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ABSTRACT
To improve software quality, just-in-time defect prediction (JIT-DP)
(identifying defect-inducing commits) and just-in-time defect local-
ization (JIT-DL) (identifying defect-inducing code lines in commits)
have been widely studied by learning semantic features or expert
features respectively, and indeed achieved promising performance.
Semantic features and expert features describe code change com-
mits from different aspects, however, the best of the two features
have not been fully explored together to boost the just-in-time
defect prediction and localization in the literature yet. Additional,
JIT-DP identifies defects at the coarse commit level, while as the
consequent task of JIT-DP, JIT-DL cannot achieve the accurate lo-
calization of defect-inducing code lines in a commit without JIT-DP.
We hypothesize that the two JIT tasks can be combined together to
boost the accurate prediction and localization of defect-inducing
commits by integrating semantic features with expert features.
Therefore, we propose to build a unified model, JIT-Fine, for the
just-in-time defect prediction and localization by leveraging the best
of semantic features and expert features. To assess the feasibility
of JIT-Fine, we first build a large-scale line-level manually labeled
dataset, JIT-Defects4J. Then, we make a comprehensive compari-
son with six state-of-the-art baselines under various settings using
ten performance measures grouped into two types: effort-agnostic
and effort-aware. The experimental results indicate that JIT-Fine
can outperform all state-of-the-art baselines on both JIT-DP and JIT-
DL tasks in terms of ten performance measures with a substantial
improvement (i.e., 10%-629% in terms of effort-agnostic measures
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on JIT-DP, 5%-54% in terms of effort-aware measures on JIT-DP,
and 4%-117% in terms of effort-aware measures on JIT-DL).
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1 INTRODUCTION
Software defects are unavoidable in software development, and
most of them are induced by the commits submitted in the evolution
of software [54]. Once software is released with defects, the various
walks of human-like could be substantially affected with unaccept-
able consequences on finance1 and human life [64]. Additionally,
the cost of maintaining defect-contained software will be increased
sharply [3, 23]. To address this challenge, one potential feasible
method is to identify and fix defects as early as possible. To this end,
practitioners have been exploring various approaches of identifying
defects at the coarse-grained level [5, 31, 34–36, 51, 55, 66] or fine-
grained level [4, 7, 11, 12, 20, 22, 24, 29, 38, 40, 61]. Meanwhile, a
few approaches are also proposed to timely and finely locate where
the defects exist, which can help developers better understand the
code [42, 57]. These fine-grained approaches aim at assisting devel-
opers to identify the defect-inducing commits/lines submitted by
developers before merging them, which is also referred to as just-in-
time (JIT) techniques. The promising results achieved by existing
studies indicate that JIT defect prediction and localization (JIT-DP
& JIT-DL) can provide effective hints for software participants to

1https://medium.com/@ryancohane/financial-cost-of-software-bugs-51b4d193f107
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identify and locate software defects in time [22, 42], especially for
the limited resource scenario.

In the literature, the state-of-the-art JIT-DP techniques mainly
adopt machine learning technologies to build a prediction model
that is used to predict the defect-inducing commits by learning
from the semantic features or the carefully curated expert features.
Semantic features are mainly mined from the semantic information
and syntactic structure hidden in the faulty source code to represent
the semantic characteristics of defect-prone commits [17, 18, 59].
The expert features are defined by experts according to their un-
derstanding on defect-inducing commits with their professional
knowledge and experience, which are taken as the input of learning
based classifiers to identify the defect-inducing commits. In the lit-
erature, Kamei et al. [22] firstly defined 14 types of expert features
(cf. Section 2) with five dimensions (i.e., diffusion, size, purpose
and history of code changes, as well as programmers’ experience),
which have been widely used as the expert features to detect the
defect-inducing code changes. The state-of-the-art techniques also
mainly adopt machine learning technologies with token features
to identify lines (JIT-DL) that are associated with the defective
commits by two-stage or two-different approaches [42, 57].

A diversity of state-of-the-art research work has been proposed
to boost the JIT-DP and JIT-DL tasks for developers, and have made
a great progress with promising results [17, 18, 37, 42, 57, 59, 62].
However, the state-of-the-art JIT-DP and JIT-DL techniques are still
limited on the granularity and accuracy of defect prediction and
localization. For example, ① the low-quality datasets with tangled
commits could affect the model training and further lead to the
low accuracy of identified results because of the noise in both
training data and testing data [14]. ② Semantic features and expert
features represent different characteristics of code changes from
different dimensions, which however are not explored together for
defect prediction or localization yet. We infer that the best of them
could be exploited together for JIT-DP and JIT-DL tasks. ③ JIT-
DP and JIT-DL tasks are respectively studied as two independent
techniques, while they could be designed into a unified model from
their purpose of identifying the defect-inducing code lines in code
change commits. To sum up, we intuitively hypothesize that just-
in-time defect prediction and localization could be proceeded with
a unified learning model by integrating the semantic features with
expert features behind code changes.

In this paper, based on our hypothesis, we comprehensively
explore the importance of combining semantic features with ex-
pert features for building a unified JIT-DP and JIT-DL model, and
present a novel approach (named JIT-Fine) with the widely used
deep learning technique, CodeBERT [8, 10, 63]. To the best of our
knowledge, JIT-Fine is the first to build a unified model for JIT-
DP and JIT-DL tasks. The underlying intuition of our approach
is to capture the distinguishing features of (non)defect-inducing
code changes and their contexts by integrating semantic features
with expert features, and consequently to identify the defective
commits as well as locate the defect position at line level. More
specifically, JIT-Fine mainly consists of three steps: ❶ extracting
expert features and semantic features from the code changes and
their contexts with pre-trained models, ❷ learning integrated fea-
tures between semantic and expert features to distinguish commits
from defect-inducing ones to defect-free ones, and ❸ predicting

whether a commit is defect-inducing and locating which code line
induce the defect in a commit. Eventually, this paper makes the
main contributions as below:
■ Dataset JIT-Defects4J.We build a large-scale line-level labeled

dataset JIT-Defects4J on the top of LLTC4J, a dataset collected by
Herbold et al. [14] for analyzing the tangled bug fixing commits,
to support the research of just-in-time defects and to fill the gap
of the low-quality dataset in the JIT-DP and JIT-DL community.

■ JIT-Fine. We implement a unified just-in-time defect predic-
tion and localization technique, JIT-Fine, with a unified learning
model to mine the distinguishing features from the semantic fea-
tures and expert features of code changes and their contexts. The
replication package of JIT-Fine and the aforementioned dataset
JIT-Defects4J are publicly available.2

■ Just-in-time defect prediction and localization.We compre-
hensively investigate the value of integrating the expert features
and semantic features for just-in-time defect prediction and just-
in-time defect localization. The results indicate that JIT-Fine
outperforms the state of the art (e.g., a higher F1-measure by 14-
37 percentage points on defect prediction, and a higher Top-10
accuracy by 2-12 percentage points).

■ Analyzing the effectiveness of combined features. We an-
alyze the effectiveness of semantic features and expert features
on JITLine and JIT-Fine, and the experimental results uncover
that the combination of semantic and expert features presents
obvious advantages on just-in-time defect prediction than the
usage of single ones.
The rest of this paper is organized as follows. Section 2 first

introduces the background and motivation of our work. Following
that, Section 3 introduces the design of JIT-Fine. Section 4 describes
the details of studied dataset. Section 5 presents the experimental
setting including compared baselines and considered performance
measures. Section 6 reports the experimental results. Following
that, some threats to validity are presented in Section 7. Section 8
describes related prior work. Finally, we conclude our work and
mention future plan in Section 9.

2 BACKGROUND AND MOTIVATION
2.1 Expert Features and Semantic Features
This section clarifies the notions of expert features and semantic
features related to the code changes.

Expert Features are the descriptive features defined by experts
according to their understanding of defect-inducing commits with
their professional knowledge and experience, to measure the quality
of code changes. In the literature, dozens of expert features [22, 37,
45] have been defined at change-level from various dimensions (e.g.,
diffusion, size, purpose, history, experience, review, programming
language). The 14 features (presented in Table 1) defined by Kamei
et al. [22] from five dimensions are widely adopted in the domain of
just-in-time defect prediction and have been demonstrated for their
effectiveness on such prediction tasks [42, 50, 62]. Therefore, we
follow the state-of-the-art work [42, 50, 62] to adopt the 14 expert
features as an important part to mine the integrated features of
code changes for just-in-time defect prediction and localization.

2https://github.com/jacknichao/JIT-Fine
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Table 1: Studied 14 basic change-level features.
Name Description Dimension
NS The number of modified subsystems

DiffusionND The number of modified directories
NF The number of modified files

Entropy Distribution of modified code across each
file

LA Lines of code added
SizeLD Lines of code deleted

LT Lines of code in a file before the change
FIX Whether or not the change is a defect fix Purpose

NDEV The number of developers that changed
the modified files

HistoryAGE The average time interval between the last
and current change

NUC The number of unique changes to the
modified files

EXP Developer experience
ExperienceREXP Recent developer experience

SEXP Developer experience on a subsystem

Semantic Features represent the theoretical units of meaning-
holding components which are used for representing word mean-
ing [1], and play a crucial role in determining the lexical relation-
ships between words in a language. In the domain of software
engineering, semantic features capture the meaning of tokens in
code as well as their contexts (e.g., semantic and syntactic structural
information of code), that have been widely used to represent the in-
trinsic characteristics of code mined with deep learning techniques,
like CodeBERT [10]. CodeBERT aims at learning contextual word
embedding (i.e., the embedding of a word changes dynamically
according to the context in which it appears) and has been widely
used in multiple natural language processing (NLP) tasks [43] and
software engineering (SE) tasks [63]. In this work, we extract seman-
tic features of code changes by leveraging the popular pre-trained
model, CodeBERT, and fine-tune it on commits for adapting it to
downstream tasks.

2.2 Motivation
In the literature, just-in-time defect prediction and localization
have been attracting more and more attention to boost just-in-
time software quality analysis, and indeed has achieved promising
results for developers to automatically identify defects in code
change commits from coarse-grain granularity [31, 34, 51, 66] to
fine-grained granularity [7, 12, 22, 24, 40]. Nevertheless, just-in-time
defect prediction and localization is still an open question because of
various limitations (e.g., low-quality dataset, independently mined
features, and non-unified models), which motivates us to conduct
this study to boost the development of just-in-time defect prediction
and localization.

Low-quality datasets. The state-of-the-art JIT-DP and JIT-DL
techniques are highly dependent on accurate information about
code changes in the related datasets. Unfortunately, these tech-
niques suffer from the low-quality dataset (e.g., tangled commits
mislabeled by practitioners). In practice, a single commit could
be tangled with several kinds of code changes, e.g., bug fix, code
refactoring, testing, new features, and documentation. In addition,

commits tangled with several bug fixes can heavily affect the ac-
curacy of data extraction and labeling with the related algorithm
SZZ [48] and its variants [46], which subsequently has negative
impacts on JIT-DP and JIT-DL tasks since noise data could bias
the learning results of corresponding models. Unfortunately, al-
most all prior studies were proposed based on such a low-quality
dataset [9, 22, 42, 59]. To address the challenge of the low-quality
dataset, more and more large-scale and accurate datasets are col-
lected by researchers. For JIT-DL task, Yan et al. [57] and Pornpr-
asit et al. [42] respectively built line-level datasets on the top of
SZZ labeled dataset. For JIT-DP, Rosa et al. [46] used the natural
language processing technique to identify bug-fixing commits by
utilizing developers’ information (i.e., developers explicitly refer-
enced that the commits fixed bugs) to build a large-scale dataset
with accurate bug-fixing commits. Similarly, Zeng et al. [62] built a
large-scale dataset with the data labeling algorithm SZZ. However,
these datasets still do not consider the side-effects of tangled bug-
fixing commits (i.e., a single commit is tangled with several bug
fixes).To fill this gap, we build a large-scale high-quality line-
level dataset JIT-Defects4J to alleviate the effects of tangled
commits on the basis of LLTC4J [14], which can be utilized
in JIT-DP and JIT-DL tasks.

Independently mined features. Semantic features reflect the
intrinsic characteristics of code changes and their contexts, which
have been mined by practitioners to build the just-in-time defect
prediction model with deep learning techniques (e.g., DeepJIT [17]
and CC2Vec [18]). Expert features are defined on the basis of the
participants’ knowledge and experience, that are the extrinsic un-
derstanding from human. Researchers proposed to utilize expert
features (e.g., EALR [22], CBS+ [21], OneWay [11], Churn [28], and
LApredict [62]) to conduct the just-in-time defect prediction task.
More recently, Pornprasit and Tantithamthavorn [42] proposed a
just-in-time defect localization technique, JITLine, by considering
code token features (ignoring token order as well as the deeper
semantic features) and a few expert features. These research work
has achieved promising results on just-in-time defect prediction
and localization. Actually, semantic features and expert features
represent distinguishing features of code from the aspect of expert
knowledge and intrinsic structure of code, respectively. However,
the state-of-the-art research work did not explore the integration of
semantic features and expert features for JIT-DP and JIT-DL tasks
yet. Can a combination of both kinds of features achieve higher per-
formance? With this question, we intuitively hypothesize that
leveraging the best of semantic and expert features could be
used to improve the just-in-time defect prediction and local-
ization. Eventually, our work fills this gap by investigating the
combination of semantic features and expert features to verify our
intuitive hypothesis.

Independently built models. Just-in-time defect prediction
and localization have been studied in various ways to support the
software quality assurance. Existing works either treat the two
tasks independently [37, 56, 65] or address the two tasks with two-
stage/two-different approaches [42, 57]. For example, Yan et al. [57]
proposed a two-phase work for JIT-DP and JIT-DL. Specially, they
build two independent models for the two tasks respectively: pre-
diction model with expert features for JIT-DP and N-grammodel for
JIT-DL. Besides, Pornprasit and Tantithamthavorn [42] proposed
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Figure 1: An overview of our approach JIT-Fine of predicting and localizing defects.

the JITLine model to address the JIT-DP task with a prediction
model by combining expert features with code token features, and
to address the JIT-DL task with another model LIME [27] by calcu-
lating the contribution score of each token for its defect-inducing
interpretation. Moreover, the existing JIT-DL techniques can iden-
tify the defect-inducing code changes at the fine-grained code line
level, but cannot obtain the high accuracy on identifying the exact
defect-inducing code lines in code changes without considering the
identification of defect-inducing commits [42, 57] (e.g., the most
recent state-of-the-art JITLine [42] can only achieve 10.4% accuracy
for the identified top-5 most suspicious defect-inducing code lines
in code changes in our dataset). Can the JIT-DP and JIT-DL tasks
be integrated into a unified model to improve their performance?
This work is thus conducted to investigate the feasibility of
designing a unified model to proceed the JIT-DP and JIT-DL
tasks.

3 JIT-FINE: JUST-IN-TIME DEFECT
PREDICTION AND LOCALIZATION

To investigate the feasibility of our intuitive hypothesis, we propose
a unified approach, JIT-Fine, that integrates the semantic features
with expert features for the just-in-time defect prediction and local-
ization. As illustrated in Figure 1, JIT-Fine consists of three main
steps: ❶ feature extraction, where expert features are extracted
by adopting the widely used 14 change-level features defined by
Kamei et al. [22] and semantic features are extracted with the pop-
ular pre-trained model CodeBERT; ❷ integrated feature learning is
proceeded with a fully connected layer, and ❸ defect prediction and
localization is to predict the defect-inducing commits and locate
defective code lines with previously learned features. Details of
JIT-Fine are presented in the following subsections.
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Token
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Figure 2: The structure of semantic feature extractor.

3.1 Feature Extraction
Feature extraction aims at converting the statistical data and code
tokens into numeric representation that can be adapted to the deep
neural network models to capture the distinguishing characteristics
for the later prediction and localization tasks. In the community,
semantic feature extraction mainly relies on the pre-trained model
CodeBERT [10] that aims at learning contextual word embedding
(i.e., the embedding of a word changes dynamically according to
the context in which it appears) and has been widely used in mul-
tiple natural language processing (NLP) tasks [43] and software
engineering (SE) tasks [63]. Therefore, we also leverage CodeBERT
to extract the semantic features for code changes.

The structure of the semantic feature extractor in JIT-Fine is
shown in Figure 2, which takes as input three types of information
(e.g., commit message, added lines, deleted lines). “commit mes-
sage” represents the description of the submitted commit, “added
line” and “deleted line” represent the lines added and deleted in the
commit, respectively. For the classification task, a special token
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“[CLS]” is always added in front of each input instance to obtain the
semantic representation of the whole sentence [8], we follow this
workaround and add the token “[CLS]” before the commit message.
In addition, we add the other two tokens (i.e., [ADD] and [DEL])
before the “added line” and the “deleted line” to differentiate them.
Then, commit message, added lines, deleted lines are tokenized into
a token sequence that is fed into the CodeBERT model to generate
the corresponding embedding vector that is referred to as the se-
mantic vector of a code change commit. CodeBERT [10] is designed
for the general software engineering tasks, we thus fine-tune it on
commits to adjust downstream tasks by following the workaround
verified in the prior work [39, 63]. For expert features, we directly
adopt the widely used 14 change-level metrics proposed by Kamei
et al. [22] to extract the expert features from code change commit
by directly using the CommitGuru [47] that is an online service of
automatically extracting and labeling commit-level datasets.

3.2 Integrated Feature Learning
With the semantic and expert features extracted in different ways,
JIT-Fine further needs to learn their integrated features. In the
literature, learning integrated features can be proceeded in different
ways (e.g., building a model by simply combining expert features
and semantic features [42, 57], or training semantic features jointly
with expert features to build a model [19, 39, 41]). Recently, Pan
et al. [39] built a model by training semantic features jointly with
expert features to automatically identify the information type in
developer chatrooms with a promising result. Therefore, we also
leverage the straightforward way of jointly training the semantic
features with the expert features. Note that, the initial expert feature
vector only contains 14 numeric elements extracted with the 14
feature factors, while the semantic feature vector generated by
CodeBERT has 768 numeric elements. To avoid that the semantic
feature could overwhelm the expert feature, and to treat the two
kinds of features equally, we follow Yang et al.’s [59] work to obtain
the high-dimensional representation vectors for expert features
with the deep learning technology (a fully connected layer is used
in this study). The extended expert feature vector is denoted as
𝑉𝐸𝐹 , and the semantic vector outputted by CodeBERT is denoted
as 𝑉𝑆𝐹 . JIT-Fine concatenates the two vectors (i.e., 𝑉𝐸𝐹 and 𝑉𝑆𝐹 ) to
generate a new one (denoted as𝑉𝐹 ) for constructing the features of
the code changes in a given commit and fine-tune them together
with another fully connective layer during the training phase.

3.3 Defect Prediction and Localization
With the learned integrated features, the last step of JIT-Fine is
to train a defect prediction and localization model that will be
applied to commits under review. To this end, the learned inte-
grated features are first fed into one fully connected layer for the
binary classification task. The model is trained by iterating it on all
training datasets, monitoring the loss function, and optimizing the
weights of feature relationship by back propagation mechanism.
Such progress is executed by a few epochs (i.e., at most 50 times
since we optimize our model by early stop strategy). Meanwhile,
based on the attention mechanism in CodeBERT, we can utilize the
weights of each input code token to locate where the defect exists.

For making the decision of a given commit, we can not only ob-
tain the corresponding label but also obtain its defect density, which
can be calculated as the ratio between the probability outputted
by the model (Y (c)) and the total modified lines of that commit
(#LOC (c)). The defect density of a commit is a good metric since
different commit needs different costs of applying quality assur-
ance activities [22, 30]. For localizing the defect-inducing line in
each commit, we calculate the contribution (i.e., weights) of each
token in modified code to the final classification task and summary
up all tokens’ contributions in one line. Finally, we rank defective
lines that are associated with a given commit based on the total
contribution.

4 CLEAN DATASET CONSTRUCTION
As presented in Section 2.2, the JIT-DP and JIT-DL community suffer
from the low-quality dataset with tangled commits [15, 32, 37, 42,
57, 62], especially a commit tangled with several kinds of code
changes [16], e.g., bug fix, code refactoring, testing, new features
and documentation. Therefore, we build a clean line-level dataset for
both JIT-DP and JIT-DL on the basic of LLTC4J [14] to alleviate the
impact of tangled commit on the evaluation of different approaches.

LLTC4J, Line-Labelled Tangled Commits for Java, is manually
built by Herbold et al. [14], which only focus on bug-fixing commits
in Java projects. In particular, they manually validated 2,328 bugs
from 28 projects and these bugs are fixed by 3,498 commits. To de-
crease the high degree of uncertainty when determining whether a
commit is tangled or not [25, 26], they first recruited 45 participants
with two criteria (i.e., majoring in computer science or a closely
related subject and at least one-year of programming experience
in Java). Then, they assigned each commit to four different partici-
pants to label the data independently. Each commit was shown to
four participants and the consensus of each line in a commit can
be achieved if at least three participants agreed on the same label.
Otherwise, no consensus for the line was achieved. Following that,
they used the agreement among the participants to decrease the
uncertainty involved in the labeling. In particular, each modified
line in a commit can be labeled as one of the following types: 1)
contributing to the bug-fixing; 2) changing whitespace; 3) chang-
ing documentation; 4) changing test; 5) unrelated improvement not
required for the bug-fixing; and 6) no consensus.

LLTC4J is a good starting-point for collecting a high-quality, fine-
grained, comprehensive dataset for just-in-time defect prediction
and line-level localization research. However, as aforementioned, it
only collects the bug-fixing commits and labels the lines in each bug-
fixing commit. Therefore, we extend this dataset from two-sides: 1)
extracting both clean commits and buggy commits; 2) extracting
the line label in defect-introducing commits. Just-in-time defect
prediction is typically treated as a binary-classification task, the
dataset should contain both clean instances and buggy instances
for building a model. Besides, to investigate the effectiveness of
just-in-time defect localization model, we need the ground truth
label for each line in a commit. Therefore, the former one enables
us to construct a comprehensive dataset for just-in-time defect
prediction research, while the latter one enables us to construct a
line-level bug-introducing or bug-free dataset for just-in-time defect
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Table 2: Statistics of studied datasets: JIT-Defects4J.

Java Project Timeframe
Commit-level Line-level

# BC # CC % Ratio (Bugs / ALL) # BL # CL % Ratio (Bugs / ALL)
ant-ivy 2005-06-16 - 2018-02-13 332 1,439 18.75% (332 / 1,771) 1,650 14,853 10.00% (1,650 / 16,503)
commons-bcel 2001-10-29 - 2019-03-12 60 765 7.27 % (60 / 825) 310 1,626 16.01% (310 / 1,936)
commons-beanutils 2001-03-27 - 2018-11-15 37 574 6.06 % (37 / 611) 123 1,724 6.66 % (123 / 1,847)
commons-codec 2003-04-25 - 2018-11-15 36 725 4.73 % (36 / 761) 246 2,074 10.60% (246 / 2,320)
commons-collections 2001-04-14 - 2018-11-15 50 1,773 2.74 % ( 50 / 1,823) 181 3,434 5.01 % (181 / 3,615)
commons-compress 2003-11-23 - 2018-11-15 178 1,452 10.92% (178 / 1,630) 627 7,167 8.04 % (627 / 7,794)
commons-configuration 2003-12-23 - 2018-11-15 155 1,683 8.43 % (155 / 1,838) 650 7,334 8.14 % (650 / 7,984)
commons-dbcp 2001-04-14 - 2019-03-12 58 979 5.59 % (58 / 1,037) 192 2,500 7.13 % (192 / 2,692)
commons-digester 2001-05-03 - 2018-11-16 19 1,060 1.76 % (19 / 1,079) 87 385 18.43% (87 / 472)
commons-io 2002-01-25 - 2018-11-16 73 1,069 6.39 % (73 / 1,142) 196 2,822 6.49 % (196 / 3,018)
commons-jcs 2002-04-07 - 2018-11-16 88 743 10.59% (88 / 831) 450 4,796 8.58 % (450 / 5,246)
commons-lang 2002-07-19 - 2018-10-10 146 2,823 4.92 % (146 / 2,969) 563 6,332 8.17 % (563 / 6,895)
commons-math 2003-05-12 - 2018-02-15 335 3,691 8.32 % (335 / 4,026) 3,046 16,960 15.23% (3,046 / 20,006)
commons-net 2002-04-03 - 2018-11-14 117 1,004 10.44% (117 / 1,121) 441 4,834 8.36 % (441 / 5,275)
commons-scxml 2005-08-17 - 2018-11-16 47 497 8.64 % (47 / 544) 242 4,054 5.63 % (242 / 4,296)
commons-validator 2002-01-06 - 2018-11-19 36 562 6.02 % (36 / 598) 114 1,189 8.75 % (114 / 1,303)
commons-vfs 2002-07-16 - 2018-11-19 114 996 10.27% (114 / 1,110) 384 4,902 7.26 % (384 / 5,286)
giraph 2010-10-29 - 2018-11-21 163 681 19.31% (163 / 844) 1,904 16,748 10.21% (1,904 / 18,652)
gora 2010-10-08 - 2019-04-10 39 514 7.05 % (39 / 553) 133 3,397 3.77 % (133 / 3,530)
opennlp 2008-09-28 - 2018-06-18 91 995 8.38 % (91 / 1,086) 326 3,912 7.69 % (326 / 4,238)
parquet-mr 2012-08-31 - 2018-07-12 158 962 14.11% (158 / 1,120) 729 8,325 8.05 % (729 / 9,054)

ALL 2,332 24,987 8.54 % (2,332 / 27,319) 12,594 119,368 9.54 % (12,594 / 131,962)

“BC” refers to “Buggy Commit”, “CC” refers to “Clean Commit”, “BL” refers to “Buggy Line”, and “CL” refers to “Clean Line”.

localization research. The data extraction and extension process is
illustrated in Figure 3.

For identifying bug-introducing commits, we start from all bug-
fixing commits in the original dataset. Those commits have at least
one agreed “contributing to the bug-fixing” line, which means the
line is labeled by at least three participants with same label and can
be selected as candidate bug-fixing commits. For each “contributing
to the bug-fixing” line in the candidate bug-fixing commits, we use
git blame to find its corresponding bug-introducing commit and
also label the corresponding lines which are modified in bug-fixing
commit as buggy line. Such an operation can greatly reduce the
scope of defect-introducing candidates and accurately label the
line of code. The remaining commits (i.e., not classified as bug-
introducing commits) are treated as clean ones.

We also need to collect the modification in hunks3 of each
commit. We use PyDriller [49] to extract the corresponding code
changes and commit messages. For the purpose of high-quality
dataset, we set a few criteria to filter some extremities according
to the suggestion in [29]: 1) keeping the code changes made to
Java files only and filtering those non-functional code changes (e.g.
comments); 2) ignoring large commits, which change more than
10,000 lines of code or change more than 100 files since those com-
mits are likely noise caused by routine maintenance (e.g., copyright
updates); 3) ignoring changes that do not add any new lines since
the SZZ algorithm has an assumption that defects are introduced
by adding new lines.

Notice that we remove five projects from the original dataset4
since there have insufficient participants to label the commits in

3https://git-scm.com/
4https://smartshark.github.io/dbreleases/
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these projects. Besides, we also filter out another two projects with
some issues, where many commits cannot be found in their corre-
sponding repositories downloaded from GitHub. Finally, 21 Java
projects are used for this study and we name the extension of
LLTC4J as JIT-Defects4J for easier reference. The statistical infor-
mation of the final dataset can be found in Table 2.

As shown in Table 2, we analyze two statistical information of
our studied dataset: commit-level and line-level. JIT-Defects4J has
a varying number of commits ranging from 544 to 4,026, and its
bug ratio is 1.76%-18.75%. It also has a varying number of lines of
codes ranging from 472 to 20,006, and its bug ratio is 3.77%-18.43%.

Apart from extracting the modified lines (i.e., added lines and
deleted lines) from commits, we also extract the 14 change-level
defect features (presented in Table 1) from five dimensions (i.e.,
diffusion, size, purpose, history and experience) as proposed by
Kamei et al. [22] with CommitGuru [47], which are widely used in
just-in-time defect prediction scenario [6, 42, 60].

5 EXPERIMENTAL SETTINGS
In this section, we first briefly introduce the studied baselines and
present the two types of performance measures.

5.1 Baselines
To comprehensively evaluate the performance of JIT-Fine with
prior work, in this paper, we totally consider six state-of-the-art ap-
proaches (i.e., LApredict [62], Deeper [59], DeepJIT [17], CC2Vec [18],
Yan et al.’s work [57] and JITLine [42]). As presented in Table 3,
LApredict [62] aims at building a defect prediction model by lever-
aging the information of “lines of code added” expert feature with
the traditional logistic regression classifier. Deeper [59] focuses on
building a defect prediction model by learning expert features with
the deep belief networks. DeepJIT [17] is to build a defect prediction
model with convolutional neural networks by learning the semantic
features from the commit message and corresponding code changes.
CC2Vec [18] relies on the hierarchical attention network to learn
semantic features for the defect prediction. These works only con-
sider the expert features or semantic features to address the JIT
defect prediction task. Yan et al. [57] explore the expert features
to build a defect prediction model with the logistic regression and
building a defect localization model with N-gram technique, re-
spectively. While JITLine [42] leverages the combination of expert

Table 3: Six baselines used in the comparison.

Baselines
Features Model JIT Tasks VenueEF SF TF TM DLM DP DL

LApredict [62] ✔ ✔ ✔ ISSTA 2021
Deeper [59] ✔ ✔ ✔ QRS 2015
DeepJIT [17] ✔ ✔ ✔ MSR 2019
CC2Vec [18] ✔ ✔ ✔ ICSE 2020
Yan et al. [57] ✔ ✔ ✔ ✔∗ ✔∗ TSE 2020
JITLine [42] ✔ ✔ ✔ ✔∗ ✔∗ MSR 2021
JIT-Fine ✔ ✔ ✔ ✔ ✔ This work

∗“EF”: Expert Feature, “SF”: Semantic Feature, “TF”: Token Feature, “TM”:
Traditional Machine Learning Model, and “DLM”: Deep Learning Model.
✔∗ means that the related technique address the JIT-DP and JIT-DL tasks
with two independently ways.

features and token features to build a defect prediction model with
random forest classifier and leverages the token features to build a
defect localization model with the LIME model. Different from the
existing work, JIT-Fine aims at building a unified model for defect
prediction and localization by exploring the best of the semantic
features and expert features.

5.2 Evaluation Measures
To evaluate the effectiveness of JIT-Fine, we adopt two types of
widely used performance measures: effort-agnostic performance
measures and effort-aware performance measures.

Effort-agnostic PerformanceMeasures. Effort-agnostic perfor-
mance measures evaluate the prediction performance without con-
sidering cost, which means SQA team has enough resources to
inspect all potential defective lines of code.

This group considers two widely used performance measures: F1-
score andAUC [36, 42, 59]. There are four possible prediction results
for a commit in the testing dataset: A commit can be predicted as
defective one when it is truly defective (true positive, TP); it can be
predicted as defective one when it is actually clean (false positive,
FP); it can be predicted as clean one when it is actually defective
(false negative, FN ); or it can be predicted as clean one and it is truly
clean (true negative, TN ). Therefore, based on the four possible
results, F1-score can be defined as follows:

F1-score: is a harmonicmean of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 and𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃
𝑇𝑃+𝐹𝑁 . It is computed as F1-𝑠𝑐𝑜𝑟𝑒 = 2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 . It is often
used as a summary measure to evaluate if an increase in precision
outweighs a reduction in recall and vice versa.

AUC: represents the area under the receiver operating character-
istic (ROC) curve [13], which is a 2D illustration of true positive rate
(TPR) on the 𝑦-axis versus false positive rate (FPR) on the 𝑥-axis.
ROC curve is generated by varying the classification threshold over
all possible values, which can separates clean and buggy predictions.
AUC ranges from 0 to 1, and a good prediction model can obtain
an AUC value close to 1. The ROC analysis is robust especially for
imbalanced class distributions and asymmetric misclassification
costs. It also represents the probability that a model ranks a ran-
domly chosen defective instance higher than a randomly chosen
clean one.

Effort-aware PerformanceMeasures. Effort-aware performance
measures evaluate the prediction performance by considering the
given cost threshold, e.g., a certain number of lines of code to in-
spect. Such type of performance measures are extremely important
especially when SQA team has limited resources to inspect poten-
tial defective lines of code. Developers want to discover as many
defects as possible by manually inspecting the top percentages of
lines that are likely to be defective. Similar to prior work [36, 42],
we use the 20% of total lines of code as the proxy of inspection
effort.

This group totally considers seven widely used performance
measures [36, 42, 57], which can be sub-divided into two groups:
performance measures for identifying defect-prone commits and
performance measures for localizing defects in commits. In this
former group, three performance measures (i.e., Recall@20%Effort,
Effort@20%Recall and P𝑜𝑝𝑡 ) are considered, while four performance

678



ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Chao Ni, Wei Wang, Kaiwen Yang, Xin Xia, Kui Liu, and David Lo

measures (i.e., Top-N, Recall@20%Effort𝑙𝑖𝑛𝑒 , Effort@20%Recall𝑙𝑖𝑛𝑒
and IFA𝑙𝑖𝑛𝑒 ) are considered in the latter group.

Group 1: Performancemeasures for identifying defect-prone
commits.

Recall@20%Effort(R@20%E): measures a proportion between
the actual number of defect-introducing commits found with given
inspection effort and the total number of commits. In this paper,
similar to prior work [36, 42], we use the line of code (LOC) as the
proxy of inspection effort, i.e., the 20% LOC of the whole project.
A high value of R@20%E means more actual defect-introducing
commits are ranked at the top of list to be inspected. Therefore,
developers will find more actual defect-introducing commits with
less effort.

Effort@20%Recall(E@20%R): measures the amount of effort
that developers have to spend when 20% actual defect-introducing
commits in testing dataset are found. A low value of E@20%Rmeans
developers will find the 20% actual defect-introducing commits with
less effort.

Popt: is on the basic of the concept of the Alberg diagram [2]
which indicates the relationship between the Recall obtained by a
prediction model and the inspection effort for a specific prediction
model. To compute this measure, two additional prediction models
are required: the optimal one and the worst one. In the optimal
model and the worst model, commits are sorted in decreasing and
ascending order by defect densities, respectively. A good predic-
tion model is expected to perform better than the random one and
approximate the optimal one. For a given prediction model𝑀 , the
𝑝𝑜𝑝𝑡 can be calculated as: 1 − 𝐴𝑟𝑒𝑎 (𝑂𝑝𝑡𝑖𝑚𝑎𝑙)−𝐴𝑟𝑒𝑎 (𝑀)

𝐴𝑟𝑒𝑎 (𝑂𝑝𝑡𝑖𝑚𝑎𝑙)−𝐴𝑟𝑒𝑎 (𝑊𝑜𝑟𝑠𝑡 ) , where
𝐴𝑟𝑒𝑎(𝑀) represents the area under the curve corresponding to the
model𝑀 . In this paper, the defect density of commit is estimated
as 𝑌 (𝑚)

#𝐿𝑂𝐶 (𝑐) .

Group 2: Performancemeasures for localizing defects in com-
mit.

Top-N Accuracy: measures the proportion of actual defective
lines that are ranked in the top-N (N={5,10} in our study) ranking.
In general, developers need to inspect all modified lines for a given
commit. However, it is not a ideal situation especially for limited
SQA resources. Therefore, a high Top-N accuracy means more
actual defective lines are ranked at the top.

Recall@20%Effort𝑙𝑖𝑛𝑒 (R@20%E𝑙𝑖𝑛𝑒 ): measures the proportion
of defective lines which can be found (i.e., correctly predicted) with
a given effort, i.e., the top 20% loc of modified lines of a given
defect-introducing commit. A high value of R@20%E𝑙𝑖𝑛𝑒 means
more actual defective lines can be ranked at the top.

Effort@20%Recall𝑙𝑖𝑛𝑒 (E@20%R𝑙𝑖𝑛𝑒 ): measures the percentage
of effort that developers spend to find the actual 20% defective lines
for a given defect-introducing commit. A low value of E@20%R𝑙𝑖𝑛𝑒
means the developers can find the 20% actual defective lines with a
little amount of effort.

Initial False Alarm Lines (IFA𝑙𝑖𝑛𝑒 ): measures the number of
clean lines before developers find the first actual defective line for
a given commit. A low value of IFA𝑙𝑖𝑛𝑒 means that developers can
find the first actual defective line by inspecting a few number of
clean lines.

6 EXPERIMENTAL RESULTS
To investigate the feasibility of JIT-Fine with integrated features on
the just-in-time defect prediction and localization, our experiments
focus on the following three research questions:
• RQ-1. To what extent just-in-time defect prediction performance
can JIT-Fine achieve?

• RQ-2. How do the integrated semantic and expert features affect
the performance of JIT defect prediction models?

• RQ-3. Can JIT-Fine with the unified model be used to proceed
just-in-time defect localization accurately?

6.1 [RQ-1]: Just-In-Time Defect Prediction
Objective: Various advanced approaches have been proposed for
JIT defect prediction, which either uses expert change-level fea-
tures (e.g., 14 change-level features) or uses semantic features (e.g.,
learned with deep learning techniques) to build a prediction model
in various settings (i.e., effort-aware setting or effort-agnostic set-
ting). JIT-Fine integrates expert features and semantic features for
the just-in-time defect prediction. Therefore, we investigate to what
extent the prediction performance can JIT-Fine achieve with the
integrated features.
Experiment Design:We totally consider six state-of-the-art base-
lines: LApredict [62], Yan et al. [57], DeepJIT [17], CC2Vec [18],
Deeper [59], and JITLine [42]. Besides, to comprehensively compare
the performance among baselines and JIT-Fine, we consider five
widely used performance measures from two types: effort-agnostic
ones and effort-aware ones. Considering the heavy impact of time
as proposed by McIntosh and Kamei [29], we follow the same time-
aware strategy to build the training data and testing data from
the dataset as prior work does [17, 18, 42]. Specifically, for each
project, we first sort all commits by their timestamp in ascending.
Then, the top 80% of commits in each project are treated as training
data, while the rest 20% of commits in each project are treated as
test data. We also keep the distribution as same as the original
ones in training and testing data. Finally, the training data from
each project are combined into the target training data, so does
the testing data. As for CC2Vec, we also retrain the model without
any information from the testing dataset according to Pornprasit
et al.’s [42] suggestion.
Results: The evaluation results are reported in Table 4. The best
performances are also highlighted in bold. According to the re-
sults, we find that our approach JIT-Fine outperforms all baselines

Table 4: Defect prediction results of JIT-Fine compared
against six baselines.
Methods F1-score↑ AUC↑ R@20%E↑ E@20%R↓ Popt↑

LApredict 0.059 0.694 0.625 0.020 0.814
Yan et al. 0.062 0.675 0.615 0.022 0.819
Deeper 0.246 0.682 0.638 0.021 0.827
DeepJIT 0.293 0.775 0.676 0.014 0.860
CC2Vec 0.248 0.791 0.676 0.014 0.861
JITLine 0.261 0.802 0.705 0.015 0.883
JIT-Fine 0.431 0.881 0.773 0.010 0.927

∗R@20%E: Recall@20%Effort; E@20%R: Effort@20%Recall. The out-
performing results are highlighted in bold. ‘↓’ indicates ‘the smaller the
better’; ‘↑’ indicates ‘the larger the better’, the same as Tables 5 and 6.
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methods on all performance measures. In particular, as for effort-
agnostic performance measures, JIT-Fine obtains 0.431 and 0.881 in
terms of F1-score and AUC, which improves baselines by 47%-629%
and by 10%-30% in terms of F1-score and AUC, respectively. As for
effort-aware performance measures, JIT-Fine obtains 0.773, 0.010,
and 0.927 in terms of Recall@20%Effort, Effort@20%Recall, and
P𝑜𝑝𝑡 , which improves baselines by 10%-26%, 26%-54%, and 5%-14%
in terms of Recall@20%Effort, Effort@20%Recall, and P𝑜𝑝𝑡 , respec-
tively. Besides, by comparing the performance of LApredict with
other baselines, we find that building a simple supervised model
cannot better capture the characteristics of defect-inducing com-
mits. Moreover, we can also observe that the prediction models,
from the top one (LApredict) to the bottom one (JIT-Fine), can
achieve better performance as they use more and more information
and build with a more and more complex model in most cases.

✍ RQ-1 ▶ JIT-Fine outperforms the state-of-the-art baselines on
the just-in-time defect prediction, especially achieving the over-
whelming results at F1-score. It indicates that the unified model
learning the integrated semantic and expert features can achieve
better performance on just-in-time defect prediction than the in-
dependent models with single feature.◀

6.2 [RQ-2]: Effectiveness of Integrated Features
Objective: Expert features and semantic features are extracted
considering different aspects of code change commits. The expert
features carry the characteristics of commits based on expert profes-
sional knowledge and experience, while semantic features present
the intrinsic characteristics of code change from their semantic and
syntactic structural contexts, that are often pre-trained on large-
scale source code datasets. Therefore, in this research question, we
explore how the integrated semantic and expert features affect the
effectiveness of just-in-time defect prediction.
ExperimentDesign:We set three training scenarios (i.e., semantic
features, expert features, and their integration) to train JIT-Fine for
assessing the effectiveness of integrated features on boosting defect
prediction. The experimental dataset is set the same as the experi-
ment of RQ-1 (i.e., 80% for training and 20% for testing). Moreover,
we also consider two types of performance measures (i.e., effort-
agnostic and effort-aware) for comprehensively studying the impact
of each individual type of feature. In addition, JITLine utilizes the
two types of features, i.e., expert features and token features, where
the token features can be considered as a kind of coarse-grained
semantic features as JITLine leverages the bag-of-words technol-
ogy to extract the semantic-representative information. We thus
consider JITLine as a baseline for this research question.

Table 5: Comparing results on defect prediction with differ-
ent features.
Methods Setting F1-score↑ AUC↑ R@20%E↑ E@20%R↓ Popt↑

JITLine
EF 0.147 0.672 0.617 0.024 0.818
SF𝑡 0.191 0.783 0.722 0.012 0.894

EF+SF𝑡 0.261 0.802 0.705 0.015 0.883

JIT-Fine
EF 0.230 0.661 0.632 0.020 0.825
SF 0.375 0.856 0.741 0.015 0.917

EF+SF 0.431 0.881 0.773 0.010 0.927

Results: The comparison results are reported in Table 5 and the
best performances are highlighted in bold for each approach on
three different settings: EF (using expert features only), SF (using
semantic features only), and EF+SF (combining expert features and
semantic features). According to the results, we can obtain the
following observations: 1) Both expert features and semantic fea-
tures have their own advantages in building a prediction model. 2)
Semantic features seem to have a better understanding of code char-
acteristics than expert features in the domain of defect prediction. 3)
JIT-Fine can better utilize the advantages from both expert features
and semantic features to build a performance-better prediction
model on both effort-agnostic and effort-aware settings. 4) JITLine
performs better on effort-agnostic settings while performing badly
on effort-aware settings when combining expert features and se-
mantic features. 5) Complex models (such as deep learning models)
have a better ability to learn knowledge from input information
than relatively simple traditional machine learning models if they
have the identical input information when we compare JITLine and
JIT-Fine on EF and SF settings, independently.

✍RQ-2 ▶ Semantic features and expert features present their own
advantages in identifying defect-inducing commits. Integrating
the best of them can help JIT-Fine and JITLine achieve better
performance on defect prediction than the model fed with single
features. ◀

6.3 [RQ-3]: Just-In-Time Defect Localization
Objective: Localizing the defect that exists in modified codes can
help developers better understand these issues and help developers
faster address defects with fewer efforts. However, there exists a few
machine learning approaches for fine-grained JIT defect prediction
at the line level [42, 57]. Different from JITLine [42] and Yan et
al’s work [57], JIT-Fine is to build a unified model for addressing
defect prediction and defect localization, simultaneously. In this
research question, we thus investigate whether JIT-Fine with the
unifiedmodel can be used to proceed just-in-time defect localization
accurately.
Experiment Design: To evaluate the effectiveness of JITLine, N-
gram, and JIT-Fine, we firstly need to label the high-quality line-
level ground-truth dataset. Low-quality datasets, especially built
on tangled datasets, can heavily affect the evaluation of different
approaches’ performance on defect localization. Therefore, as in-
troduced in Section 4, we start from the line-level manually labeled
dataset. We clone all git repositories of the studied projects and use
PyDriller toolkit [49] to identify the defect-introducing commits
since our dataset has manually validated the bug-fixing commit
and their specific bug-fixing lines of code. Different from previous
work [42], our work has exact labels of lines of code in bug-fixing
commit (i.e., manually labeling) and we can finely identify the bug-
inducing lines of code using 𝑔𝑖𝑡 𝑏𝑙𝑎𝑚𝑒 , which extremely decreases
the noise. Therefore, according to prior work [7, 44], those deleted
lines in defect-fixing commits are labeled as defective ones, other-
wise, they are labeled as clean ones. Those deleted lines are further
used to identify the bug-inducing commits.

As for localizing the defective lines, JITLine first uses LIME tech-
nology to generate synthetic instances and builds a local sparse
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linear regression model to identify the importance of each feature
(i.e., token in bag-of-words features) to the model decision. Once
the importance score of each token is computed, JITLine generates
the ranking of defect-prone lines by summarizing the importance
score for all tokens that appear in that line. As for Yan’s approach,
they directly build a source code language model and train it on
clean source code lines (i.e., a clean model) by using the N-gram
model. Different from the two approaches, JIT-Fine directly utilizes
the weights of each token in our fine-tuned CodeBERT model to cal-
culate its impact on classification. That is, JITLine/N-gram locates
defective lines of code after the defect prediction model building,
while JIT-Fine locates defective lines of codes during the process of
the defect prediction model building.
Result: The evaluation results are presented in Table 6 and the
best performances are highlighted in bold. According to the results,
we find that our approach JIT-Fine performs best on all perfor-
mance measures. In particular, JIT-Fine achieves 0.212, 0.214, 0.208,
0.318 and 10.8 in terms of Top-5, Top-10, Recall@20%Effort𝑙𝑖𝑛𝑒 ,
Effort@20%Recall𝑙𝑖𝑛𝑒 and IFA𝑙𝑖𝑛𝑒 , respectively, which improves
JITLine and N-gram by 105% and 10%, by 117% and 9%, by 32% and
46%, by 4% and 8%, by 55% and 29%, in terms of of Top-5, Top-10,
Recall@20%Effort𝑙𝑖𝑛𝑒 , Effort@20%Recall𝑙𝑖𝑛𝑒 and IFA𝑙𝑖𝑛𝑒 , respec-
tively. The results also indicate the advantages of a unified model
for defect prediction and defect localization.

Table 6: Defect localization results of JIT-Fine compared
against JITLine and Yan et al.’s work.

Methods
Accuracy↑

R@20%E𝑙↑ E@20%R𝑙↓ IFA𝑙↓Top-5 Top-10
JITLine 0.104 0.098 0.157 0.332 24.2
Yan et al. 0.193 0.195 0.143 0.345 15.3
JIT-Fine 0.212 0.214 0.208 0.318 10.8

∗R@20%E𝑙 : Recall@20%Effort𝑙𝑖𝑛𝑒 , E@20%R𝑙 : Effort@20%Recall𝑙𝑖𝑛𝑒 ,
IFA𝑙 : IFA𝑙𝑖𝑛𝑒 .

✍ RQ-3 ▶ JIT-Fine achieves the better performance on localizing
defects compared with state-of-the-art approaches, which indicates
that building a unified model with the integrated features can
benefit both defect prediction task and defect localization task.◀

7 THREATS TO VALIDITY
Threats to Internal Validity mainly correspond to the potential
mistakes in our implementation of our approach and other baselines.
To minimize such threat, we not only implement these approaches
by pair programming but also directly use the original source code
from the GitHub repositories shared by corresponding authors.
Besides, we use the same hyperparameters in the original papers.
The authors also carefully review the experimental scripts to ensure
their correctness.
Threats to External Validity mainly correspond to the studied
dataset. Even we have tested our model on the so far largest fine-
gained evaluation in the literature to ensure a fair comparison with
baselines, the project diversity is also limited from three aspects.
The first one is the programming language used in studied projects,
which is developed Java programming language. However, projects

developed by other popular programming languages (e.g., C/C++
and Python) have not been considered. The second one is the studied
projects are open-source projects, the performance of JIT-Fine on
commercial projects is unknown. Thus, more diverse commit-level
datasets can be explored in future work. The last one is that in
reality not all bugs can be identified in the code repository. Though
Herbold et al. [14] manually labeled their dataset, they still may
miss a few bug-fix commits.
Threats to Construct Validity mainly correspond to the perfor-
mance metrics in our evaluations. To minimize such threat, we
consider a few types of metrics for different comparison tasks. In
particular, we generally consider two kinds of performance metrics
(i.e., effort-agnostic and effort-aware) with tens of performance
metrics (i.e., F1-score, AUC, P𝑜𝑝𝑡 ).

8 RELATEDWORK
JIT defect prediction has attracted extensive attention of researchers
in recent years since it can identify defect-inducing commit at a
fine-grained level at check-in time. Mockus and Weiss [33] firstly
extracted historical information (i.e., the number of touched sub-
systems, the number of modified files, the number of added lines of
code, and the number of modification requests) in commits to build
a classifier to predict the risk of new commits. Kamei et al. [22]
then proposed 14 change-level features and used them to build an
effort-aware JIT prediction model. The 14 change-level features
are widely used in the following studies. Yang et al. [58, 59] sub-
sequently proposed two approaches. In particular, Yang et al. [59]
firstly used Deep Belief Network (DBN) to extract higher-level infor-
mation from the initial change-level features. Then, Yang et al. [58]
combined decision tree and ensemble learning to build an ensem-
ble learning model for JIT defect prediction. To further improve
Yang et al’s model, Young et al. [61] proposed a new deep ensemble
method by using arbitrary classifiers in the ensemble and optimiz-
ing the weights of the classifiers. Later, Liu et al. [28] proposed a
new unsupervised approach named code churn and evaluated it
in effort-aware settings. Following that, Chen et al. [6] treated the
effort-aware JIT defect prediction task as a multi-objective opti-
mization problem and consequently a set of effective features are
selected to build the prediction model. McIntosh et al. [29] inves-
tigated the impact of systems evolution on JIT defect prediction
models via a longitudinal case study of 37,524 changes from the
rapidly evolving QT and OpenStack systems. They found that the
interval between training periods and testing periods has side ef-
fects on the performance of JIT models and JIT models should be
trained using six months (or more) of historical data. Besides, Wan
et al. [52] discussed the drawbacks of existing defect prediction
tools and highlighted future research directions through literature
review and a survey of practitioners. Moreover, Cabral et al. [4]
utilized a new sampling technology to address the issues of verifi-
cation latency and class imbalance evolution in online JIT defect
prediction setting. Recently, Hoang et al. [17, 18] proposed two new
approaches, which use a modern deep learning model to learn the
representation of commit message and code changes.

Apart from the above approaches, researchers also conduct stud-
ies on fine-grained prediction and focus more attention on where
the defect exists. Pascarella et al. [40] proposed a fine-grained JIT
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defect prediction model based on handcrafted features to prioritize
which changed files in a commit are the riskiest ones. Yan et al. [57]
proposed a two-phase approach for defect identification and defect
localization. In particular, they firstly trained a prediction model on
software metrics to identify which commits are the most risky ones,
then they trained the N-gram model on textual features, which
is subsequently used to locate the riskiest lines. In addition, Wat-
tanakriengkrai et al. [53] stated that a machine learning approach
can achieve better performance than the N-gram approach. How-
ever, these work mainly focused on file-level defect localization.
Recently, Chanathip et al. [42] proposed a new approach JITLine,
which is a machine learning-based JIT defect approach for predict-
ing defect-introducing commits and for localizing defective lines
that are related to defective commit.

Prior studies either focus on defect prediction or focus on defect
localization using only expert features or only semantic features [9,
17, 18, 22]. A few studies try to address the two tasks simultaneously
with two sub-approaches or with two sub-phases [42, 57]. Different
from prior work, in this paper, we focus on building a unified model
using both expert features and semantic features for addressing
both defect prediction and defect localization.

9 CONCLUSION AND FUTUREWORK
In this paper, we propose a unified approach JIT-Fine, which fully
utilizes both expert features and contextual semantic features of
modified source code to build a performance-better model for just-
in-time defect prediction and just-in-time defect localization si-
multaneously. We also build a large-scale line-level labeled dataset
JIT-Defects4J for both JIT-DP and JIT-DL research. To investigate
the effectiveness of JIT-Fine, we make a comprehensive comparison
with six baselines on ten performance measures. The results em-
pirically demonstrate the value of integrating the expert features
and semantic features for two kinds of just-in-time software quality
assurance.

Our future work involves extending our evaluation by consider-
ing more open source and commercial projects developed in other
programming languages (e.g., C/C++, Python, etc.). We also plan to
implement JIT-Fine into a tool (e.g., a GitHub plugin) to assess its
usefulness in practice.
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