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How do we know a generated patch is correct? This is a key challenging question that automated program

repair (APR) systems struggle to address given the incompleteness of available test suites. Our intuition is

that we can triage correct patches by checking whether each generated patch implements code changes

(i.e., behavior) that are relevant to the bug it addresses. Such a bug is commonly specified by a failing test

case. Towards predicting patch correctness in APR, we propose a novel yet simple hypothesis on how the link

between the patch behavior and failing test specifications can be drawn: similar failing test cases should require

similar patches. We then propose BATS, an unsupervised learning-based approach to predict patch correctness

by checking patch Behavior Against failing Test Specification. BATS exploits deep representation learning

models for code and patches: For a given failing test case, the yielded embedding is used to compute similarity

metrics in the search for historical similar test cases to identify the associated applied patches, which are then

used as a proxy for assessing the correctness of the APR-generated patches. Experimentally, we first validate

our hypothesis by assessing whether ground-truth developer patches cluster together in the same way that

their associated failing test cases are clustered. Then, after collecting a large dataset of 1,278 plausible patches

(written by developers or generated by 32 APR tools), we use BATS to predict correct patches: BATS achieves

AUC between 0.557 to 0.718 and recall between 0.562 and 0.854 in identifying correct patches. Our approach

outperforms state-of-the-art techniques for identifying correct patches without the need for large labeled

patch datasets—as is the case with machine learning-based approaches. While BATS is constrained by the

availability of similar test cases, we show that it can still be complementary to existing approaches: When

combined with a recent approach that relies on supervised learning, BATS improves the overall recall in

detecting correct patches. We finally show that BATS is complementary to the state-of-the-art PATCH-SIM

dynamic approach for identifying correct patches generated by APR tools.
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1 INTRODUCTION

Patch overfitting [63, 69] is now acknowledged as one of the major blockers to the adoption
of automated program repair (APR) by software practitioners. It refers to the fact that APR-
generated patches often overfit to the repair (incomplete) test suite without necessarily generaliz-
ing to other test cases. In short, overfitting patches do not implement the desired behavior that the
program developers would expect. Consequently, when a generated patch is validated as passing
all test cases in the test suite, it is referred to as a plausible patch. Its correctness, indeed, must still
be decided manually by developers. Given that existing APR approaches generate a large number
of plausible patches, most of which are actually incorrect, there is a need to develop automated
approaches that can filter out incorrect patches or that can rank the correct ones higher to alleviate
the burden of manual assessment.

Recently, the literature has proposed various heuristics to predict patch correctness. Csuvik
et al. [10] translate some empirical observations into a simple assumption for ranking valid patches:
Correct patches apply fewer changes than incorrect ones. Xiong et al. [80] build on the hypothesis
that test case dynamic execution behaviors are different between correct and incorrect patches.
Other researchers propose to focus on learning, with static features of patches, to filter out incor-
rect patches. For example, Ye et al. [87] proposed such a supervised learning-based approach after
investing in careful engineering of patch features. In contrast, Tian et al. [72] relied on deep rep-
resentation learning of code changes for yielding patch embeddings that are fed to a supervised
learning system.

Overall, existing research in patch correctness prediction has provided promising perfor-
mance [75]. Nevertheless, they suffer from various caveats. On the one hand, the state-of-the-art
dynamic-based approaches require the expensive execution of test cases, which unfavorably im-
pacts the efficiency of the patch assessment process. Besides, such approaches are challenged in
practice by the oracle problem: Given a test case, we do not always have an accurate specification
of what the output should be [73]. On the other hand, static-based approaches often require a sub-
stantial analysis effort to identify adequate features and properties. In addition, machine learning-
based approaches require many labeled patch samples (both correct and overfitting patches). They
further exhibit issues of generalization beyond the projects they have been trained on [75].

In their seminal study on patch plausibility and correctness, Qi et al. [63] have presented Kali,
a system that performs “repair” by only removing or skipping code in programs. Kali generated
several patches that pass many weak test suites. Our postulate, however, is that Kali-generated
patches should be readily identifiable as plausible but incorrect in an APR pipeline: It is unlikely
that fixing a program that presents a bug in array iteration would require simply removing whole
statements. This calls for research to assess the behavior of the patch (i.e., what it does) against
the nature of the bug (i.e., as expressed by the failing test case specification).

The idea of checking patch behavior against failing test specification has not yet been fully
exploited in the literature. Recent work by Ye et al. [87] and Tian et al. [72] do not even reason about
the test cases. The approach by Xiong et al. [80] builds on heuristics that consider the similarity of
execution behaviors of passing test cases on original and patched programs. Their work, however,
does not try to answer the specific question of whether the generated correct patch is actually
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relevant to the failing test case(s) triggering the repair process. This is the key hypothesis we
introduce and validate:

“When different programs fail to pass similar test cases, it is likely that these
programs require similar code changes.”

Similarity thus becomes a key challenge: Syntactic similarity is not sufficient, as it would restrict
the search to type-1 or type-2 clones. We have to explore similarity measurements that can capture
semantic relationships. Recent work [1, 2, 25, 27, 42] in learning distributed representations of code
and code changes have been shown to preserve some semantics (beyond token similarity) and have
yielded promising models that were effective on a variety of downstream tasks.

This article. We build on the aforementioned hypothesis to investigate the possibility of pre-
dicting patch correctness by clustering test cases and patches. In this article, we rely on recent
approaches for code representation learning to reason about code and patch similarity.

❶ [Heuristic] We propose a novel heuristic on the relationship between patches and their
failing test cases. Although the intuition behind this heuristic is basic and hinted at in re-
gression testing literature [4], we are the first to propose and validate it in the APR patch
assessment area.

❷ [Validation] We present a comprehensive validation of the hypothesis that similar test
cases are associated with similar patches. Concretely, we consider the case of developer-
written patches in the Defects4J dataset and leverage various distance metrics to perform
hierarchical clustering based on the embeddings of test cases and patches.

❸ [BATS] Based on the heuristic, we propose BATS (Behavior Against failing Test Spec-
ification), an approach to predict patch correctness by statically checking the similarity
of generated patches against past correct patches that correspond to failing test cases that
are similar to the failing tests of the bug under resolution. More specifically, given one
buggy program with its failing test cases and the APR-generated patches, BATS first enu-
merates similar failing test cases within the search space of historical bugs. Then, BATS
calculates the similarity between the correct patches associated with the identified failing
test cases and the APR-generated patches. Finally, APR-generated patches with similarity
scores above a predefined threshold t are predicted as correct while patches with similarity
scores lower than t are predicted as incorrect. The artifact of this study is publicly available
at https://github.com/HaoyeTianCoder/BATS.

❹ [Evaluation] After collecting a large dataset of plausible patches generated by 32 APR tools
or extracted from defects benchmarks, we apply BATS and measure its performance in iden-
tifying correct patches.
– Overall, BATS achieves an AUC (Area Under Curve) between ∼0.56 and ∼0.72 and a

recall between ∼56% ∼84% in identifying correct patches.
– When comparing with a recent supervised learning classifier [72], BATS improves the

recall in identifying correct patches by seven percentage points and achieves an equivalent
recall in excluding incorrect patches.

– Comparing against the state-of-the-art dynamic approach PATCH-SIM [80], BATS outper-
forms it with higher scores of AUC, F1 +Recall and -Recall for the subset of patches where
BATS can find similar test cases.

– We note that the performance of BATS is impacted by the search space for finding similar
test cases. Therefore, after demonstrating the promise of the proposed heuristic, we show
that it is worthwhile to combine BATS with the state-of-the-art approaches to improve
performance in identifying correct patches. To that end, we consider a usage scenario
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where similar test cases are lacking to apply BATS. Instead, we investigate whether BATS
can still be used as a supplement to another approach: When BATS is integrated with the
recent supervised learning classifier [72], the overall recall in detecting correct patches is
improved with five percentage points. The experimental results also show that BATS can
be complementary to PATCH-SIM [80] to recall more correct and exclude more incorrect
patches.

2 MOTIVATION

The promise of APR is to automatically find patches for software bugs without human interven-
tion [20, 22, 58]. This often translates into a generate-and-validate pipeline [7, 21, 30, 39, 41, 46,
47, 76, 77, 81] that consists of two main activities: (i) Patch generation, which applies various code
transformation and search techniques to produce a set of candidate patches, and (ii) Patch vali-

dation, which checks that the candidate patches are relevant to the discovered fault with corre-
sponding test cases. Identifying correct patches among the automatically validated patches, i.e.,
checking that the functionality of the patched program satisfies the developer’s intention, is usu-
ally conducted manually. Even recent deep-learning based repair approaches [8, 53, 74, 78] produce
patches that require validation, although new research on involving developers early in the process
is arising [5, 19].

In a large body of the literature, patch validation is carried out by executing the patched program
against the test suite [6, 89]. If a single test case leads to a failure, then the patch is discarded as
invalid. Rothermel et al. [64] have introduced a test case prioritization strategy to early-detect in-
valid candidate patches. In the same vein, Qi et al. [62] empirically highlighted that test cases that
have been effective in revealing invalid patches should be re-run earlier than others on new patch
candidates. Nevertheless, these efforts are directed towards identifying valid (i.e., plausibly correct)
patches w.r.t. the test suites. Indeed, a test suite being only a weak approximation of the program
specification, patch validation with test suites does not provide guarantees on patch correctness.
In practice, the correctness of APR-generated patches is checked manually by the developers. Even
in the literature, assessment procedures done by researchers check correctness by using heuristics
to compare plausible patches against developer oracle patches [50]. Some works [86] propose to
generate more test inputs to strengthen the test inputs and provide more confidence in the gener-
ated patches. The oracle problem [28] in test generation, however, makes the execution results of
the augmented test suite an unreliable criterion of patch correctness. Shariffdeen et al. [68] thus
proposed to reduce the space of patch candidates by simultaneously traversing the spaces of test
inputs and patches with path exploration.

3 APPROACH

In this section, we present BATS, our approach to predict patch correctness based on the similarity
of the new patch to known correct patches with similar failing test cases. Figure 1 gives an overview
of the approach. BATS assumes the following inputs: (i) The bug under resolution, its associated

failing test cases, and APR-generated plausible patches, and (ii) Historical bugs with their failing test

cases and the associated known correct patches.
To predict patch correctness, BATS performs the following steps: (1) Pre-process patches and

test cases to prepare them for the embedding step; (2) Embed patches and test cases into higher
dimensional space; (3) Compute pairwise similarity between the failing test cases of the bug under

resolution and the historical test cases; (4) Select at most top-k historical test cases with similarity
score greater than tT est , and map them to their associated correct patches; (5) Compute an aver-
age similarity among selected historical known correct patches; (6) Compute pairwise similarity
between every plausible patch for the bug under resolution and the average similarity of known
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Fig. 1. Overview of BATS.

correct patches from the previous step; and (7) Predict a plausible patch as correct if its similarity
to the average similarity of correct patches (from step 5) is greater than some threshold tPatch ,
otherwise, BATS predicts the patch to be incorrect.

3.1 Pre-processing Test Cases and Patches

BATS leverages the similarity of test cases and their corresponding patches to predict patch cor-
rectness. Therefore, the first two steps of BATS aim at preparing the test cases and patches into
a form suitable for computing similarity. One way to achieve this is by embedding patches and
test cases into higher dimensional space to obtain numerical vectors that are suitable for vector
similarity computations.

Tokenizing test cases. BATS treats the source code of individual test methods as sequences of
tokens while also using camelCase tokenization to further breakdown identifiers into their sub
tokens.

Tokenizing patches. Patches are tokenized in the same manner as test cases with two differences.
First, BATS considers changed lines without their contexts; i.e., it selects added and removed lines
only, marked with “+,” and “-,” respectively. Second, to keep the information about added and
removed lines, BATS keeps the “+” and “-” markers as part of each patch line.

3.2 Embedding Test Cases and Patches

BATS relies on similarity calculations between test cases and between patches. Therefore, the
second step is to embed test cases and patches into a higher dimensional space to enable similarity
computations. An embedding is a function that maps each token into a high dimension real-value
vector while maintaining semantic similarities between similar tokens.

In our approach, embedding individual test methods is straightforward, but it is not the case for
patches. Patches are composed of several individual hunks (contiguous changes) while the order
of the hunks is irrelevant to the patch. Each hunk can be embedded as a sequence of tokens into a
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single vector. But how can we combine the different hunks to obtain a single vector representing
the entire patch? Simple concatenation of the vectors of different hunks does not produce a unique
vector. Because there is no specific order for the individual hunks, different orderings of the dif-
ferent hunks produces different vectors for the same patch. Therefore, instead of concatenating
vectors of different hunks, we sum the vectors of the different hunks to obtain a unique vector
representing the entire patch.

To obtain the embeddings for test cases and patches, we leverage three state-of-the-art pre-
trained models:

◗ code2vec. Alon et al. [2] leverage the AST representation of a method to produce its em-
bedding. code2vec has been applied to a variety of downstream tasks, including predicting
method names, where it revealed its ability to learn the structure and semantics of code frag-
ments. We propose in this work to leverage code2vec for embedding test cases. To that end,
we build on a pre-trained model provided by the authors [2] who trained the model on a
dataset containing ∼14 million Java methods.

◗ CC2Vec. Hoang et al. [25] introduced the CC2Vec hierarchical attention neural network
model for learning vector representations of patches. In the training phase, the learning is
guided by the commit messages that are associated with patches and uses them as semantic
descriptions of the patches. We propose in this work to leverage CC2Vec for embedding APR-
generated patches. We consider the same architecture where we skip the feature crossing
layer and train a new model building on the large dataset of 24,000 patches provided by the
authors.

◗ BERT. Another popular embedding method that is applied to natural language is BERT [11],
a transformer-based self-supervised language model. Recent work in software engineering
fine-tuned BERT on code fragments and applied it to produce embeddings that were shown
effective [90, 93]. Tian et al. [72] recently leveraged BERT in their experiments on filter-
ing out incorrect patches based on the similarity between buggy code and patched code.
For comprehensive experiments, we also propose to investigate using BERT for embedding
patches.

3.3 Finding Similar Test Cases

The major hypothesis of BATS is that similar failing test cases have similar associated patches.
Therefore, the third step of the approach is to find similar test cases from historical fixed bugs,
i.e., test cases that failed before their associated fixes are applied and are similar to the failing
test cases of the current bug under resolution. To this end, BATS computes pairwise similarities
between each failing test of the bug under resolution and all tests found in the search space of BATS.
To compute the similarity between test cases, we apply the Euclidean distance to their code2vec
embeddings. Then using a similarity threshold, tT est , BATS selects at most the top-k historical tests
with similarity score > tT est . If the number of top k similar test cases is smaller than the number
of tests with similarity score > tT est , then k is adjusted accordingly. Note that historical failing test
cases do not need to be from the history of the same project of the bug under resolution.

3.4 Mapping Historical Failing Test Cases to Their Patches

When BATS finds the most similar test cases that failed in the past, BATS further maps these
historical failing tests to their associated correct patches, which were applied and accepted as
correct fixes for those failing tests. Our hypothesis is that a plausible patch for the current bug
under resolution is correct if it is similar to these historical correct patches because their failing
test cases are also similar. To facilitate the comparison of the plausible patches to these historical
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Fig. 2. A correct patch generated by APR SOFix for the Defects4J bug Chart-26.

Fig. 3. An incorrect patch generated by APR KaliA for the Defects4J bug Chart-26.

correct patches,1 BATS averages the historical correct patches by computing an average of their
embedding vectors.

3.5 Predicting Patch Correctness

To predict whether a given plausible patch is correct or not, BATS calculates the similarity between
this patch and the average of the historical correct patches obtained in the previous step. BATS
computes the similarity of patches through Euclidean and Cosine similarity measurements. If this
similarity score is higher than a threshold tPatch , then BATS predicts that this patch is correct,
otherwise, the plausible patch is predicted as incorrect. In our experiments, we set tPatch = 0.5.

3.6 An Example

Consider the following example of bug Chart-26 from the Defects4J dataset: Chart-26 triggers 22
test cases to fail. To fix this bug, APR tools SOFix and KaliA generate the two plausible patches
presented in Figures 2 and 3, respectively.

First, to find out whether any of the two patches is correct, BATS looks for test cases that are
similar to the 22 failing test cases in the available search space. The search space includes the
history of the Chart project as well as other projects, when available. Second, BATS, thanks to
its code2vec-based similarity checker, identifies two test cases as similar to some of the 22 failing
tests: One test case is associated with bug Chart-4 and the other is associated with bug Chart-25.

1The patches were written by developers to fix the related bugs and were committed in the historical repository of related

projects.
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Fig. 4. A correct developer-written patch for the Defects4J bug Chart-4.

A manual investigation of the semantics of these two test cases reveals that they indeed aim at
detecting unhandled Null pointer dereferences.

Third, after BATS maps the two identified historical test cases to their corresponding correct
patches, it measures the similarity of the APR-generated patches to these relevant correct patches.
Finally, based on the similarity score and a similarity threshold, BATS precisely predicts that the
generated patches by SOFix and KaliA are correct and incorrect, respectively. When we manually
inspect the historical correct patches that were applied to fix Chart-4 (cf. Figure 4) and Chart-25
(cf. Figure 5), we notice that they both implement similar behavior (i.e., adding null check) as the
proposed patch by SOFix (cf. Figure 2). On the contrary, the KaliA patch (cf. Figure 3) suggests an
irrelevant code change.

In our evaluation, there are 17 plausible patches generated by different APR tools for Chart-26.2

In Figure 6, we see the 17 patches ranked according to their similarity score computed by BATS.
On the x-axis, each patch is labeled with a combination of the name of the APR tool that generated
it and a numerical ID, as a tool may generate more than one patch. We note that most of the correct
patches (grey bars) are ranked ahead of incorrect patches (white bars), which confirms that our
hypothesis is effective in discriminating correct patches from incorrect ones.

4 EXPERIMENTAL SETUP

In this section, we introduce the experimental setup to evaluate our hypothesis and our approach,
BATS. We present the research questions in Section 4.1, the datasets in Section 4.2, and the evalu-
ation metrics in Sections 4.3 and 4.4.

4.1 Research Questions

Our research questions aim to validate the hypothesis, draw insights for developing a prediction
method for patch correctness, and finally, assess the BATS approach with APR-generated plausible
patches while comparing against recent state-of-the-art approaches.

RQ-1. Does the similarity of bug-triggering test cases correlate with the similarity of the associated

bug fixing patches? This research question aims to validate the feasibility of our proposed
hypothesis. To this end, we conduct two experiments: clustering similar test cases and as-
sessing patch similarity with the similar test cases. This offers insights into the design of the
patch correctness identification system based on inferred thresholds.

2These APR-generated patches have been labeled in previous work.
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Fig. 5. A correct developer-written patch for the Defects4J bug Chart-25.

Fig. 6. The ranked patches generated by APR tools for Chart-26. The numerical value next to each tool name
indicates patch ID, since a tool can generate more than one patch.

RQ-2. To what extent can an approach assessing patch behavior against test specification based on

unsupervised learning be effective in identifying correct patches among plausible ones? With
this research question, we first present the implementation of BATS and evaluate its perfor-
mance in identifying correct patches in 1,278 patches generated by 32 APR tools.

RQ-3. Can BATS achieve competitive results against the recent state-of-the-art approaches? In this
research question, we compare BATS against static and dynamic approaches of predicting
patch correctness for APR tools. Then, we explore the possibility of leveraging BATS to
complement the state-of-the-art in identifying correct patches.
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Table 1. Statistics on the Dataset of Developer-written and APR-generated Patches

Subject Patches Incorrect Correct Subject Patches Incorrect Correct
Developer [32] 205 0 205 jGenProg2015 [12] 11 8 3
3sFix [9] 60 57 3 jKali [54] 14 12 2
ACS [81] 21 6 15 jMutRepair [54] 15 12 3
ARJA [91] 183 168 15 KaliA [91] 14 14 0
CapGen [77] 64 39 25 kPAR [45] 50 42 8
Cardumen [55] 10 8 2 LSRepair [48] 18 15 3
CoCoNut [53] 28 0 28 Nopol2015 [12] 10 8 2
ConFix [34] 66 52 14 PraPR [21] 22 0 22
DeepRepair [78] 13 9 4 RSRepiarA [91] 18 18 0
DynaMoth [13] 18 18 0 SequenceR [8] 35 24 11
ELIXIR [65] 36 13 23 SimFix [30] 35 12 23
FixMiner [36] 27 17 10 SketchFix [26] 21 9 12
GenPat [29] 29 18 11 SOFix [51] 21 2 19
GenProgA [91] 14 14 0 ssFix [79] 19 8 11
HDRepair [40] 6 2 4 TBar [47] 57 36 21
Hercules [66] 51 14 37 VFix [83] 23 1 22
JAID [7] 64 33 31

All 1,278 689 589

4.2 Datasets

We focus our experiments on the Defects4J [32] benchmark, since it is widely used in the litera-
ture, and we can readily collect plausible patches generated by APR tools on the programs included
in the benchmark. Table 1 provides the statistics on the collected patches. Besides the 205 devel-
oper (correct) patches provided in the benchmark, we also leverage the reproduced dataset from
the study of 16 APR systems by Liu et al. [50], which we augment with a dataset provided by Ye
et al. [88]. Finally, we also scan the artifacts released in the literature towards identifying plau-
sible patches generated by recent APR tools. Overall, we share with the community the largest
dataset,3 to-date, of patches for Defects4J bugs, which includes hundreds of overfitting (i.e., incor-
rect) patches.

Dataset per experiment: For answering RQ-1, we rely on the 1,120 failing test cases and the
associated 205 developer patches in the Defects4J dataset. For answering RQ-2 and RQ-3 (assess-
ment of the BATS approach), we consider the 1,278 plausible patches generated by APR tools or
provided by the Defects4j project developers. In these RQs, we also rely on the 1,120 test cases and
205 developer patches as the search space for similar test cases to the failing test case being ad-
dressed. We ensure, however, that for every execution of BATS, we remove from the search space
the failing test cases and the developer patches that are related to the bug under resolution.

Figure 7 presents the distribution of 1,278 generated patches for Chart, Lang, Math, and Time
projects that have been widely used in the community of automated program repair [49, 50] and
patch correctness identification [72, 80].

4.3 Cluster Analysis Metrics

To group similar test cases and similar patches together, respectively, we explore unsupervised
learning algorithms to perform clustering. K-means [3] generally provides a good clustering per-
formance and strong interpretability. Its main limitation, however, is that it requires the user to
specify the number of clusters k , which is unfortunately specific to the datasets. We therefore

3https://github.com/HaoyeTianCoder/BATS.
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Fig. 7. Distribution of the number of collected patches per project in the Defects4j dataset.

adopt a hierarchical clustering algorithm, e.g., Bisecting-K-means [33], to empirically determine
the appropriate value of k .

Bisecting-K-means. This algorithm was initially proposed to overcome the challenges of K-
means (local minima, non-spherical clusters, etc.). Bisecting-K-means implements a modification
of the K-Means algorithm to produce partitional/hierarchical clustering, thus recognizes clusters of
any shape and size. The algorithm starts by splitting the dataset into two clusters based on K-means.
Then, iteratively, each cluster is split. Each time the two clusters are identified as those presenting
the smaller Sum of Squared Errors (cf. Section 4.3). By placing a threshold for the performance
in terms of the sum of squared errors, the clustering iterations can be stopped. This algorithm is
therefore convenient to infer a reasonable number k of clusters in a dataset.

Cluster Similarity Coefficient (Adjusted Silhouette Coefficient). Once clusters are yielded,
we can measure to what extent each element is actually similar to its own cluster (cohesion) com-
pared to other clusters (separation). To that end, we propose a Cluster Similarity Coefficient
(CSC) metric of each cluster element based on its internal similarity and its external similarity
towards other elements. We use the following equations:

SC (e ) =
in(e ) − out (e )

max{in(e ),out (e )} (1) CSC =
1

n

n∑

e=1

SC (e ), (2)

where in(e ) represents the average Euclidean Similarity from the (test case or patch) embedding e
to other embeddings in the same cluster; out (e ) represents the average Euclidean Similarity from
the embedding e to the embeddings in other clusters. The value range of SC is [–1, 1]: The larger
the value of SC , the better the clustering effect. When SC value is greater than 0, the clustering is
consistent. And to measure the overall performance, CSC (averaging SC) is used to calculate the
coefficient taking into account all clusters.

Sum of Squared Error (SSE). Finally, we rely on the commonly used Sum of Squared Errors
to measure the variance within clusters. SSE in our study is computed as the sum of the squared
differences between each embedding and its cluster’s mean. If, within each and every cluster, all
cases are identical, then the SSE would be equal to 0, as per Equation (3):

SSE =
k∑

i=1

ni∑

j=1

(xi j − xi )2, (3)

where k represents the number of clusters, ni represents the number of elements of the ith cluster,
xi j represents the jth element of the ith cluster, and xi represents the center element of the ith
cluster. Therefore, the smaller the SSE, the better the clustering effect.
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4.4 Performance Metrics

We consider the Recall of BATS in two dimensions:

• +Recall measures to what extent correct patches are identified, i.e., the percentage of correct
patches that are indeed predicted as correct [72].
• -Recall measures to what extent incorrect patches are filtered out, i.e., the percentage of

incorrect patches that are indeed predicted as incorrect [72].

+Recall =
TP

TP + FN
(4) −Recall = TN

TN + FP
, (5)

where TP represents true positive, FN represents false negative, FP represents false positive, TN
represents true negative.

Area Under Curve (AUC) and F1. By considering the similarity score as a prediction proba-
bility, BATS can be evaluated like any machine learning model with the common metrics such as
AUC and F1 score (harmonic mean between precision and recall for identifying correct patches).

MAP and MRR. Since BATS ranks all generated patches based on similarity scores, instead
of simply considering the top-1 as the correct, we can consider a recommendation and leverage
common metrics used in assessing the ranked list. The Mean Average Precision (MAP) and
Mean Reciprocal Rank (MRR) are such metrics that help assess whether BATS can place correct
patches ahead of incorrect patches in the ranked list presented to the developers.

MAP =
1

n

n∑

i=1

∑m
j=1 (Pi j × Reli j )

# correct patches
(6) MRR =

1

n

n∑

i=1

1

ranki

, (7)

where Reli j is an indicator function that is 1 if the jth patch is correct in list i , otherwise it is 0. Pi j

is the precision at the threshold j in the list i , and the rank represents the first correct ranking.
BATS relies on the unsupervised learning technique and considers to set thresholds of similari-

ties among test cases and patches to predict the correctness of patches. Given that in practice we
cannot tune the decision threshold based on the specific case of each bug, we fix a single similar-
ity threshold to compute the accuracy, precision, and false positives. We set the model prediction
threshold to 0.5. As soon as the normalized similarity score between the generated patch and the
identified cluster of historical patches is higher than 0.5, we predict the patch as a correct one. Oth-
erwise, we predict it as incorrect. We note, however, that in the literature, some approaches [80]
are assessed by adjusting the threshold in the test data to achieve the best possible +Recall.

5 EXPERIMENTAL RESULTS

In this section, we first present the validation of the hypothesis in our work (answer to RQ-1
in Section 5.1). Then, we report the experimental results of patch correctness prediction on our
collected dataset (Answer to RQ-2 in Section 5.2 and RQ-3 in Section 5.3).

5.1 [RQ-1] Cluster of Similar Test Cases and Patches

[Objective]: We perform experiments to answer RQ-1, whether the proposed hypothesis is valid
for patch correctness identification with the following two sub-questions to observe whether fail-
ing test cases are similar when the associated patches are similar. First, we investigate whether
the 1,120 failing test cases in Defects4J can be grouped in clearly separable clusters. Based on each
such test cluster, we decide that the associated 205 developer patches constitute a cluster. Then,
we seek to validate the feasibility of leveraging similar test cases to predict the patch correctness
with Defects4J dataset.
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• RQ-1.1 Do patches cluster well together when their test cases are similar? To answer this RQ,
we automatically cluster test cases into groups of similar test cases, then we assess whether
the associated patches in each group also have a good clustering cohesion.
• RQ-1.2 Given two test cases, can their similarity score be used as an indicator of their relatedness

in terms of patch similarity? We investigate test case similarity vs. patch similarity hypothesis
in a fine-grained manner beyond the clusters.

[Experimental Design for RQ-1.1]: First, we use the code2vec and CC2Vec pre-trained models
to produce embeddings for each test case and for each patch, respectively, in the Defects4J dataset.
To cluster test cases, we rely on the bisecting-kmeans algorithm to produce hierarchical clusters.
At each iteration of bisecting-kmeans, we compute the sum of squared error (SSE) of the clus-
ters. We use the evolution of reduction in SSE values to decide on a threshold for the number of
clusters into which we can split the test cases in our dataset. Experimentally, we observed that
the number of clusters k for which the SSE saturates, i.e., no longer drops, is 40. Additionally,
we empirically validate the consistency of our proposed hypothesis by investigating the Cluster
Similarity Coefficient (CSC) of different cluster settings (i.e., k ∈ {30, 40, 50}).

In this experiment, we leverage the Similarity Coefficient (SC) and CSC (cf. Section 4.3) to
assess the consistency and cohesion of the yielded clusters. Nevertheless, we can observe the clus-
tering effect for test cases by investigating the distance distribution of each test case to the center
of its cluster: We first consider the distance4 with all test cases in a single group. Then, we com-
pute the distance of each test case to the center of its k-means-inferred cluster. We consider that if
the distribution of distances shows that, on average, distances in a cluster are lower than in the
whole group, then the test cases have been well-separated. We confirm that when considering the
whole dataset, the distances are the longest (i.e., the median value of distance distributions for
all clusters are lower than the one for the whole dataset). In several inferred clusters, the median
distance (of the test case to the cluster center) is halved. These observations suggest indeed that
the test cases could be readily clustered.

[Experimental Results for RQ-1.1]: Considering the test cases clusters, we infer associated
groupings of patches that address these test cases. We then compute the CSC to evaluate the consis-
tency and cohesion of the patch clusters that we have derived. These metrics evaluate the distances
among patches within each cluster and the distances among clusters. We validate the metrics on
the overall Defects4J ground-truth dataset.

Table 2 presents the cohesion and consistency metrics for the patches regrouped based on the
clusters of test cases when the number of clusters is 30, 40, and 50, respectively. The CSC is the
average value of SC values for all clusters. “Qualified” represents the ratio of clusters that have
SC > 0 out of all clusters identified. We compare those metrics (on test case clusters) to the asso-
ciated patch clusters. The positive values of the CSC indicate that, on average, the elements inside
the same group are indeed more similar among themselves than they are similar to the elements
in other groups. When test cases are well grouped (CSC > 0), the corresponding clustering of the
associated patches clusters together consistently (CSC > 0). In more detail, a large ratio of clusters
(33/40) also have high cohesion. When adjusting the number of clusters to 30 or 50, the results
show that the major clusters of patches (23/30, 37/50) still keep high cohesion, and the clustering
of test cases and patches are consistent to each other (CSC > 0).

Figure 8 further presents the SC of test cases and patches for each cluster when k is set to 40. We
observe that, for most pairwise clusters of test cases and patches, when the SC value of test cases

4Distance and similarity are two concepts that are used interchangeably in this section, depending on the context to facili-

tate comprehension.
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Table 2. Statistics on the Performance of Clustering of Test Cases
and Patches with 30, 40, and 50 Clusters

Subjects Cluster Similarity Coefficient Qualified

Test Cases 0.19 30/30
Patches 0.16 23/30

Test Cases 0.19 40/40
Patches 0.16 33/40

Test Cases 0.21 50/50
Patches 0.14 37/50

Fig. 8. Similarity coefficient of test cases and patches at each cluster.

(presented with grey bar) in one cluster is high, the associated patches (presented with white bar)
also have a high SC score. We further calculate a Pearson correlation between the clusters of test
cases and the clusters of associated patches, of which value is 0.883 > 0. Pearson correlation can
be used to measure the linear correlation between two sets of data where a higher positive value
(i.e., > 0) indicates a more positive association. Such results indicate that the similar test cases can
lead to similar patches.

[RQ-1.1] Given a cluster of similar test cases, their associated patches cluster consistently. This

experiment also hints that the representation models for test cases and clusters yield meaningful

embeddings for investigating the relatedness of patches and test cases.

[Experimental Design for RQ-1.2]: The clustering experiment for RQ-1.1 focuses on average
distances within clusters; we further seek to validate the possibility of using test case similarity
as a potential heuristic to predict correct patch behavior. The objective is to answer “whether the

similarity of two test cases can be used as an indicator of their relatedness in terms of patch similarity.”
To this end, we first consider finding the most similar test case from the search space of historical
test cases for the failing-executed test case of a given bug. We then assess to what extent the
patch of a given bug is similar to the patch associated to the most similar test case (referred to
① Scenario H), of which results are compared against the results in ② Scenario N, where we
compute the average similarity between a given patch and all other patches. The experiments
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Fig. 9. Distribution on the similarities between each failing test case of each bug and its closest similar test
case.

Fig. 10. Distributions on the similarities of pairwise patches (similar patch selected with Scenario H vs. Sce-
nario N from all projects, i.e., the search space for searching similar cases is all projects in the dataset).

finally investigate scenarios where the closest test case is sought within the all project or only in
other projects (excluding the one where the test case is found).

[Experimental Results for RQ-1.2]: Figure 9 presents the overall similarity distribution between
each of the 1,120 test cases in the dataset and its closest counterpart: While some test cases indeed
have very similar counterparts, many test cases have low similarities with their closest counter-
parts. These relatively low similarities for many test cases can be explained by the limited number
of test cases considered in the study datasets. These results suggest that it may not always make
sense, for a given test case, to blindly consider the most similar counterpart, since this counterpart
can still be highly dissimilar. We thus propose to experimentally determine a threshold to decide
when in practice the closest test should not be considered as similar.

In Figure 10, we compare the distributions of the similarity scores for the two scenarios H and
N. In all projects, the distributions in the scenario H of our hypothesis present higher similarities.
This indicates that the most similar test case is a good proxy to identify a patch5 that will be more
similar than the average patch in a dataset.

5This patch is the one associated with the similar test case that failed in the past.
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Fig. 11. Distributions on the similarities of pairwise patches (similar patch selected with Scenario H vs. Sce-
nario N from other projects, i.e., the search space for searching similar cases does not include the buggy

project itself).

In the aforementioned experiment, the test cases in search space are allowed from the same
project due to the lack of test cases. To evaluate our hypothesis in the scene of insufficient
test cases, we further reproduce the comparison by focusing on test cases and patches that are
from other projects (i.e., the buggy project itself is excluded from the search space of test cases).
Figure 11 further provides the distributions for the two scenarios H and N. In this case, we note
that the difference is less pronounced for most projects. We postulate that this is due to the fact
that similarity scores are low. Thus, we propose to set a threshold and consider, for the scenario
H, cases where the test cases present a higher similarity than the threshold.

When considering each of the 1,120 test cases, for many of them the closest test case in the search
space is actually not a “similar” one. By looking at the pairwise similarity distribution shown in
Figure 9, we note that 74% (831/1120) similarity values are lower than 0.6. We therefore arbitrarily
decided to use this value as the threshold6 to explore the hypothesis by isolating the minority
of cases where the similarities are significant (more experiments with different thresholds are
presented in Section 5.2 for RQ-2). Figure 12 presents the comparison of similarity distribution
when the patch pairs are selected with Scenarios H and N from other projects, after setting a
threshold of 0.6 for the similarity of test cases in Scenario H to reduce noise. We observe that
scenario H now provides the highest similarities for the paired patches (based on the similarities
of test cases). Note that some white boxes (scenario H) in the plot are missing is due to lack of high
enough similar test cases.

[RQ-1.2] Given a test case and its most similar test case, their associated patch pair will exhibit

a similarity that is statistically higher than the average similarity for all pairs of patches in the

same project. This finding is also confirmed across projects.

5.2 [RQ-2] Identifying Correct Patches with BATS

Objective: Findings in answering the above RQ confirm our hypothesis that test case similarity
correlates with patch similarity. BATS is therefore implemented to explore this hypothesis scenario
in an APR setting where generated plausible patches (for a failing test case T ) are ranked based
on their similarity with a set of historical patches that were applied by developers (to address

6Note that it aims to validate our hypothesis but not to infer a specific/adaptable threshold.
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Fig. 12. Distributions on the similarities of pairwise patches (similar patch selected with Scenario H vs. Sce-
nario N from other projects, i.e., the search space for searching similar cases does not include the buggy

project itself, by setting the threshold at 0.6).

failing test cases similar to T ). To answer this RQ, we leverage the 1,278 plausible patches that
are composed of 205 developer-written patches and 1,073 APR-generated patches by the tools in
Table 1.

By assessing BATS on the collected dataset of plausible patches generated by literature APR tools,

our main aim is to demonstrate to the community the feasibility of the proposed research direction

for patch assessment.

[Overall Assessment]: We first design a baseline with a simple hypothesis that considers that a
patch is more likely to be correct if it is similar to some historically correct patches (i.e., any correct
patches). In contrast to BATS, this baseline does not consider failing test cases as the constraint
for reducing the search space. We recall that the performance of BATS, which relies on search,
is dependent on the availability (in project repositories) of test cases that are actually similar to
the failing test case addressed by the APR-generate patches. As introduced earlier, the closest test
cases in the search space may actually not be that similar: This is a classical challenge of search
engines [43]. Therefore, we propose to filter in only test cases that present a sufficient level of
similarity with the targeted test cases. Experimental evaluations will further offer insights on the
use of such a threshold.

We chose the cosine similarity for the baseline and BATS implementation. Table 3 reports the
classification performance of the baseline (AUC less than 0.6). For reference, the performance of
BATS is provided later (cf. Table 4). We note that the baseline performance is similar with BATS
when the test similarity threshold is not set. However, when we only consider test cases with
higher similarity with the failing test cases, the performance of BATS increases (up to 0.85 for
+Recall and 0.71 AUC). CC2Vec, as an embedding model for patches, helps achieve high AUC, F1,
+Recall (i.e., the recall in identifying correct patches) and -Recall (i.e., the recall in filtering out
incorrect patches).

Table 5 provides performance results in terms of MAP and MRR. The high metric values further
confirm that most correct patches are indeed ranked higher in the recommended patch list that
is sorted based on their similarities with historically relevant patches (given test case similarity).
The MAP and MRR of the baseline are both 0.63, underperforming against BATS (up to 0.80 and
0.8 for MAP and MRR, respectively).
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Table 3. Baseline’s Performance on Identifying (in)correct Patches

Patch

embedding†
Correct Incorrect AUC F1 +Recall -Recall

CC2Vec
589 689

0.586 0.579 0.705 (415) 0.379 (261)
Bert 0.593 0.558 0.647 (381) 0.428 (295)

Table 4. BATS’s Performance on Identifying (in)correct Patches

Patch

embedding†
T∗

# Correct
patches

# Incorrect
patches

AUC F1 +Recall -Recall

CC2Vec

0.0 589 689 0.557 0.549 0.628 (370) 0.437 (301)
0.6 144 181 0.559 0.505 0.562 (81) 0.470 (85)
0.7 94 141 0.678 0.590 0.766 (72) 0.447 (63)
0.8 57 57 0.718 0.722 0.842 (48) 0.509 (29)
0.9 41 44 0.709 0.693 0.854 (35) 0.432 (19)

BERT

0.0 589 689 0.561 0.518 0.593 (349) 0.406 (280)
0.6 144 181 0.611 0.576 0.694 (100) 0.431 (78)
0.7 94 141 0.639 0.570 0.766 (72) 0.440 (62)
0.8 57 57 0.676 0.626 0.719 (41) 0.421 (24)
0.9 41 44 0.647 0.600 0.732 (30) 0.341 (15)

†Embeddings of test cases are always done with code2vec.
∗T: Threshold of test case similarity. Given the failing test case of an APR-generated patch, we consider only

historical test cases with the similarity which are higher than the threshold. Thus, depending on the threshold,

some generated patches cannot be assessed, as we are not able to associate them with any past test case.

“(#)” in last two columns represents the number correct/incorrect patches identified by BATS.

Table 5. BATS’s Performance on Ranking Correct Patches

Threshold of test case similarity 0.00 0.60 0.70 0.80 0.90

MAP 0.62 0.63 0.71 0.80 0.70
MRR 0.63 0.65 0.74 0.81 0.75

Figure 13 illustrates the overall performance evolution of BATS when the threshold of the test
case similarity is varied. We note, while the -Recall does not change drastically, there is a positive
effect on +Recall (and other metrics) when the similarity threshold is increased. These results
confirm that the underlying hypothesis of BATS is just: When BATS identifies highly similar test
cases, its prediction of correctness for APR-generated patches is more accurate.

Representation learning vs. raw strings. Beyond the performance metrics on AUC, +/-Recall
and F1 of BATS, we propose to investigate the choice of representation learning for embedding
patches. To assess the value of leveraging deep learning models for embedding patches, we con-
sider computing similarity of patches as raw strings. To that end, we simply use the Levenshtein
distance between the patches (considered as strings and not after computing embeddings): By
setting the threshold of test case similarity as 0.8, we obtain the lowest AUC and F1 values, respec-
tively, at 0.46 and 0.53. -Recall even drops at 0.12. These results validate our decision to leverage
deep representation learning models for producing patch embeddings.

[RQ-2] BATS performs well in identifying patch correctness with an AUC ∼ 0.7 and an F1∼0.7

while the Recall of identifying correct patches reaches ∼0.8. Further experimental investigations,

with constraints on test case similarities, support our hypothesis: Similar test cases are addressed

by similar patches.
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Fig. 13. Performance evolution of BATS with varying threshold of the test-case similarity.

5.3 [RQ-3] Competitive/Complementary to the State-of-the-art

Objective: In previous research questions, we validate our hypothesis and develop the pipeline
BATS to identify the correctness of patches generated by APR tools. The experimental results show
BATS achieves promising performance. To further evaluate BATS in practice, we compare it against
the state-of-the-art static and dynamic approaches with the same dataset used for RQ-2. Recall that,
in practice, the performance of BATS, is impacted by the availability to find (really) similar test
cases. As illustrated in the results of Table 4, when the threshold of test case similarity is set high,
the number of patches for which similar test cases are found in our dataset decreases significantly.
While this does not contradict the hypothesis underlying BATS, it may limit its value when larger
datasets are not available. Nevertheless, we postulate that BATS can be complementary to the
previous two state-of-the-art approaches (i.e., Tian et al. [72] and PATCH-SIM [80]).

5.3.1 Comparing against the State-of-the-art. We conduct the comparison of BATS against the
state-of-the-art patch correctness predicting tools, i.e., Tian et al.’s deep learning approach [72],
PATCH-SIM [80], and ODS [87].

BATS vs. Deep Learning Approach. Since BATS leverages pre-trained DL-based (deep
learning representation) models, we proceed to compare it against the recent related work by
Tian et al. [72], where DL-based embeddings of patches are leveraged for static checks. To en-
sure that the results of BATS and of the DL-based approach are compared on the same dataset,
we focus on the 114 patches (threshold>0.8) as the testing set of the DL-based approach. Because
the approach of Tian et al. requires a training dataset for supervisely producing a classifier, we
use the remaining 1,164 (1,278-114) patches. As for classification algorithms, we leverage both Lo-
gistic Regression (LR) and Random Forest (RF), following the experiments of the authors. As
shown in in Table 6, BATS can recall (+Recall) more correct patches while preserving the same or
higher -Recall. It should be noted also that, unlike the DL-approach by Tian et al., BATS does not
require large dataset for training a classifier.

BATS vs. PATCH-SIM. The state-of-the-art in dynamic assessment of patch correctness is
PATCH-SIM [80]. It targets excluding incorrect patches via comparing execution behavior of tests
for the patched and original programs. We apply PATCH-SIM to the 114 test data to generate pre-
diction. However, PATCH-SIM fails to produce prediction results for some of the bugs/patches.7

7We reported the problem to the PATCH-SIM authors and we are still waiting for their response.
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Table 6. Comparison with a State-of-the-art Supervised
Classifier [72]

Classifier AUC F1 +Recall -Recall

Tian et al. (LR) 0.72 0.68 0.77 0.51
Tian et al. (RF) 0.70 0.49 0.75 0.46

BATS 0.72 0.72 0.84 0.51

Table 7. Comparison with a State-of-the-art
Dynamic-based Patch Assessment [80]

Classifier AUC F1 +Recall -Recall

PATCH-SIM 0.61 0.52 0.80 0.42
BATS 0.72 0.72 0.84 0.51

Furthermore, we observed that PATCH-SIM takes several hours to produce a prediction outcome
for some patches. In our experiment, we set a one-hour timeout for the prediction per patch. Even-
tually, 48 out of 114 could be evaluated by PATCH-SIM. Our experiment was conducted on Linux
server equipped with eight-core 2.10 GHz CPU and 125 G memory. Results in Table 7 show that
PATCH-SIM achieves a 0.80 of +Recall and a 0.42 of -Recall. Among patches evaluated, the aver-
age prediction time for each patch is 1,044 s (i.e., more than 17 minutes), while BATS only spends
∼0.3 second on validating each patch. Overall, the dynamic approach, PATCH-SIM, is constrained
in terms of resource requirements, as it needs to generate new test inputs and exploit the behavior
similarity of test case executions for validating each patch. The resource cost of BATS is mainly
decided by two aspects: ❶ the model training process, although BATS leverages the pre-trained
models, and ❷ the search space of historical test cases. The time cost of finding similar test cases
will be sharply increased only when the search space is expanded.

BATS vs. ODS. We also compare our performance against a recent machine learning-based ap-
proach leveraging manually engineered features. We compare BATS against a recent work by Ye
et al. [87], where the authors propose a supervised learning approach ODS that explores manu-
ally engineering patch features for overfitting detection. To predict patch correctness, ODS first
constructs the engineering features from the AST representation of patches to express potential
behavior information. Such features are used by ODS to train an ML-based model to proceed the
classification of patch correctness. While we could not fully reproduce their work on our dataset
due to the unavailability of their training dataset, we are able to compare our results with the ones
presented in their paper, since we have test sets of similar size and from the same sources. Overall,
BATS and ODS exhibit similar performance metrics. When they tune their learners to have a high
+Recall (e.g., 1.00), their -Recall drops (e.g., 0.46, respectively). Our BATS unsupervised learning
approach further aims to cope with two challenges with approaches such as ODS: (1) they require
large sets of labelled patches to perform supervised learning; (2) it can be difficult to manually ex-
plain a prediction classification (e.g., because features that contribute to the classification decision
are difficult to track back to the failing test case specification and may not generalize to new data).

[RQ-3] ❶ When the availability of similar test cases is satisfied, BATS can achieve competitive

performance on predicting the correctness of APR-generated patches against the state-of-the-art

dynamic and static approaches.
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Table 8. Supplementing a Supervised Classifier with BATS

Classifier AUC F1 +Recall -Recall

Tian et al. (LR) 0.75 0.60 0.53 0.80
Tian et al. (LR) + BATS 0.75 0.62 0.53 0.85

Tian et al. (RF) 0.75 0.59 0.56 0.82
Tian et al. (RF) + BATS 0.75 0.67 0.61 0.82

5.3.2 Enhancing the State-of-the-art with BATS. We present experimental results to demon-
strate that we can achieve enhanced performance in correct patch identification by using existing
(static or dynamic) state-of-the-art approaches in conjunction with BATS.

I. Supplementing a Supervised Classifier with BATS.

Objective: Given that BATS is fairly accurate when highly similar test cases (with associated his-
torical patches) are available, we propose to build a pipeline where BATS is applied on the subset of
bug cases where such test cases exist. For the rest of bugs, the correctness of generated patches is
predicted by using a relevant literature classification-based approach proposed by Tian et al. [72].
We then compare the performance of this pipeline against the performance yielded when the clas-
sifier is used alone on the whole dataset.

Experiments: We set a threshold of the test case similarity at 0.6 (cf. Table 4) to identify which
failing test cases are relevant for assessing the added-value of BATS. The dataset is then split into
325 patches for test and 935 for training a patch classifier described in recent literature: We repro-
duce the work of Tian et al. [72] using their provided artefacts, which provide a supervised learning
model to classify patches based only on embeddings (computed with Bert). As for learner, we lever-
age alternatively Logistic Regression (LR) and Random Forest (RF) following the experiments
of the authors.

We first compute the performance of the supervised learning classifier alone on the test dataset.
Then, we evaluate the combined pipeline (Tian et al. [72] + BATS) with the following procedure:
BATS is first applied to predict correctness for all patches that are associated to test cases for which
historical test cases with a high similarity (≥ 0.9) can be found. 26.1% (85/325) of patches in the test
set are then evaluated by BATS. The rest of patches are passed to the trained supervised classifier,
which does not require test case information.

Results: The results presented in Table 8 show that the combined pipeline can indeed supplement
the baseline classifier. +Recall can be improved by up to five percentage points while -Recall can
be improved by up to four percentage points.

[RQ-3] ❷ BATS can supplement a state-of-the-art patch classification system, which, on bug cases

where the failing test case is highly similar to historical test cases, BATS can provide more accurate

classification.

II. Complementing Test Execution-based Detection.

Objective: Our objective is to assess whether BATS (which statically reasons about test case sim-
ilarity) can boost PATCH-SIM [80] (which considers dynamic execution behavior). We consider
that BATS value can be confirmed if it can help exclude incorrect patches that PATCH-SIM could
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Table 9. Supplementing PATCH-SIM with BATS

Classifier AUC F1 +Recall -Recall

PATCH-SIM 0.62 0.55 0.82 0.43
PATCH-SIM + BATS 0.65 0.59 0.84 0.51

not. Therefore, we build on a similar pipeline than in Section 5.3.2, where BATS is applied instead
of PATCH-SIM when enough similar test cases can be found.

Experiments: We apply PATCH-SIM to the above 325 test patches in Section 5.3.2. As for BATS,
we use the Defects4J dataset as search space. Note that, as in all experiments, we ensure that
the search space does not include test case or patches linked to the assessed generated patch. To
achieve reliable performance with BATS, we must consider only cases where highly similar test
cases exist in our dataset. Therefore, it is possible that our performance measurement could only
be computed on a portion of the test set. Finally, PATCH-SIM can successfully produce results for
153 patches, of which 48 patches are applied by BATS when setting the similarity threshold at 0.8
is sufficient to find similar test cases.

Results: Table 9 presents the performance results of PATCH-SIM (alone) and the combination
(PATCH-SIM with BATS). We note that, by applying BATS to the subset of patches where simi-
lar test cases are available, we are able to improve the overall performance in patch correctness
prediction. These results demonstrate that BATS can be complementary to a dynamic approach.

[RQ-3] ❸ BATS static approach is complementary to the PATCH-SIM [80] dynamic approach. By

being able to identify incorrect and correct patches when test cases are sufficient, BATS implemen-

tation confirms our initial hypothesis that statically reasoning about similar test cases offers a

novel and promising perspective to the assessment of APR-generate patch correctness.

6 ABLATION STUDY

6.1 Bug Types of Failing Test Cases Clusters

In this study, we manually check whether bugs, grouped with respect to the test cases, in each clus-
ter are actually similar or not in terms of bug types. We first note that the failing test cases grouped
in the same cluster perform similar checks (e.g., date-related checks). Building up on the dissection
study of Defects4J bugs by Sobreiraet al. [70], we further investigate the categories of bugs in each
cluster. We find that test cases in a given cluster are indeed related to bugs in the same category.
For instance, test cases triggering Chart-2 and Chart-4 bugs are in the same cluster and the dissec-
tion study data indicates that these two bugs are in the same category of NullPointerException.
However, it is noteworthy that the categories in the dissection proposed by Sobreiraet al. are too
coarse-grained. Several of our clusters, therefore, relate to the same category. Finally, note that
the dissection study was performed in a previous (smaller) version of Defects4J, which does not
allow us to provide comprehensive results for our dataset. Nevertheless, the observations that we
have made support the framing of our hypothesis that test cases similarity can reflect very well
the category of bugs, and hence of the required fixes. In future work, we will consider exploring
other possible representations of bugs beyond test cases, such as bug reports.

6.2 Asymmetry of the Hypothesis

The experimental results validate the feasibility of our proposed hypothesis: Similar test cases can
lead to similar patches for fixing associated bugs. We investigate the symmetry of the hypothesis:
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Fig. 14. A typical failing test case specification (Chart-26).

Could similar patches be referred to similar test cases? To this end, we first independently cluster
patches with their similarities and then assess the similarities of the associated test cases in each
patch cluster. With respect to independent clustering of patches, the clustered patches achieve a
Cluster Similarity Coefficient (CSC) of 0.26 and all the groups are qualified. However, theCSC
for associated test cases groups is 0.03, which is very close to zero and much lower than the CSC
value of clustered patches. The results indicate that the symmetry of the hypothesis is invalidated,
i.e., similar patches cannot fully be mapped to addressing similar failing test cases. It is reasonable,
since different bugs can be fixed with similar code change ways, which lead to similar patches [44],
but the different bugs are triggered by different test cases.

7 THREATS TO VALIDITY

Threats to External Validity. We relied on Bisecting-K-means for the clustering experiments
to validate our hypothesis. Other algorithms may reveal different results. We have mitigated a
potential bias by using multiple evaluation metrics to exhaustively assess the clusters. We also
relied only on Defects4j to ensure that we can collect enough plausible patches from literature
APR experiments.

In future work, the community could further investigate other datasets as well as test cases
augmentation (through test generation [61, 67, 71] or code search [35]) to enlarge the datasets of
patches and test cases.

Threats to Internal Validity. A major threat to internal validity is that we manually process
patches to build the dataset. We may have introduced some mismatching errors when associating
test cases. To mitigate this threat, we publicly release all artefacts for review by the community.

Towards reasoning about code similarity, we rely on code2vec, which parses test cases to deep
learning features. Unfortunately, while most projects format their test case specifications as for
typical code (such as in Figure 14), the Closure project presents an ad hoc format where the es-
sential parts of the specification are formatted as a string (see Figure 15): In such cases, code2vec
embeddings abstract away the string as a mere argument to a function, rendering the embeddings
semantically irrelevant. Therefore, because we leverage off-the-shelf tools to validate our hypoth-
esis, we simply discard Closure bugs, for which future work can investigate specific learners to
parse test specification defined in the form of string. Eventually, our experimental evaluation con-
siders 1,278 plausible patches, 598 of which are correct while 689 are overfitting (i.e., incorrect).
Overall, the dataset is, to the best of our knowledge, the largest set of plausible patches explored
in the literature on patch correctness assessment.
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Fig. 15. String-based format for test specification (Closure-49).

Threats to Construct Validity. The used embedding models are pre-trained, and some param-
eter weights may not be adapted to our work. In future work, we could retrain and fine-tune the
parameters after collecting large datasets.

8 RELATED WORK

Automated Program Repair. Automated program repair (APR) aims to liberate program
developers from the manual debugging burdens by generating patches automatically and has at-
tracted significant attention as well as achieved promising performance on fixing bugs [22, 49, 58].
Generate-and-validate program repair is one of the commonly studied APR approaches that gen-
erates a set of candidate patches and validates the potential patch by checking the patched pro-
grams with static analysis or test suites [52]. Such approaches studied in the literature can be
generally summarized into three categories: ① Heuristic-based approaches, which construct and
iterate over a search space of syntactic program modifications to find the adequate patch for the
given in a heuristic way [21, 30, 41, 46, 47, 65, 76, 77, 91]; ② Constraint-based approaches, build-
ing on constraint solving to synthesize transformations for patch generation [57, 60, 81, 84]; and
③ Learning-based approaches, which explore machine learning techniques to boosting program
repair by learning correct code or natural code transformation [23, 31, 42, 48, 53, 78]. These state-
of-the-art APR works are challenged by their generated plausible [63] but incorrect patches that
are just overfitting the test suites but do not really fix the program bugs. This work aims to boost
the APR by proposing a new approach that is dedicated to validating the patch correctness for
APR tools.

Patch Correctness. The state-of-the-art APR techniques mainly rely on static analysis tech-
niques or test suite validation to assess the feasibility of patches generated by themselves, which,
however, could lead to overfitting plausible patches that actually do not fix the bugs or even make
the patched programs worse [63, 69]. To address this challenge, practitioners have been studying
efficient approaches to automate the identification of correct patches. Xiong et al. [80] explored
similarity of test case executions to heuristically assess the patch correctness and implemented a
patch validation technique, PATCH-SIM, based on a reasonable observation that a correct patch
does not tend to change the behavior of originally passing test cases but will revise the behavior of
originally failing test cases. Gao et al. [18] propose to optimize the search space of patch candidates
for APR tools by using the crash-freedom as the oracle to discard patch candidates that crash on
the new tests. Their results show that the overfiting problem of patch validation in APR could be
alleviated. Yang et al. [85] also explored the difference between the runtime behavior of developer’s
and APR-generated patches. While the majority of automatic program repair approaches focus on
dynamic execution to decide on the correctness of the patches, Csuvik et al. [10] have shown the
potential for machine learning techniques to be used in the identification of correct patches: By
exploiting embedding models such as Doc2vec and BERT on code, they have found that patches
that introduce new variables or make many changes are more likely to be incorrect. Ye et al. [87]
proposed to leverage manually engineered features to predict overfitting via supervised learning.
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They constructed an overfitting detection system ODS that trains classifiers for patch prediction
by extracting code features from AST representation of buggy code and generated patch code.
However, to assess the reliability of patch correctness prediction techniques, Le et al. [38] con-
structed a gold set of correctness labels of APR-generated patches where several different author
and automated patch assessment approaches are evaluated.

Representation Learning. Embedding is a key challenge for reasoning about similarity. Ini-
tial works on software engineering artefacts have explored models [11, 37] trained on natural lan-
guage text (such as Wikipedia). BERT is a widely used bidirectional encoder representations model
in textual tasks, where it outperforms the state-of-the-art by learning to obtain the conditional pa-
rameters. Recent works have, however, proposed specialized architectures to be trained on code.
For example, Alon et al. [2] proposed code2vec to capture the semantic properties of code snip-
pets by learning distributed representation. Zhangyin et al. presented a pre-trained CodeBert [16]
that leveraged programming language and natural language data on code tasks. To learn the rep-
resentation of code changes, Hoang et al. [25] proposed an attention-based neural network model
CC2Vec with the hierarchical structure to predict the difference between the removed and added
code of the patch.

Code Similarity and Code Clone Detection. Finding code that implements similar function-
ality is what BATS does to find similar test cases and similar patches. DeepSim [92] leverages deep
learning on semantic features matrix representing control- and data-flow information to predict
whether a given pair of functions implements similar functionality. Fang et al. [14] introduced a
new granularity level of the call-callee relationship to capture similar functionality while leverag-
ing word embeddings and graph embeddings to train a deep neural network for the same task.

To detect code clones across different programming languages, CLCDSA [59] extracts nine syn-
tactic source code features from the ASTs of different pieces of code and uses either Cosine sim-
ilarity or trained neural network to detect clones. BATS also uses Euclidean distance and Cosine
similarity to find similar test cases and similar patches. Alternatively, SLACC [56] uses dynamic
analysis and input-output pairs to detect clones across different programming languages. Finally,
binary code similarity has been studied extensively [24] with recent approaches also leveraging
graph and instruction embeddings [15, 17, 82] to find similar binaries. These approaches for find-
ing similar code across different programming languages and across binaries could benefit BATS
in the future by enabling cross-project and cross-language search for similar test cases and similar
patches.

9 CONCLUSION

In this work, we propose and investigate a simple yet effective hypothesis for static patch correct-
ness assessment: Given a failing test case, any associated generated patch is likely correct if it is
similar to patches that were used to address similar failing test cases. We have validated our hy-
pothesis using the developer-correct patches and the associated failing test cases in the Defects4J
benchmark. To evaluate the potential of this hypothesis in predicting patch correctness, we pro-
pose a patch identification system, BATS, to check patch behavior against test specification based
on unsupervised learning. BATS achieves its highest performance when the similarity of test cases
is high, which further validates our hypothesis. Compared against state-of-the-art, BATS outper-
forms them in identifying correct patches and filtering out incorrect patches. Despite potential
issues in the availability of large datasets of projects to search for historical examples (test cases
and their associated patches), we demonstrate that BATS can be complementary to both state-of-
the-art static and dynamic approaches to predict patch correctness. Overall, BATS offers insights
on a promising research direction for patch assessment.
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