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Abstract—Deep learning techniques have achieved promising
results in code clone detection in the past decade. However,
existing techniques merely focus on how to extract more dis-
criminative features from source codes, while some issues, such as
structural differences of functional similar codes, are not explic-
itly addressed. This phenomenon is common when programmers
copy a code segment along with adding or removing several
statements, or use a more flexible syntax structure to implement
the same function. In this paper, we unify the aforementioned
problems as the problem of code misalignment, and propose
a novel code alignment network to tackle it. We design a
bi-directional causal convolutional neural network to extract
feature representations of code fragments with rich structural
and semantical information. After feature extraction, our method
learns to align the two code fragments in a data-driven fashion.
We present two independent strategies for code alignment,
namely attention-based alignment and sparse reconstruction-
based alignment. Both two strategies strive to learn an alignment
matrix that represents the correspondences between two code
fragments. Our method outperforms state-of-the-art methods in
terms of F1 score by 0.5% and 3.1% on BigCloneBench and
OJClone, respectively1.

Index Terms—Code clone detection, Bi-directional causal con-
volutional neural network, Code alignment.

I. INTRODUCTION

Code clone detection aims at making decisions by measur-

ing the similarity of two code snippets. It is valuable through-

out the software development lifecycle and fundamental in

many software engineering tasks, e.g., code classification, code

refactoring, bug detection, and malicious code detection [1].

In the past decades, a substantial amount of research effort

has been devoted to detect clones. Some early methods used

hand-crafted lexical and syntactic program features to identify

similar code pairs, showing promising performance in detect-

ing lexically and syntactically similar code pairs. However,

† Liming Fang is corresponding author.
1Our code is available at https://github.com/ArcticHare105/

Code-Alignment

in terms of detecting structurally flexible (e.g., adding or

removing several statements) and semantically similar code

pairs, their performance is compromising.

To handle these difficult code clones, recently, more and

more methods [2]–[4] seek to exploit the powerful ability of

deep neural networks to detect either syntactically similar or

semantically similar code fragments. Existing deep learning-

based methods usually adopt a three-stage learning manner:

(1) transform code fragments into abstract syntax trees (ASTs)

[3], [5], [6] or program dependence graphs (PDGs) [7], (2) use

neural networks to extract feature representations for each code

fragment, (3) calculate the similarity of two code fragments.

Despite their progress on overall performance, they did not

show an absolute advantage compared with those traditional

methods and there are still many challenges to be solved. In

this paper, we focus on an important issue which was neglected

by most existing methods, namely code misalignment.
The code misalignment problem mainly occurs when pro-

grammers copy all or part of one code file into another while

adding or removing several statements, or using a more flexible

structure to implement the same function. This phenomenon

is common in the software development process, and can

be also found in some benchmarks, such as BigCloneBench

[8], where such kind of clones accounts for more than 95%

of the total number. Even though the code fragments are

usually transformed into ASTs or PDGs, the issue of code

misalignment still exists because the original structure of the

code is maintained. Therefore, we argue that code alignment

is important for code clone detection, but it is usually ignored

or not considered by existing approaches.

Nevertheless, aligning two codes is non-trivial. Intuitively,

code alignment need to align similar code regions, while

keeping the rest of the code regions unmatched. However,

we have no cue about which part of the code is similar with

another code. To address this issue, we present a novel code

alignment network to perform code alignment in a data-driven
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way. Specifically, we follow ASTNN [3] to parse source code

fragments into ASTs, which are further divided into finer-

granularity statement trees that are encoded into vectors by a

small statement encoder. We then adopt a novel bi-directional

causal convolutional neural network (BiC-CNN) to process the

sequence of statement vectors into more representative and

abstract representations. Finally, we propose two independent

code alignment strategies, namely attention-based alignment

and sparse reconstruction-based alignment, to deal with the

issue of code misalignment.

Formally, both of the two code alignment strategies strive

to generate an alignment matrix, which shows the correspon-

dence or relation between the statements of two code frag-

ments. There are some differences between the two code align-

ment strategies. First, the attention-based alignment requires

additional parameters, while the sparse reconstruction-based

alignment does not. Besides, the attention-based alignment

seeks to explore the relation between statements of two code

fragments, while the sparse reconstruction-based alignment

attempts to find the linear combination of statements. With

the designed BiC-CNN and code alignment strategies, our

method achieves the state-of-the-art performance on two pub-

lic benchmark, i.e., OJClone [2] and BigCloneBench [8]. The

experimental results show the superiority of our method over

existing methods. For example, on OJClone, our approach

improves the results of F1 values from 98.4% to 99.1%,

and on BigCloneBench, our method surpasses state-of-the-art

methods by 1.3% on recall values.

The contributions of this paper are three-fold: (1) We

propose a bi-directional causal convolutional neural network

to extract feature representations for code clone detection. (2)

To our limited knowledge, we are the first to investigate the

issue of code misalignment in code clone detection, and we

propose two effective code alignment strategies to improve

performance. (3) Our method achieves the state-of-the-art

performance on two public benchmarks.

II. BACKGROUD AND MOTIVATION

A. Code Clone Type Definition

Generally, similar codes are divide into four clones types

according to their level of similarity [9]. Formally, type-1

denotes the clone type that two codes snippets are identical

except for spaces, blanks, and comments, while type-2 means

the same code snippets except for the variable name, type

name, literal name, and function name. Type-3 means two

codes are almost identical except for several additions and

deletions on statements and name changes. Type-4 is usually

named as functional clones, which share the same functionality

but have different code structures or syntax. The existing

methods can resolve the first two easy types effectively, but for

type-3 and type-4, there are still many issues to be addressed.

B. Code Representations

Abstract Syntax Tree (AST) is an abstract representation of

the syntactic structure of the source code [10]. It represents

the syntactic structure of the programming language as a tree,

\\ code x
public void xtest1() throws Exception {

InputStream input = new

FileInputStream("C:/Documentos/j931.pdf");
InputStream tmp = new

ITextManager().cut(input, 3, 8);

FileOutputStream output = new

FileOutputStream("C:/temp/split.pdf");

IOUtils.copy(tmp, output);

input.close();
tmp.close();

output.close();
}

\\ code y
public void xtestFile2() throws Exception {

InputStream inputStream = new

FileInputStream(IOTest.FILE);

OutputStream outputStream = new

FileOutputStream("C:/Temp/testFile2.mp4");

IOUtils.copy(inputStream, outputStream);

inputStream.close();

outputStream.close();
}

(a) An example of two similar code fragments.

(b) An example of the pipeline for code clone detection.

Fig. 1: The motivation of our method. The similar regions of

two code fragments are usually different in position, which

hinders the model to detect similar codes. The residual of two

codes would always show low similarity whenever they are

similar or dissimilar. Therefore, code alignment is necessary.

with each node in the tree representing a structure in the

source code. The syntax is “abstract” because the syntax here

does not represent every detail that occurs in the real syntax.

Besides, Program Dependence Graph (PDG) is a usual code

representation of control dependencies and data dependencies.

However, generating PDGs is time-consuming, and there are

many incomplete and uncompilable codes in some benchmarks

whose PDGs cannot be obtained with existing tools.

To take advantage of the AST, tree-based methods have

been developed to take ASTs as input. According to the

used networks, we simply categorize these methods into

three categories, i.e., recursive neural networks [5], tree-based

Convolutional Neural Networks (CNNs) [2] and tree-based

Recurrent Neural Networks (RNNs) [3], [6].

2

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on March 21,2022 at 07:43:12 UTC from IEEE Xplore.  Restrictions apply. 



(a) Code X

(b) Code Y

Fig. 2: Two examples of abstract syntax trees and the corre-

sponding statement sequences.

C. Motivation Example

In our approach, we also take ASTs as input, however,

transforming code fragments into ASTs cannot address the

problem of code misalignment.

Fig. 1 (a) shows two similar code fragments. We can see

that, the fifth line of the code x is similar with the fourth line of

the code y, therefore, the similar regions of two code fragments

are misalignment. We also present their abstract syntax trees

and the statement sequences in Fig. 2. We note that even if we

transform code fragments into ASTs and statement sequences,

the problem of code misalignment still exists.

However, existing AST-based methods usually ignore this

issue. Even though these methods are built on powerful

neural networks, e.g., RNNs and CNNs, their compromising

performance on type-3 and type-4 demonstrates the necessity

of explicit code alignment. More specifically, these methods

usually adopt a siamese structure, that is, extracting feature

representations of code fragments individually, and then calcu-

late the similarity based on the learned feature representations.

Among these processes, the most alignment-like operation is

the global pooling operation [3], [7]. Due to the tree structure

of AST, the feature representation of a code fragment, which

are learned by CNNs or RNNs, is usually a two-dimensional

tensor. In order to generate a vector for calculating similarity, a

global pooling operation is adopted. However, global pooling

is inherently weak in resolving code misalignment. As shown

in Fig. 1 (b), if we directly calculate the residual of the

feature representations of two similar codes, due to the code

misalignment, the residual of each statement always show

low similarities, and the global pooling also keeps the low

similarity. In summary, code alignment is important for code

clone detection.

III. METHODOLOGY

In this section, we first introduce an overview of our

proposed approach (Sec. III-A). Next, we present the process

of generating a code representation (Sec. III-B). Finally, we

describe the two code alignment strategies (Sec. III-C).

A. Overview

Fig. 3 shows an illustration of our method. First, code

fragments are parsed into ASTs. We follow [3] to split the

large ASTs into finer-granularity statement trees (ST-trees),

which are encoded into vectors by a small statement encoder.

We then adopt a novel bi-directional causal CNN to process

the sequence of statement vectors into more representative and

abstract representations. Finally, we propose two independent

code alignment strategies, namely attention-based code align-

ment and sparse reconstruction-based code alignment, to deal

with the issue of code misalignment.

B. Code Representation Generation

a) Constructing ST-tree Sequences and Encoding: As

concrete entities, code fragments should be first processed

into abstract feature representations. By using existing syntax

analysis tools, we can transform the whole code fragment into

a large AST. However, as stated in [3], AST-based methods

have their intrinsic limitations that usually destroys the original

syntactic structure of source code and being vulnerable to

the gradient vanishing. Therefore, we adopt the strategy of

splitting AST into statement sequence.

Given a large AST T of one code fragment, we split it into

a sequence of small ST-trees firstly. With a small ST-tree, a

RvNN based statement encoder is then used for learning vector

representations of statements [3]. Finally, we can obtain a set

of feature vectors X ∈ R
T×D of ST-trees, where T denotes

the number of small ST-trees and D represents the feature

dimension. For more details, please refer to [3].

b) Generating discriminative features: The above op-

erations could extract syntactical information of statements,

however, there is an obvious limitation. Since each ST-tree is

forwarded into the feature encoder individually, there is no

interaction between ST-trees, or in other word, the extracted

feature vectors X lacks structural and contextual information

of the whole code fragment. In [3], they utilize a bi-directional

recurrent neural network (Bi-RNN) to model the sequence

of ST-trees’ features. However, we argue that RNN is time-

consuming due to its nature of serial processing. Prompted

by the powerful ability of CNN in parallel computing and

sequence modeling, we propose a CNN-based model to extract

more discriminative representations.

Specifically, we design a bi-directional causal CNN to

model the structural and contextual information of code frag-

ments, which can also benefit our model in parallel computing.

Causal convolutions are a type of convolution used for tem-

poral data, which also ensures the model cannot violate the

3
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Fig. 3: The overview of our method. First, source code fragments are parsed into ASTs. We follow [3] to split the large ASTs

into finer-granularity statement trees, which are encoded into vectors by a small statement encoder. We then adopt a novel bi-

directional causal CNN to learn discriminative representations. Finally, we propose two independent code alignment strategies,

namely attention-based alignment and sparse reconstruction-based alignment, to deal with the issue of code misalignment.

Fig. 4: Illustration of the details of the proposed bi-directional

causal convolutional netowrk.

order. According to our experiments, causal CNN performs

better than the vanilla CNN. We deem the reason is that the

causal CNN can preserve the order of the input data, and thus

retain the structural information of code fragments. Formally,

the bi-directional causal convolutional layer (BiC-Conv Layer)

can be formulated as:

−→
F l

t =
k∑

i=0

Kf
i · F l−1

t−i , (1)

←−
F l

t =
k∑

i=0

Kb
i · F l−1

t+i , (2)

Ft = concat(
−→
F l

t,
←−
F l

t), (3)

where l represent the lth layer, F l−1
t−i ∈ R

T×Di is the

input, K∗
i denote convolution kernels, f, b mean forward

and backward, respectively. As Eq.1, after generating features

along single direction, we concatenate bi-directional features

to obtain the output feature F ∈ R
T×Do , so the dimension of

feature
−→
F l

t and
←−
F l

t should be half of the output.

To capture information of large receptive field, based on

the bi-directional causal convolutional layer and inspired by

the Inception network [11], we present a bi-directional causal

convolutional network. Formally, in our method, the network

contains two bi-directional causal convolutional block (BiC-

Conv block). As shown in Fig. 4, a BiC-Conv block includes

a convolutional layer with kernel size 1×1, a BiC-Conv layer

with kernel size 3×1 and a BiC-Conv layer with kernel size 3×
1 and dilation 2. Therefore, one BiC-Conv block can capture

the receptive field of 5 × 1. Finally, we summarize all the

output features of the three operations as the output of the

BiC-Conv block.

C. Code Alignment

Even though the feature F is a good representation for

the code fragment, it is still not enough to tackle code

clone detection. For example, the similar parts in two code

fragments are usually different in location, this phenomenon

is severe in code clones of type-3 and type-4, which are

syntactically similar and differ at the statement level. However,

existing methods usually ignore this issue and utilize simple

operations (e.g., max or average pooling) to generate a holistic

representation of the whole code fragment, which actually

discards the useful structural information and thus distracts

the network from accurately detecting code clones.

To address this issue, as shown in Fig. 5, we propose two

strategies for code alignment, namely attention-based code

alignment and sparse reconstruction-based code alignment. We

show the process of aligning the code y to the code x below,

the reverse process is easily achieved by swapping subscripts

of notations. Suppose there are two codes: code x and code

y, which may have different sequence lengths. We denote the

encoded features of code x and code y as Fx ∈ R
Tx×D and

Fy ∈ R
Ty×D, where Tx and Ty denote the sequence lengths,

as shown in Fig. 5. Note that, we not only align code y with

code x, but also align code x with code x in a bi-directional

way. The reason is align one code to another code must destroy

the structure of the first code. Therefore, in order to maintain

the structural information of two code fragments, we calculate

two aligned features.

a) Attention-based code alignment (ACA): attention

mechanism is widely used in various field. Actually, attention

4
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(b) Sparse reconstruction-based code alignment.

Fig. 5: Illustration of two code alignment strategies. The two

strategies aim to learn an alignment matrix, which represents

the correspondence between the statements of two codes.

is an alignment operation [12] to some extent. To represent

the attention mechanism in the form of alignment, we forward

Fx and Fy into two fully connected networks respectively to

obtain two compact features F̂x ∈ R
Tx×N and F̂y ∈ R

Ty×N ,

where N represents the dimensionality. We then calculate an

affinity matrix Axy ∈ R
Tx×Ty as follow

Axy = softmax(F̂xF̂
T
y ,−1), (4)

where softmax(·,−1) denotes the softmax operation along

the last dimension. Intuitively, the ith row and jth column of

matrix F̂xF̂
T
y manifests the relation between the ith feature

of the code x and the jth feature of the code y. The higher

of the value, the tighter of their relation. After normalization,

the ith row of Axy represents the correspondences between

the ith feature of the code x and all features of the code y. It

is natural to utilize the matrix Axy to align code y to code x,

which can be formulated as

F̃x = AxyFy. (5)

It is obvious that the feature F̃x ∈ R
Tx×D has the same size

of the feature Fx, but is formed by the feature Fy of code

y. Intuitively, we can view the feature F̃x ∈ R
Tx×D as the

aligned feature corresponding to the feature Fx of code x.

Similarly, we can calculate the alignment matrix Ayx to align

code x to code y, and then obtain the aligned feature F̃y .

b) Sparse reconstruction-based code alignment (SRCA):
Different from the ACA, SRCA has no extra parameter. The

key idea behind SRCA is that if two code fragments are

similar, some features in code y should be able to linearly

reconstruct the feature of code x and the similarity between

them can be computed as the reconstruction residual, and vice

versa. Therefore, we attempt to obtain the linear coefficients

wi ∈ R
Ty of Fx[i, :] (the ith row of the feature Fx) with

respect to Fy . With an �2-norm regularization imposed on wi,

the linear representation can be formulated as

min
wi

‖ Fx[i, :]−wT
i Fy ‖22 +β ‖ wi ‖22, (6)

where ‖ · ‖22 represents �2 normalization to impose sparse

regularization. For the feature Fx, Eq. 12 can be rewritten as

min
W

‖ Fx −WFy ‖22 +β ‖ W ‖22, (7)

where W ∈ R
Tx×Ty , and β controls the smoothness of the

vector W . We use the least square algorithm to solve W as

W T = (FyF
T
y + βI)−1FyF

T
x , (8)

where I ∈ R
Ty×Ty is an identity matrix. Then the aligned

feature F̃x can be represented as

F̃x = FxF
T
y (FyF

T
y + βI)−1Fy. (9)

We can also obtain the aligned feature F̃y in the same way.

c) Calculating code similarity: With the aligned feature

F̃x generated from code y, given the extracted feature Fx, we

calculate the alignment residual as:

Rxy = abs(Fx − F̃x), (10)

where abs(·) denotes element-wise absolution operation. Like-

wise, we can obtain the residual Ryx between the aligned

feature F̃y and the feature Fy . Since the residual is a two-

dimensional tensor, we apply a global max pooling along the

sequence dimension to obtain two vectors Vxy,Vyx. Therefore,

the similarity between code x and code y is calculated as

S = sigmoid(FC(Fusion(Vxy,Vyx))), (11)

where Fusion(, ) denotes a fusion operation, e.g., max, mean,

etc. FC(·) is a fully connected layer to map the dimensionality

from D to 1, and sigmoid(·) mimics the similarity with the

value between 0 and 1. Finally, the loss function of our model

is a binary cross entropy (BCE) loss as

L = − 1

N

∑N

i=1
yilog(Si) + (1− yi)log(1− Si), (12)

where yi and Si represent the ground truth and similarity of

the ith code pair in a mini-batch of size N .

IV. EXPERIMENTAL SETTINGS

Empirical evaluation of our proposed methods is performed

through several experiments. Before showing the experimental

results, we first describe some research questions, the used

benchmarks, and the overall experimental setup.
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A. Research Questions

Based on the evaluation on the two benchmarks, we target

at investigating the following research questions:

• RQ1: How does our approach perform in code clone
detection compared with state-of-the-art methods? We

aim to compare our method with the state-of-the-art meth-

ods to show the effectiveness of our method. Besides, it

can also demonstrate the necessity of code alignment,

which was mostly ignored by existing methods.

• RQ2: What is the effect of the designed bi-directional
causal convolutional neural network? With this RQ,

we aim to validate the effectiveness and efficiency of the

proposed BiC-CNN, and show its superiority compared

to vanilla RNNs.

• RQ3: What is a suitable way to fuse the two residuals
of two codes? Calculating two residuals is essential for

keeping the structural information. Therefore, we inves-

tigate which fusion strategy is suitable in our method.

• RQ4: What are the effects of the two code alignment
strategies? With this RQ we aim to comprehensively

evaluate the proposed code alignment strategies by show-

ing both quantitative and qualitative results.

B. Dataset

We evaluate our method on two benchmarks: Big-

CloneBench [8] and OJClone [2]. The reason we choose

BigCloneBench is because it is a widely used benchmark for

code clone detection, and the type-3 and type-4 clone types

account for the majority. For OJClone, programs have the

same functionality if they aim to solve the same problem,

so it is also appropriate to evaluate our method. Besides,

the BigCloneBench and OJClone are based on Java and C,

respectively, which allows us to evaluate the generalization

ability of our approach in detecting code clones.

a) BigCloneBench: This dataset contains over 6,000,000

positive clone pairs and 260,000 negative clone pairs. In

BigCloneBench, all the code fragments are based on Java

language. Due to the ambiguity between the definitions of

type-3 and type-4, the code pairs of type-3 and type-4 are

further partitioned by a similarity score on statement-level:

strongly type-3 (ST3), moderately type-3 (MT3) and weakly

type-3/type-4 (WT3/T4) are defined with similarity in [0.7,

1.0), [0.5, 0.7) and [0.0, 0.5), respectively. The majority of

code clone pairs are weakly type-3/type-4, so BigCloneBench

is suitable to be used for validating semantic clone detection.

b) OJClone: This dataset contains 104 programming

problems together with different source codes students submit

for each problem [2]. In OJClone, two different source codes

that solve the same programming problem are considered as a

code clone pair, due to their same functionality, which belongs

to type-3 or type-4.

C. Implementation Details.

The convolutional neural network used in our model con-

tains two layers, both consisting of 256 channels. Our method

is implemented by PyTorch [14]. During training, we loop

through each code pair in the current training batch and accu-

mulate the gradient to deal with code fragments of different

lengths. We use Adam [15] to optimize the model. The training

procedure stops at 8 epochs with the learning rates 0.01. We

set batch size as 10 for OJClone and 16 for BigCloneBench,

and the weight decay is chosen as 0.0005.

V. EXPERIMENTAL RESULTS AND ANALYSES

We present the experimental results in this section to answer

the research questions.

A. RQ1: Comparison with the State-of-the-art Methods

In this question, we would like to find out whether our

method is effective on code clone detection. First, we briefly

introduce several code clone approaches as follows: (1)

Deckard [1]: a code clone approach based on syntax tree,

which adopts Euclidean distance to calculate the similarity

between code fragments. (2) DLC [5]: a deep-learning-based

method that uses a recursive auto-encoder to extract deep

features. (3) CDLH [6]: a deep learning approach to learn

syntactic features of code clone. (4) Deepsim [7]: a semantic-

based approach that utilizes supervised deep learning to mea-

sure functional code similarity. (5) ASTNN [3]: a state-of-

the-art model, which splits a large AST into a sequence of

small statement trees, and encodes the statement trees into

lexical and syntactical vectors. (6) FA-AST+GMN [13]: a

state-of-the-art model, which augments original ASTs with

explicit control and data flow edges, and then Graph Matching

Networks (GMN) is utilized to measure the similarity of code

pairs. (7) SSFL [4]: a state-of-the-art model, which learns a

novel joint code representation to learn hidden syntactic and

semantic features of source codes.

As shown in Tab. I, on BCB dataset, all the methods obtain

promising performance in detecting similar code fragments

in type-1 and type-2, since both code fragments are almost

the same except some different function and variable names.

While for other types, the effectiveness of our method can be

represented. Specifically, Deckard only utilizes hand-crafted

features as code representations and calculated similarity by

using euclidean distance. Therefore, it considers each dimen-

sion the same for calculating similarity, which is not enough

and thus obtains a low recall value. Moreover, even though

the RtvNN and CDLH adopt an RNN language model to

learn code embeddings, they treat the AST as a binary tree,

which destroy the original structure of the code, leading to

inferior performance. Even though the ASTNN [3] explicitly

model sequential naturalness of statements in code fragments.

However, they ignore the issue of code misalignment, which is

essential for code clone detection. Therefore, it is unsurprising

that our method significantly outperforms ASTNN in the clone

types of MT3 and T4, which can be viewed as semantic clones

that extremely require code alignment to alleviate the influence

of other factors. Moreover, compared with the state-of-the-art

method FA-AST+GMN [13], our methods still achieves better

performance, demonstrating the state-of-the-art performance

of our method on BigClonebench dataset.
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TABLE I: Code clone detection results on BigCloneBench. P, R, F1 denote precision, recall and F1 score, respectively. Note

that, the column of ALL is a weighted sum result according to the percentage of various clone types [6].

Method
T1 T2 ST3 MT3 T4 ALL

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Deckard [1] - - - - - - - - - - - - - - - 93.0 2.0 3.0
RtvNN [5] - - - - - - - - - - - - - - - 95.0 1.0 1.0
CDLH [6] - - - - - - - - - - - - - - - 92.0 74.0 82.0
ASTNN [3] 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.6 99.8 100.0 97.9 98.9 93.3 92.2 92.8 93.4 92.3 92.9
FA-AST+GMN [13] 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.6 99.8 100.0 96.5 98.2 95.7 93.5 94.6 95.8 93.6 94.7
Ours (Attention) 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 99.9 99.9 98.2 99.0 95.2 94.3 94.7 95.3 94.4 94.8
Ours (Sparse) 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 99.9 100.0 98.5 99.2 95.8 94.8 95.3 95.9 94.6 95.2

TABLE II: Code clone detection results on OJClone. P, R, F1

denote precision, recall and F1 score, respectively.

Method
Metric

P R F1

Deckard [1] 99.0 5.0 10.0
DLC [5] 52.5 68.3 59.4
CDLH [6] 47.0 73.0 57.0
PDG+HOPE [16] 76.2 7.0 12.9
PDG+GGNN [17] 77.3 43.6 55.8
Deepsim [7] 70.0 83.0 76.0
ASTNN [3] 98.9 92.7 95.5
SSFL [4] 97.0 95.0 96.0
Ours (Attention) 99.4 97.5 98.4
Ours (Sparse) 99.7 98.5 99.1

TABLE III: Code clone detection results on OJClone. None
denotes we do not use any network to proces the input, that

is, the features are directly used to calculate similarities. Note

that, all of these methods are without code alignment.

Method
Metric

P R F1

None 92.1 81.9 86.7

CNN

vanilla (128-128) 98.3 93.8 96.2
128-128 99.5 96.2 97.8
128-64 98.4 94.8 97.0
128-32 98.1 93.6 95.8
64-64 99.2 94.7 96.9
64-32 99.2 94.7 96.9
32-32 99.0 94.4 96.6

RNN
vanilla RNN 97.8 92.6 95.1
Bi-RNN 98.9 92.7 95.7

As shown in Tab. II, on OJClone, similar results can be

also observed. It can be observed that CDLH, DeepSim,

ASTNN, SSFL and our approach obtain better results than

those unsupervised methods Deckard, DLC, and PDG in terms

of F1 value. Since the code types in OJClone are almost func-

tional clones, this phenomenon demonstrates that unsupervised

methods cannot capture the similarity of functional clones.

Compared with other supervised method: CDLH, Deepsim

and SSFL, our method still achieves better performance.

Especially, compared with the recent method ASTNN [3],

our method significantly surpass it by 0.8%, 5.8% and 3.6%
on the metrics of precision, recall and F1 score, respectively,

demonstrating the state-of-the-art performance on OJClone.

B. RQ2: Effectiveness of the BiC-CNN

In our method, we adopt a bi-directional causal convo-

lutional neural network to extract more discriminative and

TABLE IV: Evaluation of the number of parameters and

inference time on OJClone.

Method Parameters Inference Time
Metric

P R F1

Bi-RNN (2 layers) [3] 0.89M 38.33ms 98.9 92.7 95.7
Bi-RNN + Attention 0.92M 53.21ms 99.2 97.1 98.1
Bi-RNN + Sparse 0.89M 48.53ms 99.3 97.9 98.6
Bi-CNN 0.62M 32.59ms 97.0 95.0 96.0
Bi-CNN + Attention 0.65M 43.55ms 99.4 97.5 98.4
Bi-CNN + Sparse 0.62M 38.22ms 99.7 98.5 99.1

abstract features of code fragments. Generally speaking, for

a sequential input, an recurrent neural network is usually used

(e.g., ASTNN [3] utilizes a bi-directional recurrent neural

network). However, we argue that the convolutional neural net-

work is more appropriate for its powerful ability of sequence

modeling and parallel computing.

In Tab. III, we show the results of different methods, which

are based on RNNs or CNNs, on the OJClone dataset. Note

that, for fair comparisons, we do not adopt code alignment

in these experiments. As we can see, when we do not use

CNN or RNN, the performance is very low, demonstrating

the importance of introducing an additional module to extract

discriminative features. Among RNN-based methods, the bi-

directional RNN achieves better performance compared to

the vanilla RNN. It makes sense because the bi-directional

RNN can capture richer sequential naturalness of the code.

Compared with the RNN, CNN shows its superior ability

in code clone detection. Specifically, compared with the bi-

directional RNN, our proposed bi-directional causal CNN has

improvements on precision, recall and F1 score by 0.6%,

3.5% and 2.3%, respectively. Similar to the results of RNNs,

the proposed bi-directional causal CNN obtains better per-

formance compared to the vanilla CNN. Therefore, we can

obtain such a conclusion: our bi-directional causal CNN can

capture sequential information and simultaneously integrates

the advantages of CNNs.

To obtain the optimal setting, we also evaluate different

models with different output channels. For a fair comparison,

we fix the number of layers as 2 in these experiments. We

can see that the model with output channels of 128 and 128

achieves the best performance.

In Tab. IV, we also evaluate the number of parameters as

well as the inference time of different methods. As we can

see, compared with the bi-directional RNN, our proposed bi-

directional causal CNN has less parameters and requires less
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TABLE V: Evaluation of different fusion strategies of two

residuals on OJClone. The single residual means we only

calculate a single residual and thus require no fusion strategy.

Method
Metric

P R F1

Attention

single residual 98.8 97.0 97.9
sum 99.3 97.2 98.2
max 99.5 97.4 98.4
mean 99.3 97.6 98.3
concat 99.4 97.5 98.4

Sparse Reconstruction

single residual 99.1 97.8 98.4
sum 99.3 98.1 98.7
max 99.5 98.4 98.9
mean 99.6 98.2 98.9
concat 99.7 98.5 99.1

time for inference, but achieves better detection performance.

C. RQ3: Evaluation of Different Fusion Strategies

As stated in the section of the code alignment, we calculate

two residuals of code x and code y to achieve the bi-directional

alignment, so as to maintain the structural information of

the two codes. In Tab. V, we first validate the necessity of

calculating two residuals. We note that there is an obvious

performance degradation when we only calculate a single

residual. For example, in terms of the attention-based code

alignment, the performance drops by 0.5%, showing the im-

portance of calculating two residuals.

To figure out which fusion strategy is suitable for aggregat-

ing two residuals, in Tab. V, we further evaluate four fusion

strategies (i.e., sum, max, mean and concat) on the OJClone

dataset. Specifically, the sum operation means adding the

corresponding elements of the two feature vectors to build the

fusion vector, i.e., V = Vxy + Vyx. Likewise, max and mean
operation denote element-wise max and element-wise mean,

respectively. The concat means concatenating two residual

vectors, i.e., V = [Vxy,Vyx]. As we can see, all of the

four strategies can achieve promising performance. Among the

four strategies, the concat achieves the best performance due

to its better ability to retain information. Besides, since the

dimension of the concatenated feature is twice as large as the

features generated by other strategies, more parameters are

required, which may lead to better performance.

D. RQ4: Evaluation of Two Code Alignment Strategies

In our method, code alignment plays an important role.

The two types of code alignment can both work in code

clone detection. As shown in Tab. I and Tab. II, the attention-

based code alignment and sparse-reconstruction-based code

alignment can significantly improve the results. For example,

on OJClone, they improves precision, recall and F1 score

by 0.5%, 4.8%, 2.9% and 0.8%, 5.8%, 3.6%, respectively.

Besides, from Tab. IV, we can find that the two code alignment

strategies can consistently improve the performance upon

the baseline models, suggesting that both code alignment

strategies are valid for any baseline model.

Comparing two different ways of code alignment, the sparse

reconstruction-based strategy achieves better performance. The

(a) Positive clone pairs

(b) Negative clone pairs

Fig. 6: Illustration of the statistical distribution of similarity

difference before and after the alignment operation. Here,

we utilize histograms of 50 bins to show the results. The

horizontal axis represents the similarity after alignment minus

the similarity before alignment. The vertical axis represents

the number of code pairs. For the sparse reconstruction-based

code alignment, the similarities of 649 positive clone pairs

become larger while only 19 pairs become smaller. For the

attention-based code alignment, the similarities of 623 positive

clone pairs become larger while only 45 pairs become smaller.

reason may because the attention-based strategy only allows

non-negative linear coefficients but the sparse-reconstruction-

based strategy allows both positive and negative coefficients,

which would enable a more powerful ability of alignment.

To attain an insight into the two types of code alignment,

we show the similarities of positive code pairs and negative

code pairs in Fig. 6. As we can see, after applying code

alignment, the similarities of positive code pairs are increased,

meanwhile the similarities of negative code pairs are de-

creased, demonstrating the effectiveness of code alignment in

code clone detection that heavily requires accurate similarity

measurement.

We further draw the ROC curve of different variants of our

method on two datasets, the results are shown in Fig. 7. The

ROC curve is a graphical plot that illustrates the diagnostic

ability of a binary classifier as its discrimination threshold

is varied2. Similar to the results shown in Tab. II and Tab.

2https://en.wikipedia.org/wiki/Receiver operating characteristic
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(a) OJClone

(b) Type-4 of BCB

Fig. 7: The ROC curve and AUC score of different methods.

I, the sparse reconstruction-based code alignment achieves

the highest AUC score among the three approaches, and the

attention-based coda alignment also obtains a better AUC

score compared with the methods without code alignment.

To attain intuitive insights into our code alignment, we also

show some qualitative results. During code alignment, the

alignment matrix (i.e., Axy of the attention-based code align-

ment and FxF
T
y (FyF

T
y +βI)−1 of the sparse reconstruction-

based code alignment) show the correspondence between two

codes, so we can figure out which part of code X corresponds

to which part of code Y from the alignment matrix. In Fig. 8,

we show the two similar codes, where the alignment matrix

is visualized by the arrows between two codes, which connect

the code lines with high alignment scores. From Fig. 8, we

can find that our proposed strategy obtains astonishing code

alignment performance, therefore, it is unsurprising that the

code alignment would prompt code clone detection, since it

eliminates other influence factors such as locations and allows

the model to intently focus on detecting similar codes.

VI. THREATS TO VALIDITY

There are three main threats to the validity. First, our method

is based on a shallow feature extraction module similar to

the previous methods. However, if we build our method on a

powerful network such as ResNet [18], it remains to be seen

\\ code x
public static String read(URL url) throws

IOException {
BufferedReader reader = new

BufferedReader(new
InputStreamReader(url.openStream()));

StringWriter res = new StringWriter();
PrintWriter writer = new PrintWriter(new

BufferedWriter(res));
String line;
while ((line = reader.readLine()) != null) {

writer.println(line);
}
reader.close();
writer.close();
return res.toString();

}

\\ code y
private String fetchContent() throws IOException {

BufferedReader reader = new
BufferedReader(new
InputStreamReader(url.openStream()));

StringBuffer buf = new StringBuffer();
String str;
while ((str = reader.readLine()) != null) {

buf.append(str);
}
return buf.toString();

}

Fig. 8: Illustration of the alignment results. We show three

statement pairs that have alignment scores greater than 0.5. It

is obvious that the code alignment is accurate and effective.

whether the proposed code alignment will have any effect.

Second, our method are evaluated on only two programming

languages, i.e., Java and C. Actually, our method can be

potentially used to detect code clones for other programming

languages, whose ASTs can be also extracted. However, since

we have not evaluated this, we cannot claim the effectiveness

on these programming languages. Third, the effectiveness of

our approach is limited by the quality of current benchmarks.

With the introduction of deep learning and the addition of

various strategies, such as code alignment, the existing datasets

have entered performance saturation and cannot well reflect

the effectiveness of the method. Therefore, we plan to collect

a larger dataset.

VII. RELATED WORK

A. Code Clone Detection

Traditional code clone detection techniques meanly use

representations such as text [19], [20], tokens [21], syntax

indicators or abstract syntax trees [1] for measuring the sim-

ilarity between code snippets. With the breakthrough of deep

learning in Natural Language Processing (NLP), deep learning

has been applied in the field of software engineering due

to the similarities between programs and natural languages.

DLC [5] introduces a language model to detect clones, where

a recursive learning process are proposed to learn fragment

representations. CDLH [6] propose to transform ASTs into

binary hash codes by leaning hash functions, and then utilizes

an AST-based LSTM to capture the lexical and syntactical

9

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on March 21,2022 at 07:43:12 UTC from IEEE Xplore.  Restrictions apply. 



information of source codes. Deepsim [7] attempt to encode

the control flow and data flow into a semantic matrix, which

are used to detect functional clones with deep neural networks.

FA-AST [13] present two graph-based networks to detect

clones. Apart from the graphs generated from ASTs, they

also introduce the the control flow and data flow informa-

tion into the graph. The most related approach with ours

is ASTNN [3], it splits a large AST into a sequence of

small statement trees, and encodes the statement trees to

vector representations, which are further forwarded into a bi-

directional recurrent neural network and finally produce the

vector representation of a code fragment. Our method also

follow the ASTNN [3] to split a AST into a sequence of

small statement trees, however, we design a more powerful

and efficiency bi-directional convolutional neural network to

obtain code representations. Moreover, different from the max

pooling operation used in ASTNN, which is prone to loss some

structural information, we utilize code alignment to first align

code, so as to balance the structural information preservation

and similarity measurement.

B. Alignment-based Methods

Alignment is widely adopted in various fields. Usually, there

are two or more objects, which are from multiple sources

(e.g., modalities) or a single source, we need to find their

common points but hindered by some factors, e.g., domain

gap [22]–[24], occlusion [25], [26], pose variance [27], [28],

alignment strategies can be used. For example, Karpathy et
al. [22] use a structural ranking loss to align image-sentences

pairs. DANs [23] jointly leverages visual and textual attention

mechanisms to align visual regions and words. He et al.
[25] propose an alignment-free approach, which utilize sparse

reconstruction to handle the difficulty of person occlusion

in person re-identification. To better recognize human faces,

some methods [27] propose to first align faces according to

some key points. Similar idea is adopted in P2RN [28] to

identify human actions. For code clone detection, there are

also some factors that impede accurate detection, e.g., different

structures or orders of two codes, demonstrating the necessity

of introducing some code alignment strategies.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed to detect clone code fragments

with code alignment strategies. We presented a novel bi-

directional causal CNN to process the sequence of state-

ment vectors into discriminative representations. Based on

the learned features, we designed two code alignment strate-

gies, namely attention-based code alignment and sparse

reconstruction-based code alignment, to mitigate the influence

of statement differences and enable more accurate detection.

Currently, our proposed code alignment strategies can be

only apply to the features generated by CNNs or RNNs.

However, the graph representation has shown its effectiveness

for code clone detection in many approaches. In the future, we

aim to focus on how to make the code alignment compatible

with graph representations.
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