerabilities in
supply chains. Our work addresses this challenge and develops
a simple approach to iteratively explore the attack surface of
supply chain residual vulnerabilities in open source projects. We
have assessed our search scheme on 50 GitHub-hosted projects
having high stars and forks: we mine their bug fix commits and
identify buggy package versions to track the affected dependents
and estimate the potential attack surface. We find that many
projects fix their vulnerable issues by update their dependency
versions, and version inheritance is a significant cause of supply
chain attacks for open source projects.

Index Terms—Software supply chain, Vulnerability, Empirical
assessment.

I. INTRODUCTION

Software engineering is now being increasingly challenged

by the need to meet time-to-market requirements. The building

and delivery of software thus required industrialization of pro-

cesses, notably in its supply chain. The Software supply chain

was first introduced in the literature in the ’90s to describe

cooperative relationships in software development [1]. As

Kaczorowski1 recalls in the GitHub security series, a supply

chain is anything that the developer needs to deliver a product

to users—including all the components the developer uses.

∗Kui Liu is the corresponding author.
1https://cutt.ly/dkrQnOc

In practice, this includes “everything that touches the code

from development, through the CI/CD pipeline, until it gets

deployed into production”. Given this definition, the software

supply chain has become critical from a security standpoint

due to the pervasive integration of software dependencies. The

current 2020 state of the Octoverse [2] report by Github under-

lines that, on average, it’s common for projects to use hundreds

of open source dependencies. These dependencies represent

functionality whose code is written by third parties. Figure 1

shows an example of the software supply chain, where a given

project (middle) relies on dependencies upstream (left) and

also have dependents downstream (right).

While this software reuse scheme has been publicized in the

open-source community [3], recent data unveil that proprietary

software is massively reliant on open source dependencies.

For example, the 2020 open source security and risk analy-

sis [4] report by Synopsys even suggests that over 80% of

enterprise code-bases contain open source code and packages.

Consequently, if one of the dependencies is vulnerable, the

delivered software product will likely be susceptible to attacks.

The major challenge is that even when developers have made

due diligence before integrating a dependency, their code or

dependency may change over time to introduce a vulnerability

or make them susceptible to a previously unexploitable expo-

sure. Therefore, by abusing developers’ trust in the authenticity

and integrity of third-party packages hosted on commonly-

used servers (along with the adoption of automated build

systems that encourage them to rely on package reposito-

ries [5]), attackers could compromise dependent systems. The

objective is to tamper with the product of a given vendor and

make it available to end-users through trusted channels, e.g.,

download, refer package or update sites [6], hence framing

supply chain attacks. Such attacks are performed by injecting
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Fig. 1: Supply chain process and its attack.

malicious code into a software product, typically in the form

of a vulnerability in the code, a Trojan horse, or a back door.

Given the pervasive use of software dependents, supply chain

attacks have increasingly become an acute problem in the

industry [5], [7]–[16].

Given that open source heavily relies on dependencies

to implement software reuse (e.g., libraries), we propose

to focus on this ecosystem to check the extent to which

even patched vulnerabilities in the dependencies have not

adequately propagated to dependents. In particular, we focus

on the question of dependency release updates within a project

build process. We further shed light on the phenomenon of

transitive inheritance where a dependent does not immediately

view that its dependency is vulnerable due to its use of other

vulnerable dependencies upstream.

In this work, we first empirically overview an example

attack on the open-source supply chain. Then we present our

methodology for tracking residual vulnerable dependencies

used by projects through obsolete releases. Finally, we conduct

an empirical study on 50 open source projects to explore to

what extent the vulnerable software packages can impact the

OSS supply chain.

In summary, this paper makes the following contributions:

• We summarize the key features of commits, such as

hunks, modified file types, insertions, and deletions, that

help identify projects that are likely affected by supply

chain attacks.

• We develop an analysis methodology that explores the

inheritance of software dependencies to identify potential

supply chain attacks in open source projects.

• We provide a prototype automated tool that implements

our analysis. We evaluated it on a sample set of open-

source projects. We identified actual dependents and some

sub-dependents of selected projects that could be attacked

due to their continuous use of vulnerable versions.

II. OCTOPUS SCANNER MALWARE IN THE OPEN SOURCE

SUPPLY CHAIN

In this section, to better motivate our work, we detail a

concrete example of a supply chain attack.

Octopus Scanner Malware Attack: Figure 2 presents an

overview of the Octopus attack process. When the pro-

gram with the octopus scanner malware is downloaded

to the user’s terminal, the malware will first identify the

NetBeans IDE and enumerate all projects in the Net-

Beans directory. Then, the disguised malware (i.e., the

ocs.txt file) drop to the “octopus.dat” malicious pay-

load that will be copied to nbproject/cache.dat. The

nbproject/build-impl.xml file will be modified to

ensure the malicious payload is executed whenever a NetBeans

project is built. If the malicious payload is an instance of

the Octopus Scanner itself, the newly built JAR file will be

infected as well. Eventually, the infected projects under the

NetBeans project will be backdoored by the malware and

spread over open source again.

Fig. 2: Process of octopus scanner malware attack.

Backdoored Programs: A security researcher reported to

GitHub that some projects (at that time 12 as presented

in Table I) were infected by the octopus scanner malware

and were available in GitHub [17]. The developers of three

projects (i.e., SuperMario-FR, JavaPacman, and pacman-java-

ia) replied and resolved the reported octopus malware attack

issue. The developers of the remaining nine projects haven’t

taken action to fix the issue. According to the reply of

developers, the fundamental problem is that the developers
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were utterly unaware that they were committing backdoored

code into their repositories [17].

TABLE I: Projects Backdoored by Octopus Scanner Malware.

Project

issue

sta-

tus

Project

issue

sta-

tus

SuperMario-FR � GuessTheAnimal �
JavaPacman � SnakeCenterBox4 �
pacman-java-ia � PacmanGame �
ProyectoGerundio � CallCenter �
Secuencia-Numerica � Punto-de-venta �
Kosim-Framework � V2Mp3Player �

∗� and � mean the issue was resolved and unresolved by

developers, respectively.

After looking into those 12 projects (the versions

with reported issues), all of them contain a folder

“../nbprojecct/” that includes two files (i.e,

“cache.dat” and ”build-imp.xml”). The octopus

scanner malware attack released “cache.dat” in the

infected programs to hide the backdoor of remote control

for the infecting device. The file “build-imp.xml”

is maliciously added with two new code statements

(<target name = "-pre-jar"> and <target name
= "-post-jar"> to cooperate with “cache.dat” to

further attack the new projects under NetBeans.

To resolve the attack problem, various ad-hoc solu-

tions have been found by developers. In the case of the

SuperMario-FR- project, the fix consisted of removing

the two files “cache.dat” and “build -imp.xml”, and

then rebuilding the new NetBeans environment to remove the

infected NetBeans.

To sum up, to fix the whole supply chain attack, according

to the studied case, it is necessary to remove the related

malicious code and infected dependency files. Unfortunately,

it is possible that some of these files are not updated (e.g.,

with non-infect Jar) in the dependent projects. We refer to

them as residual vulnerabilities. We will try to identify them

to estimate the attack surface of residual vulnerabilities, even

across inherited (also called transitive) dependencies, in the

open-source software supply chain.

III. STUDY DESIGN

In this section, we introduce the research questions for our

study. We then present the design details, notably w.r.t. the

study subjects and the methodology that we propose to identify

vulnerable release versions of open source programs.

A. Research Questions

To strengthen supply chains, it is of high importance

to identify and analyze their weak points and identify the

potential attack surface a supply chain offers to malicious

code injection. Also, taking a lesson from the problems

that occurred, we should judge its influence scope to avoid

repeating it on different projects in the software supply chain.

Overall, our investigation of the vulnerabilities in the open-

source software supply chain seeks answers for the following

research questions (RQs):

• RQ1. To what extent project dependents are impacted
by the vulnerable programs in the open-source software
supply chain?
In the open-source software supply chain, the vulnera-

bilities of supplier programs can propagate to dependent

programs relying on them. Normally, if the vulnerabilities

in supplier programs are fixed, their infected dependents

could simultaneously resolve their vulnerabilities. This

research question is to estimate to what extent real-world

programs remain affected by some residual vulnerabilities

in the open-source software supply chain.

• RQ2. In the open-source software supply chain, to what
extent the supplier programs are affected by vulnerabili-
ties?
In practice, when a vulnerability arises in a project and

is identified, the developers will fix it and a related

patch will be committed into the code repository. Our

research question aims to investigate how many versions

of supplier programs in the open-source software supply

chain have been infected by vulnerabilities and how long

these vulnerabilities lasted. Such duration will serve as

an important indicator to measure the risk vulnerabilities

and the extent of their impact on the project.

• RQ3. Where are the vulnerabilities located? Since it is

impossible to avoid attacks in the open-source software

supply chain, it is critical to enable early detection and

rapid fixing of the introduced vulnerability to limit the

attacks. Locating vulnerabilities when they are known is

the initial step for an analysis of the attack surface and

for applying a fix. We propose to explore and deepen the

characteristics of vulnerabilities in the supply chain by

investigating the location of such vulnerabilities.

B. Subjects

In this work, we select 50 Java open-source projects as

subjects which have been shown in Table II to estimate

the attack surface from the residual vulnerabilities in the

open-source software supply chain. We rely on the Maven

dependency management2 to find the dependents of a supplier

program in the open-source software supply chain. Therefore,

all our subjects have a ‘pom.xml” file. For selecting the

subjects, we first consider the Java open-source projects in

two popular organizations, Apache3 and Google4, where we

randomly select 25 projects. Then, we further randomly select

25 Java open-source projects that have obtained wide attention

with at least 1,000 stars on the GitHub platform.

2https://maven.apache.org/guides/introduction/
introduction-to-dependency-mechanism.html\#Dependency\ Management

3https://www.apache.org/
4https://opensource.google
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TABLE II: Selected subjects.

Organization Project Organization Project Organization Project

apache struts google jimfs alluxio alluxio

apache tomee google gson eclipse che

apache opennlp google truth flyway flyway

apache pulsar google guava immutables immutables

apache storm google error-prone jdbi jdbi

apache drill google caliper graphhopper graphhopper

apache kylin google compile-testing liquibase liquibase

apache karaf google google-java-format pmd pmd

apache archiva google closure-templates rest-assured rest-assured

apache druid google gwtmockito mockserver mock-server

apache camel google re2j hazelcast hazelcast

apache hbase google tink dropwizard dropwizard

apache curator aws aws-sdk-java-v2 janusgraph janusgraph

undertow-io undertow wildfly wildfly jersey jersey

keycloak keycloak checkstyle checkstyle hawtio hawtio

hcoles pitest ebean-orm ebean graphhopper jsprit

querydsl querydsl openvidu openvidu

C. Data Collection

To conduct our experiments, we consider three categories

of data: (1) the fix commits for vulnerabilities, (2) the released

versions of programs with vulnerabilities, and (3) the depen-

dent programs impacted by the residual vulnerabilities in the

supply chain.

a) Collecting fix commits for vulnerabilities: Fix com-

mits are explored to figure out the code fragments and code

files related to exposures and to identify the last version of

a subject program impacted by the corresponding vulnerabil-

ity. To collect fix commits, we use the keyword matching

method in commit messages that were proposed by Mocks

and Votta [18] and have been applied in several studies [19]–

[22]. In this study, we consider four keywords (i.e., CVE -

The Common Vulnerability Exposures, vulnerability, vulner-

able, and backdoor) to search the commits concerning fixing

vulnerabilities from the commit histories of the 50 subject

projects. In this paper, we summarize the collected data into

three categories: vul (i.e., “vulnerability” and “vulnerable”),

cve and backdoor.

b) Identifying released versions of programs with vulner-
abilities: Identifying the released versions of a program with

the related exposure needs to determine the initial commit

that inserts the vulnerable code and the fixing commit that

resolves the vulnerability. In each collected commit of fixing

vulnerabilities, we consider the deleted code (e.g., the code

started with the symbol “-” and highlighted in red shown in

Figure 3) as the vulnerable code to retrieve the initial commit

that adds the vulnerable code. All released versions between

the fixing commit (e.g., f-commit shown in Figure 4) and the

initial commit (e.g., init-commit in Figure 4) are identified as

the versions involving the vulnerability.

c) Identifying the dependents impacted by vulnerable
suppliers: For the open-source software, when it is released,

diff --git a/core/src/main/java/org/apache/
struts2/interceptor/
StrutsConversionErrorInterceptor.java b/
core/src/main/java/org/apache/struts2/
interceptor/
StrutsConversionErrorInterceptor.java

index 2a19432f0..799848937 100644
--- a/core/src/main/java/org/apache/struts2/

interceptor/
StrutsConversionErrorInterceptor.java

+++ b/core/src/main/java/org/apache/struts2/
interceptor/
StrutsConversionErrorInterceptor.java

@@ -80,7 +80,7 @@ public class
StrutsConversionErrorInter- ceptor extends
ConversionErrorInterceptor

try {
stack.push(value);

- return "’" + stack.findValue("top", String
.class) + "’";

+ return escape(stack.findString("top"));
} finally {

stack.pop();
}

Fig. 3: The patch diff for fixing a vulnerability in struts.

it is always made publicly available online (e.g., the popular

maven repository5), the same for the versions of software

released with vulnerabilities. As shown in Figure 5, with the

identified versions released with vulnerabilities, we can figure

out the dependents in the software supply chain are impacted

by the vulnerable versions of suppliers.

Dependents of main subjects can be written in different

development languages, and our approach is to match artifact

5https://mvnrepository.com/
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Fig. 4: Identifying the versions released with vulnerabilities.
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Fig. 5: Identifying the dependents impacted by vulnerable

suppliers.

IDs and versions between the subjects and their dependents, so

there is no matching data for dependents that are not Maven

projects. For each dependent program, with its “pom.xml”

file, the versions for all of its dependencies in the supply chain

can be precisely identified. The dependents impacted by vul-

nerabilities in the supply chain can be identified by matching

the vulnerable versions of suppliers and the interpretations of

their dependencies. The replicable package with source code

and all collected data for this study are publicly available at:

https://github.com/1993ryan/sc-scan.

IV. STUDY RESULTS

In this study, we assess the extent of the attack surface

related to the residual vulnerabilities of suppliers in the open-

source software supply chain. We also investigate the residual

vulnerabilities characteristics in 50 open-source Java projects

involved in the supply chain as suppliers. The study results

answer the research questions (RQs) listed in Section III-A and

present vital insights. Note that the commits and dependency

relationships are changing day by day. All data used to perform

this study are collected from GitHub until 3rd December in

2020.

A. RQ1: Distribution and Location of Vulnerabilities

Our first research question concerns the vulnerabilities that

existed in the commit history of suppliers in the open-source

software supply chain. We want to understand how the vulner-

abilities are distributed and located in the open-source software

supply chain suppliers.

Complexity of fixing vulnerabilities: We dissect the vul-

nerabilities in terms of the modified files, code hunks, and

code lines.

As illustrated in Figure 6, the vulnerable code is mainly

located in a small number of files as most fixing commits

modified a few code files (e.g., 48%=120/250 for single files,

20%=50/250 for two files, and 9.2% for three files). The

modified code hunks have a similar distribution as well, shown

in Figure 7. However, some vulnerabilities involve multiple

code files or multiple code hunks, which could increase the

difficulty of detecting and resolving the vulnerabilities in the

suppliers.

Figure 8 further illustrates the distribution of vulnerabilities

in line granularity. The cve vulnerabilities have fewer code

lines than the other two kinds of vulnerabilities. The number

of backdoor vulnerabilities is much fewer than the other two

kinds of vulnerabilities, but its deleted and inserted code lines

in its fixes are much higher than the fixes of the other two kinds

of vulnerabilities. Overall, for fixing most vulnerabilities, they

always need to insert more code lines than deleted code lines,

and the total number of inserted code lines is almost three

times bigger than deleted code lines.

Location of vulnerabilities: We further check the file types

associated with the vulnerability fixing commits. Overall, the

changes of 250 commits are related to 30 kinds of files

(shown in Figures 9) after excluding the descriptive files (e.g.,

LICENSE).

Figure 9 presents the distribution of the modified file types

concerning the referred supplier projects. vul type vulnera-

bilities are retrieved from 38 projects. Thirty-one of them

modified the xml files in the related fixing commits. For

cve type vulnerabilities, 23 out 31 projects modified xml

Fig. 6: Distribution of modified files with respect to vulnera-

bility fixing commits.

Fig. 7: Distribution of modified code hunks with respect to

vulnerability fixing commits.
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Fig. 8: Distribution of modified code lines with respect to

vulnerability fixing commits.
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Fig. 9: Referred projects of modified file types.

files for fixing the related vulnerabilities. In the two types

of vulnerabilities, java code files are the second widely

modified files. For fixing backdoor vulnerabilities, all of the

five projects modified the java code files. From the aspect

of file types in projects, xml and java files are the top-2

most frequently modified files for fixing vulnerabilities in the

50 supplier projects. Most of the other file types are specific

to different projects.

Looking at the distribution on the modified file types

concerning the number of fixing commits and the distribution

on the modified files types concerning the number of modified

files, xml and java files are the top-2 most frequently

modified files for fixing vulnerabilities in the 50 supplier

projects as well. All of the 50 supplier projects are Java

projects, and it is customary to modify the java code files to

fixing the related vulnerabilities.

In general, we totally found 91 commits related to vulner-
ability. Meanwhile, there are 22, 127 and 12 commit records

related to vulnerable, cve and backdoor. Statistically, we

found that 88%≈
80
91 vulnerability commits modified java or

xml files. For vulnerable and cve, it accounts for 86%≈
19
22

and 91%≈
115
127 . Evenmore, 100%≈

12
12 related commits of

backdoor modified these two file types.

Furthermore, We manually checked all the changes in
xml files and observed that all the related changes are
associated with modifying the versions of the dependencies
of the suppliers. Moreover, the changes of 11 json files are
also related to modifying the dependency versions, and the
same goes for md files. It means that such vulnerabilities are

not from the source code of the suppliers but their suppliers.

This further highlights that the importance of vulnerabilities

in the open-source software supply chain.

B. RQ2: The Extension of Vulnerabilities in the Supplier
Lifecycle

Distribution of commits for fixing vulnerabilities: Firstly,

Table III presents the number of commits that fix the vulner-

abilities that existed in the history of each subject.

TABLE III: Number of commits related to fixing vulnerabil-

ities in the 50 subjects.
Subject vul cve backdoor Total

struts 12 0 0 12
tomee 2 5 0 6
opennlp 1 0 0 1
pulsar 4 8 0 10
storm 3 0 0 3
drill 2 2 0 3
kylin 6 0 8 14
karaf 2 7 0 8
archiva 1 2 0 3
druid 12 17 0 27
camel 1 14 0 15
hbase 3 5 1 8
curator 0 0 1 1
jimfs 1 0 0 1
gson 0 0 1 1
truth 1 0 0 1
guava 3 1 0 3
error-prone 2 0 0 2
caliper 0 0 0 0
compile-testing 1 1 0 2
google-java-format 0 0 0 0
closure-templates 1 1 0 1
gwtmockito 0 0 0 0
re2j 0 0 0 0
tink 1 1 0 2
alluxio 6 7 0 12
che 3 2 0 5
flyway 4 1 0 4
immutables 1 1 0 2
jdbi 0 3 0 3
graphhopper 0 1 0 1
liquibase 2 3 0 3
pmd 1 4 0 5
rest-assured 3 0 0 3
mockserver 3 2 0 5
hazelcast 0 2 0 2
dropwizard 5 11 0 14
aws-sdk-java-v2 3 2 0 5
undertow 1 1 0 2
wildfly 0 12 0 12
jersey 2 0 0 2
janusgraph 3 4 0 7
keycloak 5 0 0 5
checkstyle 2 2 0 2
hawtio 2 1 0 3
pitest 3 0 0 3
ebean 0 4 1 5
jsprit 0 1 0 1
querydsl 1 0 0 1
openvidu 1 0 0 1

Total 110 128 12 235
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In total, 235 (= 110 + 128 + 12 - 15) fixing commits

are collected from the 50 subjects. The 15 reasons for
subtracting the total here are that part of the project fixes
different bugs with the same commit, such as druid fixed

the “vul” and “cve”) issues by the same commit whose ID is

”958764908f96bcd1e9b119466a7b2c0f070b3db3”. Except for

Google projects (i.e., caliper, google-
java-format, gwtmockito and re2j), each subject con-

tains at least one commit to resolve the related vulnerability

described with one of the four keywords (i.e., vulnerability,

vulnerable, cve and backdoor). It is expected that the number

is high since the vulnerabilities are not widely hidden in

programs.

We observe that, in the 50 subjects, most vulnerability-fixing

commits are described with two categories (“vul” (44%) and

“cve”) (51.2%). Only five projects involve 12 (4.8%) fixing

commits concerning the keyword “backdoor”, and 8 out of

them are from the project kylin. The project druid has the

most significant number of fixing commits than other projects.

Project druid is an Apache project with 406 contributors who

offer strong support for this project. This number is higher than

the contributors of other projects. The more contributors of
a project, the higher possibility to resolve the vulnerabilities
involved in the program. However, more contributors could
increase the risk of injecting malicious code into open-
source supplier projects because of their unintentional or
bad-intentional operation.

Impacted time interval of vulnerabilities: Figure 10

presents the distribution of the time interval of each vulner-

ability that is estimated by computing the time of inserting

and fixing the related vulnerable code fragments. Developers

fixed only a tiny part of the vulnerabilities in a month. 30%

vulnerabilities existed in the supplier projects over one year.

eleven vulnerabilities lasted for over five years. The long time

interval of fixing the related vulnerabilities reflects that the

small number of residual vulnerabilities affect a higher number

of dependents.

Fig. 10: Projects Distributions Based on Duration Days.

• M and Y represent “month” and “year”, respectively.

Affected versions of suppliers: We further assess the

released versions of the suppliers with their unfixed vulnera-

TABLE IV: Number of affected versions of suppliers.
Subject vul cve backdoor Total

struts 26 0 0 26
tomee 5 9 0 14
opennlp 8 0 0 8
pulsar 33 13 0 46
storm 2 0 0 2
drill 4 4 0 8
kylin 53 0 12 65
karaf 3 9 0 12
archiva 20 32 0 52
druid 45 92 0 137
camel 3 8 0 11
hbase 172 7 2 181
curator 0 0 29 29
jimfs 1 0 0 1
gson 0 0 3 3
truth 1 0 0 1
guava 8 5 0 13
error-prone 0 0 0 0
caliper 0 0 0 0
compile-testing 2 3 0 5
google-java-format 0 0 0 0
closure-templates 20 20 0 40
gwtmockito 0 0 0 0
re2j 0 0 0 0
tink 0 0 0 0
alluxio 40 2 0 42
che 69 6 0 75
flyway 45 45 0 90
immutables 3 3 0 6
jdbi 0 4 0 4
graphhopper 0 30 0 30
liquibase 4 7 0 11
pmd 5 37 0 42
rest-assured 39 0 0 39
mockserver 9 2 0 11
hazelcast 0 3 0 3
dropwizard 6 10 0 16
aws-sdk-java-v2 6 2 0 8
undertow 199 2 0 201
wildfly 0 35 0 35
jersey 3 0 0 3
janusgraph 12 6 0 18
keycloak 122 0 0 122
checkstyle 3 3 0 6
hawtio 72 3 0 75
pitest 27 0 0 27
ebean 0 3 89 92
jsprit 0 2 0 2
querydsl 42 0 0 42
openvidu 1 0 0 1

Total 1,113 407 135 1,655

bilities, of which results are illustrated in Table IV. Comparing

with the number of vulnerability fixing commits, the number

of buggy versions is significantly higher. It seems that vul
(10≈ 1,113

110 ) and backdoor (11≈ 135
12 ) vulnerabilities affect

more released versions of suppliers than cve vulnerabilities

(3.5≈ 407
128 ). Anyway, the number of affected versions of

supplier projects is much higher than the number of related

commits, it indicates that it will be a arduous task for
maintaining the reliability of the open-source supply chain.

During our research, we also observed that the vulnerable

code from 12 fixing commits does not affect any released

version of suppliers as they are fixed quickly after they are

inserted into the supplier projects, so there are no dependents

affected by this kind of vulnerability. It could benefit from

that their contributors immediately resolve the exposed vulner-

abilities. Fixing the vulnerability in supplier projects before
releasing them could effectively impede spreading residual
vulnerabilities in the open-source software supply chain.
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C. RQ3: Attack Surface due to Residual Vulnerabilities

TABLE V: Number of dependents (un)affected by each

subject.

Project # dependents Project # dependents
all affected all affected

struts 33,418 alluxio 682
tomee 1,453 che 384
opennlp 2,865 flyway 5,647
pulsar 454 immutables 1,651
storm 5,940 7 jdbi 1,609
drill 130 graphhopper 525
kylin 788 liquibase 4,348
karaf 975 4 pmd 2,517 11
archiva 515 rest-assured 16,585 1
druid 259 mockserver 1,761
camel 4,066 hazelcast 2,822
hbase 26,250 2 dropwizard 21,535 14
curator 21,135 2 aws-sdk-java-v2 933
jimfs 661 undertow 5,006 2
gson 1,049 wildfly 2,062 12
truth 1,777 jersey 5,174 37
guava 17,249 1 janusgraph 786 1
error-prone 2,684 keycloak 5,315
caliper 1,152 checkstyle 7,551 2
compile-testing 542 hawtio 631
google-java-format 406 pitest 616
closure-templates 273 ebean 530 69
gwtmockito 252 jsprit 152
re2j 237 querydsl 8,126 774
tink 194 openvidu 278

Total dependents 221,950 Total affected dependents 939
∗If a cell is empty, it means none of the dependents still uses the vulnerable of a
project.

With the method described in Section III-C, we can identify

the dependents of each subject. As shown in Table V, in total,

221,950 dependent projects are leveraging the 50 open source

projects, and 939 of them are still using the residual vulnerable

versions of 15 projects.
When comparing the number of affected dependents against

all dependents, it seems that only a tiny part (0.4% = 939
221,950 )

dependents are still affected by the residual vulnerabilities

from the suppliers in the open-source software supply chain.

Nevertheless, with only 15 supplier projects, 939 dependent

projects are infected, multiplying by 62 the initial number

of 15 supplier projects. Especially for the supplier project

querydsl, its residual versions affect 774 dependents, and

all of the 774 dependents are impacted by the residual versions

of the same program querydsl-apt that is a sub-project

in the supplier querydsl. Most of affected dependents are

using version 4.2.1 and 4.1.3. Thus, the security problem
from the residual vulnerabilities in the open-source software
supply chain can have a broad impact on their dependents,
which should be captured attention by the community.

Table VI details the number of dependents that are affected

by each of three vulnerable categories. Majority (88% =
823
939 ) of the dependents are affected by the vulnerabilities

of vul category. Only 11 dependents are impacted by the

residual backdoor-category vulnerabilities in two suppliers.

Surprisingly, most of the dependents are mainly affected by the

residual vulnerabilities of three suppliers (querydsl, ebean
and jersey). However, the three suppliers do not have the

highest number of dependents comparing to other suppliers.

In particular, ebean only has 530 dependents, but the number

of its affected dependents is 60, which accounts for 13% of

TABLE VI: Number of dependents affected by residual

vulnerabilities.

Subject vul cve backdoor
storm 7 0 0

karaf 0 4 0

guava 1 0 0

janusgraph 1 0 0

checkstyle 1 1 0

pmd 0 11 0

rest-assured 1 0 0

querydsl 774 0 0

hbase 0 2 0

jersey 37 0 0

undertow 1 1 0

curator 0 0 2

wildfly 0 12 0

dropwizard 0 14 0

ebean 0 60 9

Total 823 105 11

its dependents, and it is the highest number in column cve.

Meanwhile, the 774 affected dependents for querydsl is

the highest number in the table, and it is much larger than

the other results in the table. To improve the reliability of
suppliers in the supply chain, practitioners should pay more
effort on the projects of which residual vulnerabilities still
have the surface attack on their dependents.

We also assess the sub-dependents indirectly affected by
the residual vulnerabilities of suppliers. In the beginning, we

think that the more profound the project is, the number of sub-

dependents will increase exponentially. However, in reality,

as the project becomes more and more marginalized, the

number of sub-dependents in the deeper layer will decrease to

zero. The sub-dependents of a subject denote the projects that

reference the dependents affected by the residual vulnerability

of the issue. So the sub-dependents are indirectly affected by

the subject. The related results are shown Table VII (i.e., #

sub-dependents in the third column) As shown in Table VII,

14 out of 939 affected dependents are further referenced by

other 399 projects (i.e., sub-dependents). The affected sub-

dependents further support that the residual vulnerabilities in
the open-source software supply chain should be attracted
attention from practitioneres.

We also conducted a simple investigation to check the

historical versions of dependents that referenced the vulnerable

versions of subjects by checking the related updates in the cor-

responding “pom.xml” file. Checking all dependents’ historic

commits will take too many resources. Thus, we randomly

select 10 of them (one of the ten subjects is failed to retrieve

the related commits). As shown in Table VIII, 80 dependents

of 9 supplier projects used the vulnerable versions of the

suppliers.

In the open-source software supply chain, the resid-
ual vulnerabilities of the suppliers are still directly af-
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TABLE VII: Number of sub-dependents affected by the

dependents of suppliers.

Subject dependent # sub-dependents

ebean

actframework/act-ebean 32

avaje-common/avaje-agentloader 68

ebean-orm-tools/finder-generator 10

ebean-orm/ebean-agent 28

hexagonframework/spring-data-ebean 1

icode/ameba 10

mrzhqiang/helper 8

querydsl

SpringCloud/spring-cloud-gray 48

GUMGA/frameworkbackend 129

svdev/marketcetera 7

encircled/Joiner 2

storm ptgoetz/storm-hbase 16

karaf-cve apache/brooklyn-server 16

wildfly wildfly-swarm-archive/wildfly-swarm-spi 26

Total 399

TABLE VIII: Dependents that fixed their vulnerable depen-

dencies.

Subject # dependents Subject # dependents
storm 11 guava 2

struts 1 querydsl 43

ebean 10 dropwizard 4

pmd 2 curator 1

wildfly 6 Total 80

fecting their dependents and indirectly influencing their
sub-dependents. The affected dependents are not evenly
distributed with suppliers and vulnerability categories.
Practitioners should pay more attention to the (residual)
vulnerabilities in the open-source software supply chain.

V. THREATS TO VALIDITY

A threat to validity is the complexity of dependents. Some

open-source projects did not maintain their dependency graph,

which further leads to the breakpoint of their supply chain.

Meanwhile, dependents are developed by different languages,

and it is so hard to recognize all developing languages and

locate their files used to write their dependency versions.

To reduce this threat, we select Java projects only, and the

data used for analysis are saved in a local git repository or

database. In addition, we only analyze dependency versions

of dependents with the pom.xml file to reduce the complexity

of dependents’ projects.

VI. RELATED WORK

a) Supply Chain Attack Research: Gui et al. [23]

studied the incident of XcodeGhost development tool infec-

tion, The attackers found it difficult in obtaining the official

version of Xcode through official channels at that time, and

they planted the virus into the Xcode distributed through

unofficial channels. In 2017, Cochran analyzed the WireX

Android botnet incident, the network propagation process of its

token advantage of the software from the software developer to

the users [24]. Ransomware is a virus that encrypts user data to

hold users to ransom [25], NotPetya ransomware event is that

attackers implant the virus in the process of software update

phase, and a large number of computers were affected by

it [26]. Khandelwal researched the malicious code implanting

event of CCleaner, and the attacker tampered with the CRT

library (C Runtime Lib) [8] and inserted malicious codes

into it. However, these researches are all based on COTs, but

the tendency of software development is increasingly towards

using open-source software.

Pfretzschner and Othmane proposed a system to identify

software supply chain attacks in npm packages by static code

analysi [27]. The tool can find four categories of attacks: global

variables leakage, management of global variables, operation

of a local function, and dependency-tree manipulation, but they

failed to recognize real-world instances of these attack types

for assessment.

b) Bug fixed commits Research: Many researchers have

analyzed the commits in software repositories [20], [28]–

[30]. Purushothaman and Perry [31] investigated patch-related

commits based on the types of repair action and sizes of bug

fixed hunks to research the influence of slight source code

variations. German [32] studies the features of amendment

records, such as modifications of source code in the software

version management system, the research analysis it from the

following aspects: author, the number of files, and change

coupling of files. Yin et al. [33] studied wrong bug-fixes, which

are solved by tracking each patch-revision history and found

that new bugs could be caused by the bug fixes process. Alali

et al. [34] presented research to study the relationships from

three aspects (number of files, hunks, and lines) of commits to

deduce the features of commits based on a long time historical

information.

VII. CONCLUSION

In summary, malicious code can exist in many kinds of

project files. For example, our research finds that backdoor
mainly existed in the java files of projects, and people pay

great attention to such issues and often deal with them in

a short time. However, sometimes they may be hidden in

projects disguised as different file types, so we should also

pay attention to the insignificant files, and they may become

targets attacks that are difficult to detect.

Meanwhile, we find that projects mainly fixed their vulner-

able issues by modifying java and xml files, and people

inserted more codes than deletions to solve the problems. In

particular, most files are related to updating their dependency

versions, so it is essential to maintain dependency versions to

avoid these issues caused by vulnerabilities or construct supply

chain attacks for the projects.

Furthermore, the number of affected dependents is further

expanded when looking at the next level of dependency, so any

issue in one node of the supply chain will impact the chain,

and their transmission force is strong. Therefore, people should

avoid the risk of supply chain attacks by solving problems as

early as possible.
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[28] Li Li, Tegawendé F Bissyandé, Yves Le Traon, and Jacques Klein.
Accessing inaccessible android apis: An empirical study. In 2016
IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 411–422. IEEE, 2016.
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