
Towards Automatically Repairing Compatibility Issues in
Published Android Apps

Yanjie Zhao
Monash University

Melbourne, Australia

Yanjie.Zhao@monash.edu

Li Li∗

Monash University

Melbourne, Australia

Li.Li@monash.edu

Kui Liu
Huawei

Hangzhou, China

liukui23@huawei.com

John Grundy
Monash University

Melbourne, Australia

John.Grundy@monash.edu

ABSTRACT

The heavy fragmentation of the Android ecosystem has led to se-

vere compatibility issues with apps, including those that crash at

runtime or cannot be installed on certain devices but work well on

other devices. To address this problem, various approaches have

been proposed to detect and fix compatibility issues automatically.

However, these all come with various limitations on fixing the com-

patibility issues, e.g., can only fix one specific type of issues, cannot

deal with multi-invocation issues in a single line and issues in re-

leased apps. To overcome these limitations, we propose a generic

approach that aims at fixing more types of compatibility issues

in released Android apps. To this end, our prototype tool, Repair-

Droid, provides a generic app patch description language for users

to create fix templates for compatibility issues. The created tem-

plates will then be leveraged by RepairDroid to automatically fix the

corresponding issue at the bytecode level (e.g., right before users

install the app). RepairDroid can support template creations for

OS-induced, device-specific and inter-callback compatibility issues

detected by three state-of-the-art approaches. Our experimental re-

sults show that RepairDroid can fix 7,660 out of 8,976 compatibility

issues in 1,000 randomly selected Google Play apps. RepairDroid

is generic to configure new compatibility issues and outperforms

the state-of-the-art on effectively repairing compatibility issues in

released Android apps.

CCS CONCEPTS

• Software and its engineering → Software verification and

validation; Software defect analysis; Software testing and debug-

ging.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510128

KEYWORDS

Android, Compatibility Issue, Automated Program Repair

ACM Reference Format:

Yanjie Zhao, Li Li, Kui Liu, and John Grundy. 2022. Towards Automati-

cally Repairing Compatibility Issues in Published Android Apps. In 44th

International Conference on Software Engineering (ICSE ’22), May 21–29,

2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3510003.3510128

1 INTRODUCTION

The heavy fragmentation problem of Android – many different

Android versions (official and customized) running on different

devices released by hundreds of manufacturers – has caused severe

compatibility issues for the Android ecosystem. Android phone

users often find that certain apps cannot be installed on their devices

or can be installed but will crash later on if a specific function is

reached, leading to poor user experiences. Actually, as revealed

by Byron Muhlberg, there are over a billion Android devices no

longer supported by Google. Hence, the users of those devices will

likely encounter compatibility issues, especially when they want

to leverage the latest Android apps, leading to serious problems in

the mobile ecosystem.

To address this problem, approaches have explored various ways

to automatically detect compatibility issues in Android apps [4, 9,

11, 12, 14, 18, 21, 26, 40, 43, 56, 58]. For example, Wei et al. [53] em-

pirically looked into a set of fragmentation-induced compatibility

issues (including those introduced by third-party manufacturers)

in open-source Android apps. They further proposed a tool called

FicFinder to detect the previously characterized compatibility is-

sues automatically. Li et al. [27] proposed a generic approach called

CiD, which detects API-related compatibility issues based on An-

droid API lifecycle knowledge mined from the official’s historical

evolution Android framework.

Unfortunately the majority of these works only focus on detect-

ing some compatibility issues, leaving many identified issues still

unfixed in real-world Android apps. Updating incompatible APIs is

a time-consuming endeavor and app developers are also known to

be reluctant to repair their apps for fixing issues yielded by static

analyzers [10]. App developers have to learn the usages of new

APIs in order to replace the incompatible ones while maintaining

2142

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on December 02,2022 at 02:32:51 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yanjie Zhao, Li Li, Kui Liu, and John Grundy

backward compatibility with the old version. This greatly increases

the learning cost for developers.

To mitigate this, researchers have proposed several automated

approaches to repair incompatible APIs for Android apps. Fazzini

et al. [9] introduced AppEvolve to update incompatible APIs based

on examples of how other developers evolved their apps for the

same changes. Similarly, Lamothe et al. [21] proposed an approach

called A3 for supporting API migration through patterns mined

from source code examples via abstract syntax tree (AST). These ap-

proaches require the target code under repair written syntactically

similar to the before- and after-update API change examples. This

makes them hard to find applicable updates, as claimed by Thung

et al. [46]. To this end, Haryono et al. proposed CocciEvolve [11] to

only learn updates from a single after-update example. It eliminates

the weakness of AppEvolve by normalizing both the after-update

example and the target app code. Nevertheless, the serious issue

of CocciEvolve is its inability to resolve all the values used as API

arguments. These can be expressed in various complex forms, e.g.,

field access expressions, method invocations, and object creations.

Its other drawback is the poor readability of its updated app code

results. Its authors further extend their work by proposing AndroE-

volve [12], which addresses the limitations of CocciEvolve through

the addition of data flow analysis and variable name denormaliza-

tion.

Unfortunately, all the above approaches focus on repairing the

source code of Android apps and hence cannot be applied to di-

rectly repair published Android apps. Indeed, as time goes by, many

published Android apps on popular app markets such as Google

Play, unless being timely fixed, will become obsolete, leading to

poor user experiences in the mobile ecosystem. To cope with this,

market maintainers could choose to remove those apps. However,

this may not be a good business model as it may reduce the market’s

competitiveness, i.e., its competitors are providing more choices of

apps for users to explore. If market maintainers do not remove those

apps, certain apps in the market will not be able to be installed on

users’ devices or will crash after installation. It will also cause poor

user experiences and can even harm the reputation of the market

and the app developers per se.

As a supplement to existing repair approaches that attempt to

help developers in developing higher-quality apps, we believe there

is also a need to provide approaches for helping repair published

apps (before they are installed on users’ devices), at least in the

time period before their developers explicitly update the apps. This

paper proposes a novel, generic approach for repairing three types

of compatibility issues – API, device and callback-induced problems

– in published Android apps. Since it is relatively simple to trans-

form Java source code to bytecode and vice versa, the approach

targeting published Android apps, with small change, could also be

applied to repair apps at the source code level (but not the other way

around). Nevertheless, we argue that source code- and bytecode-

based repairing approaches are not mutually exclusive. They can

co-exist and complement each other. Indeed, approaches targeting

published app repair could be leveraged to achieve emergent repair,

while source code-based approaches can come in later to gradually

fix the issues. For example, market maintainers could leverage pub-

lished app repairs to ensure the compatibility of their hosted apps

(with developers’ permission) at app uploading or downloading

time. This is extremely useful, especially for legacy apps that are

less frequently (will no longer be) maintained by their developers.

Correspondingly, end-users are provided options to use apps that

could not be running initially on their devices.

In this work, we present a prototype tool, RepairDroid, which

leverages pre-defined patch templates to instrument Android apps

so as to fix compatibility issues. The templates are written by ded-

icated experts (i.e., app developers do not need to write patches

for their apps) based on a structural model that is both descrip-

tive and generic, i.e., a given patch should be applicable to all An-

droid apps. The instrumentation process involves control-flow and

data-flow analysis to locate and repair compatibility issues. Experi-

mental results on thousands of real-world Android apps show that

RepairDroid is effective in automatically repair various types of

compatibility issues. In this research we make the following key

contributions:

• We have designed a novel app patch description language

and demonstrated that it is generic enough to be used to

create fix templates for various compatibility issues. The

genericity is achieved by allowing users to directly leverage

the simple but well-defined Jimple grammar (i.e., a 3-address

intermediate representation that has been designed to sim-

plify analysis and transformation of Java/Android bytecode)

to describe the patches.

• We have designed and implemented a prototype tool Repair-

Droid, which follows given fix templates to automatically

repair published real-world Android apps.

• We have evaluated our approach against 1,000 real-world

Android apps. Experimental results show that our approach

is effective in repairing Android apps, outperforms the state-

of-the-art and achieves 85.34% of successful repairing rate.

Open source. The source code and datasets are all made publicly

available in our artifact package [2].

2 MOTIVATION

The heavy fragmentation of the Android ecosystem has induced

many types of compatibility issues in Android apps. Our research

community has spent lots of effort on disclosing such issues, in-

cluding at least the following three types:

OS-induced compatibility issues. This is one of the most com-

mon types of compatibility issues, where issues are caused by the

evolution of the Android framework. During framework evolution,

new APIs are regularly added to the framework, while existing

APIs are also regularly deprecated and removed. In some rare cases,

existing APIs may also be semantically changed, despite keeping

the signature of the APIs unchanged. The example given in Listing 1

shows a deprecated API issue.

1 + if (android.os.Build.VERSION.SDK_INT >= 28) {
2 + for (Network nw: cm.getAllNetworks()) {
3 + NetworkCapabilities nc =

cm.getNetworkCapabilities(nw);
4 + if (nc != null &&

nc.hasTransport(NetworkCapabilities.TRANSPORT_WIFI))
5 + return true;
6 + }
7 + return false;
8 + } else {
9 return an.getType() ==

ConnectivityManager.TYPE_WIFI;

2143

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on December 02,2022 at 02:32:51 UTC from IEEE Xplore. Restrictions apply.

Towards Automatically Repairing Compatibility Issues in Published Android Apps ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

10 + }

Listing 1: An example of an OS-induced compatibility issue. API getType is
deprecated at SDK level 28. On devices running SDK versions larger than 28,
it is recommended to use API hasTransport instead.

Device-specific compatibility issues. These compatibility is-

sues are associated with specific devices running customized An-

droid systems. The problematic apps will only crash on certain de-

vices while behaving normally on others, despite all the devices run-

ning the same Android framework version. Listing 2 presents such

an example that was initially reported by Wei et al. [54]. The API

setRecordingHint depends on a conditional statement that checks

the device identifier against “Nexus 4”. Only the condition to be

true, i.e., the corresponding app is indeed running on “Nexus 4”,

the API will be executed.

1 Camera mCamera = Camera.open();
2 Camera.Parameters params = mCamera.getParameters();
3
4 + if (android.os.Build.MODEL.equals("Nexus 4") {
5 + params.setRecordingHint(true);
6 + }
7
8 mCamera.setParameters(params);
9 mCamera.startPreview();

Listing 2: Patch for Camera Preview Frame Rate Issue on Nexus 4, excerpted
from [54].

Inter-callback compatibility issues. This type of compatibil-

ity issue is caused by the changes to Android system callbacks (also

known as lifecycle methods). Such system callback methods are

pre-defined by the Android system and will be directly executed

when certain conditions are satisfied. Listing 3 illustrates such an

example that was initially reported by Huang et al. [15]. The onAt-

tach(Context) callback method is only introduced from API level

23. If this code is running on smartphones with earlier API levels,

this callback method will not be executed. Subsequently, the mAc-

tivity field will not be initialized, and its usage will likely throw

NullPointerExceptions.

1 public void onAttach(Context context) {
2 super.onAttach(context);
3 - mActivity = (BrowserActivity) context;
4 -
5 + attachActivity((BrowserActivity) context);
6 }
7 + public void onAttach(Activity activity) {
8 + super.onAttach(activity);
9 + if (Build.VERSION.SDK_INT < 23) {
10 + attachActivity((BrowserActivity) activity);
11 + }
12 + }
13 + private void attachActivity(BrowserActivity

activity) {
14 + mActivity = activity;
15 +
16 + }

Listing 3: The Patch for WordPress issue 6906. The compatibility issue is
caused by the fact that the callback method onAttach(Context) is not yet
available before API level 23, excerpted from [15].

All of these compatibility issues are equally critical to mobile

apps as all of them will cause apps to crash, leading to poor user

experiences. Compatibility issue repairing approaches should aim

to fix all of them. However, current state-of-the-art tools only focus

on repairing API-induced compatibility issues. Automatically fixing

other types of compatibility issues, such as device or callback related

ones, has not yet been addressed.

As summarized in Table 1, existing approaches also come with

many limitations. For example, CocciEvolve only attempts to fix

incompatible APIs within a single method. Their follow-up work

AndroEvolve fixes this limitation by additionally introducing data-

flow analysis into the fixing process. Compatibility issues with

respect to (1) out-of-file variables and (2) multi-invocations in a

single line and (3) compatibility issues in released Android apps

cannot be resolved by any of the state of the art.

Table 1: Problematic Android compatibility issues addressed by state-of-the-
art tools.

Feature A3 AppEvolve CocciEvolve AndroEvolve

Out-of-method (within file) variables � � � �

Out-of-file variables � � � �

1-to-n replacement � � � �

Multi-invocations in a single line � � � �

Fix in published Android apps � � � �

3 OUR APPROACH: REPAIRDROID

We introduce RepairDroid, a template-based repair approach, to

automatically repair three kinds of compatibility issues in Android

apps. Figure 1 presents an overview of RepairDroid. It has three

key modules: (1) Template Build Module (TBM), (2) Bug Location

Module (BLM), and (3) Bug Repair Module (BRM). Below we detail

these three modules.

Existing
Fixes

BLM:
Bug Location Module

BRM:
Bug Repair Module

Bug-free
App

TBM:
Template Build Module Templates

Published
App

Figure 1: The working process of RepairDroid.

3.1 TBM: Template Build Module

This first module of RepairDroid aims at preparing a set of seman-

tic templates for subsequent modules to repair published Android

apps. The main contribution of this module is a generic language

for describing app patch templates. Developers should be able to

easily leverage the language to create templates for fixing compati-

bility issues, based on knowledge learned from the official Android

documentation, online question and answer websites such as Stack-

Overflow, or existing fixing samples mined from the evolution of

real-world Android apps. The grammar of the language is straight-

forward. As shown in Figure 2, it contains three blocks, namely

variable declaration block, issue location block, and patch block.

We now detail these three blocks, respectively.

Variable Declaration Block. The first block provides a means

for developers to specify all the variables involved in the template.

At the moment, the language supports three types of variables.

• Variables to be directly reused from the original con-

text. These variables appear in the original code statements

(used for locating problems) and hence could be directly

reused in the new code.

• Variables to be searched from the original context.These

variables do not appear in the original code statements that

2144

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on December 02,2022 at 02:32:51 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yanjie Zhao, Li Li, Kui Liu, and John Grundy

@@ Variable Declaration
$v0 := boolean
$v1 := ANY
[SEARCH] $v2 := <TYPE>

@@ Issue Location
[<ISSUE_TYPE>] <CONDITION>

@@ Template Denotation
+ //Replacement Statements
- //Original Statements

OR

+ $v0 = <CONDITION EXPRESSION>
+ if $v0 == true
+ //Replacement Statements
+ else
 //Original Statements

Figure 2: The language structure for creating patch templates forRepairDroid.

are defined to locate the problems but do exist in the app

context. Hence, backward data-flow analysis is demanded to

search the definition of the variables for direct reuses. These

variables will be explicitly marked by keyword [SEARCH],

as demonstrated in Figure 2.

• Variables to be created. These variables are totally new to

the app and hence need to be defined before applying the

template.

Issue Location Block. The second block is provided for de-

velopers to specify how the compatibility issues can be program-

matically located. Developers first specify the issue type (in square

brackets) to be fixed to simplify the location process. This is because

different types of compatibility issues require different strategies to

locate them. As inspired by the three types of compatibility issues

summarized in Section 2, the language currently provides three

issue types (i.e., [OS], [DEVICE], and [CALLBACK], respectively for

OS-induced, device-specific, and inter-callback compatibility issues)

to guide RepairDroid for locating compatibility issues. More issue

types could be added to the language if new types of compatibility

issues are identified in the future.

Like the variable declaration block, the issue location block is

also relatively easy to configure. In most cases, it only needs one

line of statement to specify the issue. For example, the compatibility

issues in the three motivating examples shown in Section 2 can be

respectively specified by the issue location statements shown in

Listing 4.

In addition to the targeted APIs, <CONDITION> also specifies

the situation when the issue should not be considered, even if

the targeted APIs or call methods are located. Taking Line 1 in

Listing 1 as an example, if the invocation of the deprecated API

getType() is already protected by an SDK version check (i.e., if

(Build.VERSION.SDK_INT >= 28)), this target should be ignored as

there should have no compatibility issue in such a case.

Template Denotation Block. The last module of the app patch

language is used by developers to specify the actual template for

fixing the located compatibility issues. The fix template is designed

to be written in Jimple-like pseudocode. Jimple is the default inter-

mediate representation of Soot [49], a well-known Java/Android

static analysis framework. The reason why we choose Jimple to

describe the template is that the instrumentation function of Re-

pairDroid is implemented on top of Soot. It allows RepairDroid to

quickly apply the template to fix compatibility issues in a deployed

app1.

As shown in Figure 2, the typical way to fix an OS-induced

compatibility issue is to replace the original problematic statements

with corrected new statements. In practice, we recommend the

developers to always guard their newly introduced code through a

conditional check. When the check returns true, the replacement

statements will be invoked. Otherwise, the original statements will

be executed and hence the original behaviors are kept.

1 [Method] <[android.app.Fragment]: void
onAttach(android.content.Context)>

2 [Stmt]$r0 := @this: [android.app.Fragment]
3 [Stmt]$a0 := @parameter0: android.content.Context
4 [Stmt]specialinvoke $r0.<android.app.Fragment: void

onAttach(android.content.Context)>($a0)
5 [CUT] ... when != [END of Method]
6 + $v0 = ([android.app.Activity]) $a0;
7 + virtualinvoke $r0.<[android.app.Fragment]: void

attachActivity([android.app.Activity])>($v0);
8 + return
9
10 + [NEW Method][public] <[android.app.Fragment]: void

onAttach(android.app.Activity)>
11 + $r1 := @this: [android.app.Fragment]
12 + $a1 := @parameter0: android.app.Activity
13 + specialinvoke $r1.<android.app.Fragment: void

onAttach(android.app.Activity)>($a1)
14 + $i1 = <android.os.Build$VERSION: int SDK_INT>
15 + if $i1 >= 23 goto <label_1>
16 + $v1 = ([android.app.Activity]) $a1;
17 + virtualinvoke $r1.<[android.app.Fragment]: void

attachActivity([android.app.Activity])>($v1);
18 + <label_1>
19 + return
20 + [END of Method]
21
22 + [NEW Method][private] <[android.app.Fragment]: void

attachActivity([android.app.Activity])>
23 + $r2 := @this: [android.app.Fragment]
24 + $a2 := @parameter0: [android.app.Activity]
25 [PASTE]
26 + return
27 + [END of Method]

Listing 5: The template denotation block of the inter-callback example.

Listing 5 shows an example Template Denotation block for the

inter-callback example shown in Listing 3. Based on the example

in Listing 5, we further introduce several keywords, such as [CUT],

[PASTE], to respectively represent cut and paste operations, with

which they can batch process statements within the set range, as

shown at Line 5 and Line 25. Inspired by SmPL [22], on the basis of

ensuring the universality of the language, the templates for these

three issues have designed some special symbols, including the use

of some reserved words.

[𝐶𝑈𝑇] ...𝑤ℎ𝑒𝑛! = [𝐸𝑛𝑑 𝑜 𝑓 𝑀𝑒𝑡ℎ𝑜𝑑]

The "..." operator in SmPL represents an arbitrary sequence, i.e., any

sequence of statements over any control flow path, which is also

used in our language. For example, the usage of when != [End of

1Ideally, we would like to support Java as the language for describing the patch directly
as it would be more convenient for patch writers. However, this will make the patch
parsing step difficult to achieve as essentially it asks for a Java compiler to interpret
the (random) Java code. Jimple is a simplified Java representation that could be an ideal
trade-off solution, i.e., not very difficult to understand and write but can be interpreted
programmatically in practice (thanks to Soot).

2145

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on December 02,2022 at 02:32:51 UTC from IEEE Xplore. Restrictions apply.

Towards Automatically Repairing Compatibility Issues in Published Android Apps ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

[OS] <android.net.NetworkInfo: int getType()> Build.VERSION.SDK_INT 28

[DEVICE] <Camera: Camera$Parameters getParameters()> Build.MODEL "Nexus 4"

[CALLBACK] <Fragment: void onAttach(Context)> Build.VERSION.SDK_INT 23

Listing 4: Examples of issue location statements for creating templates to fix the compatibility issues listed in the three motivating examples (i.e., Listings 1-3),
respectively

Method] at Line 5 means that there should be no occurrences of [End

of Method] in the matched control-flow path, that is, the matching

process continues to the end of the method. Although there are no

complicated usages in the repair of the three types of compatibility

issues introduced above, our intention for this app patch language

design is to ensure the future scalability of RepairDroid. To this end,

[End of Method] can be replaced with other statements (e.g., tag

statements such as <label_1>) to ensure that RepairDroid can be

guided to accurately collect statements.

In real-world Android projects, the class inheritance feature has

been frequently leveraged. In order to improve the versatility of

RepairDroid, we use ["Superclass Name"] to specify the superclass

of the class to be searched. For example, [android.app.Fragment]

means RepairDroid needs to search such a class that extends the

superclass named "android.app.Fragment" before performing sub-

sequent work. If the superclass does not need to be restricted,

[DECLARING_CLASS], a reserved keyword, can be directly used to

indicate the class to which the current method belongs. RepairDroid

will replace it with the actual value in the app when running on

the BRM module.

3.2 BLM: Bug Location Module

The second module of RepairDroid takes as input the Android APK

to be analyzed and the semantic templates generated by the first

module and outputs the locations (at the statement level) indicating

where the templates should be applied. Specifically, this module

takes the following three steps to achieve its purpose: template

parsing, app pre-processing, and bug localization. We now detail

these steps, respectively.

Template parsing. As a prerequisite to the following steps,

RepairDroid first reads and parses the semantic templates generated

by the TBM module. The parsing process utilizes the principle of

Finite State Machine to parse the input semantic templates. After

the parsing step, each semantic template is stored as a structured

object that is readily available for further references.

App pre-processing. This step first transforms the bytecode

into an intermediate representation code called Jimple, as it is non-

trivial to directly analyze the Dalvik bytecode of Android apps.

Jimple is the default intermediate representation format of Soot, a

Java/Android app static analysis and optimization framework. In

this work, RepairDroid leverages Soot to achieve the code transfor-

mation and the following-up static analysis of Android apps.

Bug localization. This step traverses the Jimple IRs of the target

app and detects the locations that need to be patched according

to the specified conditions parsed from the semantic templates

above. RepairDroid automatically identifies the bug locations (often

at the Jimple statement level) from the app code by traversing each

method in each class. Subsequently, the located bug statements,

along with their belonging methods, will be regarded as a potential

bug candidate.

Then for each identified candidate, RepairDroid goes one step

further to check if it satisfies certain conditions, following what

will be also specified in the semantic template. If so, the candidate

will be regarded as a true bug and hence will be propagated to

the next module for automated repairing. For compatibility issues,

the bug locations will often be an API invocation statement (e.g.,

because the API is no longer available in the latest Android de-

vices or in certain customized Android versions such as Samsung

phones). The conditions could be a framework version check or a

device manufacturer check. Taking Listing 6 as a simple example,

API abandonAudioFocus is deprecated in the Android framework

version𝑀 and hence is only recommended to be invoked on devices

running lower versions than𝑀 . However, this method call should

not be detected as containing a compatibility issue because the prob-

lem has already been protected (i.e., fixed). The conditional check

(i.e., against Build.VERSION_CODES.M) should have been clearly

specified in the semantic template of API abandonAudioFocus. To re-

solve this issue, after locating candidate bugs, RepairDroid goes one

step deeper to perform an inter-procedural backward control-flow

analysis to check if their associated conditions are presented. Only

if the incompatible API calls are not already protected, RepairDroid

will attempt to repair the corresponding issues.

We use the example shown in Listing 6 to illustrate this back-

ward analysis flow. The deprecated API abandonAudioFocus and

its replacement API abandonAudioFocusRequest are called in two

separate methods, i.e., abandonAudioFocus() (i.e., Line 4) and aban-

donAudioFocusRequest() (i.e., Line 1), and the condition check state-

ment is located in the method dispose() (i.e., Line 7). When locating

an OS-induced issue, RepairDroid can easily pinpoint the depre-

cated API abandonAudioFocus (i.e., Line 5) and its declaring method,

abandonAudioFocus(). However, there is no conditional check state-

ment for the SDK version in the abandonAudioFocus() method. As

a result, we need to locate method dispose() that calls the method

abandonAudioFocus() through the backward analysis flow to de-

termine that the current case does not contain an incompatible

issue.

1 public void abandonAudioFocusRequest() {
2 audioManager.abandonAudioFocusRequest(request);
3 }
4 public void abandonAudioFocus() {
5 audioManager.abandonAudioFocus(this);
6 }
7 public void dispose(){
8 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M){
9 abandonAudioFocusRequest();
10 } else {
11 abandonAudioFocus();
12 }
13 }

Listing 6: Code snippets showing the demand for conducting inter-procedural
backward flow analysis.

2146

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on December 02,2022 at 02:32:51 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yanjie Zhao, Li Li, Kui Liu, and John Grundy

3.3 BRM: Bug Repair Module

The last module of RepairDroid is used to repair the located app

compatibility bugs by directly updating the code snippets (here-

inafter referred to as the Target) located by the BLM module, i.e.,

𝑇𝑎𝑟𝑔𝑒𝑡
𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒

→ 𝑇𝑎𝑟𝑔𝑒𝑡 ′. The Template represents the list of state-

ments used to update the Target that has been identified as contain-

ing bugs. Subsequently, 𝑇𝑎𝑟𝑔𝑒𝑡 ′ represents the list of statements
having the identified bugs repaired.

Algorithm 1 summarizes the general repairing process imple-

mented in RepairDroid. RepairDroid first needs to ensure that all the

variable keywords2 involved in the semantic template are available

in the code context. It transforms the variable keywords defined as

strings in the template to Java objects at the code level. As demon-

strated in Lines 2-12, for each variable keyword, RepairDroid first

checks if its corresponding variable is directly available in the Tar-

get code. If so, it will be directly reused. If a given variable keyword

is marked by keyword [SEARCH], we then consider the variable

keyword needs to be searched in the Target’s context (the variable

should have been defined in the app but has not been leveraged by

the Target code). Finally, if the variable keyword is defined as a new

variable, it will be directly initiated. Taking the code snippet shown

in Listing 1 as an example, the variable cm (at Line 2) is such a case

that needs to be searched backward, and nw (at Line 2) and nc (at

Line 3) are variables that need to be created based on the searched

variable cm.

When there are variables that do not exist in the original app

code statements, RepairDroid leverages the searchLocal function

to conduct backward control-flow analysis so as to select existing

variables from the code context. The search process follows the

following rules. These are summarized based on our manual obser-

vations among various fixes that happened in real-world Android

apps. (1) Search backward from the position of Target for the vari-

able in the located buggy statement’s declaring method. The first

seen variable (matched via type) will be considered. (2) If it is not

possible to identify the variable in the current method, RepairDroid

then traverses all the fields declared in the class to which the pre-

viously searched method belongs. Next, (3) if it still fails to locate

the variable, RepairDroid will resort to the whole class, including

its inner classes, to search for the variable. Finally, suppose it is

still impossible to locate an existing variable after exploring all the

aforementioned rules, RepairDroid will terminate the repair process

and regard the fix as a failure case.

After preparing all the required variables, the next step is to

update the Target code following the Jimple statements defined in

the template. Since the Jimple statements are provided as strings,

RepairDroid takes additional step to automatically transform it to

code snippets (via the BUILD-JIMPLE-STMT function). Recall that

the Jimple statements written in the template may contain certain

placeholder keywords such as ["Superclass Name"], [CUT], and

[PASTE]. When transforming the statements, RepairDroid needs to

replace them with concrete values.

2To avoid confusion, we use variable keywords to describe the variables defined as
strings in the template. The term variable by itself is kept for referring to Java objects.

For example, as shown in Line 1 of Listing 5, RepairDroid first

collects the actual name of the class inheriting the superclass an-

droid.app.Fragment, which contains incompatible issues. Then, it re-

places [android.app.Fragment] with its real value, e.g., org.wordpress.

android.ui.themes.ThemeBrowserFragment in the app of Listing 3,

which extends the android.app.Fragment class, at runtime. Further-

more, some of the searched variables e.g. those returned by Rule

(3)), may not be directly accessible in the method under repairing.

To this end, RepairDroid goes one step further to introduce glue

code to change the visibility of the search variables so that they

can be freely used to repair the buggy statements.

Algorithm 1: The repair algorithm of BRM.

Input:𝑇𝑎𝑟𝑔𝑒𝑡 : the located buggy statements.
𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 : the classes/methods/statements that should be inserted.

1 𝑉𝑎𝑟2𝐿𝑜𝑐𝑎𝑙 = new HashMap;

2 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝑠 = getVariableKeywords(𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒);
3 𝐵𝑜𝑑𝑦 =𝑇𝑎𝑟𝑔𝑒𝑡 .getDeclaringMethodBody();
4 for 𝑣𝑎𝑟 ∈ 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝑠 do
5 if 𝑣𝑎𝑟 shows in𝑇𝑎𝑟𝑔𝑒𝑡 then
6 𝐿𝑜𝑐𝑎𝑙 = getLocal(𝑇𝑎𝑟𝑔𝑒𝑡 ,𝑣𝑎𝑟);
7 else if 𝑣𝑎𝑟 needs to be searched then
8 𝐿𝑜𝑐𝑎𝑙 = searchLocal(𝐵𝑜𝑑𝑦, 𝑣𝑎𝑟);
9 else
10 𝐿𝑜𝑐𝑎𝑙 = new Local(𝐵𝑜𝑑𝑦, 𝑣𝑎𝑟 ,𝑉𝑎𝑟2𝐿𝑜𝑐𝑎𝑙);
11 𝑉𝑎𝑟2𝐿𝑜𝑐𝑎𝑙 .add(𝑣𝑎𝑟 , 𝐿𝑜𝑐𝑎𝑙);
12 end

13 for 𝐼𝑡𝑒𝑚 ∈ 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑏𝑒𝑓 𝑜𝑟𝑒 do
14 𝑁𝑒𝑤𝑆𝑡𝑚𝑡 = BUILD-JIMPLE-STMT(𝐼𝑡𝑒𝑚,𝑉𝑎𝑟2𝐿𝑜𝑐𝑎𝑙);
15 insertBefore(𝑁𝑒𝑤𝑆𝑡𝑚𝑡 ,𝑇𝑎𝑟𝑔𝑒𝑡 .𝑔𝑒𝑡 [0]);
16 end

17 for 𝐼𝑡𝑒𝑚 ∈ 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑎𝑓 𝑡𝑒𝑟 do
18 𝑁𝑒𝑤𝑆𝑡𝑚𝑡 = BUILD-JIMPLE-STMT(𝐼𝑡𝑒𝑚,𝑉𝑎𝑟2𝐿𝑜𝑐𝑎𝑙);
19 insertAfter(𝑁𝑒𝑤𝑆𝑡𝑚𝑡 ,𝑇𝑎𝑟𝑔𝑒𝑡 .𝑔𝑒𝑡 [𝑇𝑎𝑟𝑔𝑒𝑡 .𝑠𝑖𝑧𝑒 () − 1]);

20 end

3.4 Implementation

RepairDroid is implemented on top of Soot and the repair process

is done at the Jimple code level. Thanks to Soot, the repaired Jimple

code is further transformed back to a newAndroid app, which could

be directly installed and used by users. Although our approach is

proposed to repair Android apps directly at the bytecode level, app

developers who want to repair their apps at the source code level

could also benefit from our approach. By reverse-engineering the

repaired Android apps, developers can get fixed source code, which

could then be directly ported to the source code project to achieve

source code repairs.

4 EVALUATION

The goal of this work is to automatically repair compatibility is-

sues in published Android apps. To determine if this objective has

been achieved, we look to answer the following four key research

questions:

RQ1: How generic is our proposed patch description language?

RQ2: How well does RepairDroid perform compared with exist-

ing tools?

RQ3: How effective is RepairDroid in automatically locating and

repairing incompatibility issues in real-world Android apps?

2147

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on December 02,2022 at 02:32:51 UTC from IEEE Xplore. Restrictions apply.

Towards Automatically Repairing Compatibility Issues in Published Android Apps ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

RQ4: What is the time performance of RepairDroid in repairing

published Android apps?

4.1 RQ1: Genericity

In the first research question, we investigate the genericity of our

proposed patch description language, which is one of the core mod-

ules supporting the automated repair of Android apps. As discussed

in Section 2, there are at least three types of compatibility issues

suffered by real-world Android apps. The issues are significantly

different from one to another. Even within the same type, the com-

patibility issues could also be remarkably different. Recall that we

aim to design the patch description language to be as generic as

possible so that it can be leveraged to describe templates for all the

kinds of compatibility issues Android apps may encounter. To this

end, we resort to evaluating the language’s genericity by directly

applying the language to create templates for all the compatibil-

ity issues explicitly mentioned in the three articles in which the

aforementioned three types of compatibility issues (cf. Section 2)

are introduced, respectively.

By manually summarizing the examples detected by the pre-

viously mentioned three approaches (i.e., CiD, Pivot, and CIDER,

respectively), we eventually decided to create templates for three

OS-induced compatibility issues, seven device-specific compatibil-

ity issues, and six inter-callback compatibility issues. In the work of

CiD, the authors listed seven issues, of which only three have been

confirmed and fixed by the developers. Hence we only take these

three issues into consideration. Furthermore, the authors of CiD

have further presented another work, CDA [29], that reveals 19

more issues. As a supplement, we decided to also consider them to

create OS-induced compatibility issues. However, for five of them,

we cannot find intuitive replacements and hence these were ex-

cluded before the experiment. These five issues are associated with

the Apache HttpComponents project, for which the whole project

has now been deprecated by the Android framework. To address

them hence requires fundamental code changes – removal of all

the usage of Apache HttpComponents – to repair their related app

compatibility issues. Such a change is far too difficult to be done

automatically. We thus eliminated these five compatibility issues

from this experiment. As a result, 17 OS-induced compatibility is-

sues are considered, as enumerated in the second column in Table 2.

In the work of Pivot, the authors present ten problematic apps,

among which only seven compatibility issues are eventually fixed.

These seven issues correspond to three distinct APIs. In the work of

CIDER, the authors have reported nine issues, among which only

six issues (correspond to four distinct methods) are eventually fixed.

To ensure that we can find repair examples that provide specimens

demonstrating how these compatibility issues can be fixed and

thereby how to describe the templates, we decided to only focus

on the three device-specific and four inter-callback compatibility

issues that have been fixed or at least confirmed by the developers.

The detailed selected issues are also listed in the second column in

Table 2.

To evaluate the genericity of RepairDroid’s patch description

language, for each of the selected compatibility issues in Table 2,

the authors manually analysed each issue and its correct fixes and

Table 2: Experimental results demonstrating the genericity of the patch de-
scription language.

Paper Issue If success Total

CiD [27] <Resources: Drawable getDrawable(...)> �

15/17

CDA [29] <Notification: void setLatestEventInfo(...)> �

<View: void setBackgroundDrawable(...)> �

<Intent: ClipData getClipData()> �

<View: void setSystemUiVisibility(...)> �

<Notification.Builder: Notification.Builder set-

LocalOnly(...)>

�

<Notification: void <init>(...)> �

<NetworkInfo: int getType()> �

<Display: int getWidth()> �

<Display: int getHeight()> �

<Resources: int getColor(...)> �

<PopupWindow: void setWindowLayoutMode(...)> �

<Activity: void setProgress(...)> �

<ContentProviderClient: boolean release()> �

<AccessibilityServiceInfo: String getDescription()> �

<AccessibilityServiceInfo: boolean getCanRe-

trieveWindowContent()>

�

<Html: String toHtml(...)> �

Pivot [54] <DatePickerDialog: DatePickerDialog DatePickerDia-

log(...)>

�

3/3

<View: int getSystemUiVisibility()> �

<Camera$Parameters: void setRecordingHint(...)> �

CIDER [15] <Fragment: void onAttach(...)> �

<WebViewClient: boolean shouldOverrideUrlLoad-

ing(...)>

�

4/4
<WebViewClient: onReceivedError(...)> �

<WebViewClient: onReceivedHttpError(...)> �

created templates following the rules defined by the language pre-

sented earlier. As shown in Table 2, for the 24 considered compati-

bility issues across three different types, we successfully created

22 templates for these 24 app compatibility issues. We will

evaluate the correctness of these templates when answering the

third research question.

The remaining two issues we could not fix using our RepairDroid

patch description language. That is because these two issues have

not been provided with clear replacement information indicating

how they can be avoided on the official Android documentation site.

These failures, however, have no connection with the genericity of

the language. Indeed, if we are provided with well-structured re-

pair samples, we could still generate templates for these two issues.

Overall, this experimental result shows that our patch description

language is quite generic and should be capable of describing pat-

terns for finding and fixing a wide range of compatibility issues

encountered by Android apps.

� RepairDroid’s patch description language is generic and should

be capable of describing most of the compatibility issues available

in the Android ecosystem.

4.2 RQ2: Comparison With State-of-the-art

To answer our second research question, we compare RepairDroid

with all the state-of-the-art related works. To the best of our knowl-

edge, as listed in Table 1, there are four tools (i.e., A3 [21], AppE-

volve [9], CocciEvolve [11], AndroEvolve [12]) proposed by our

fellow researchers used to automatically fix OS-induced compati-

bility issues in Android apps. However, A3 is mainly developed to

mine migration patterns from code examples. Although it provides

mechanisms to automatically apply the mined migration patterns

to fix the problematic APIs, there is no guarantee that such attempts

will be correct. We believe it is not fair to compare our approach

with A3 and hence exclude A3 from the comparison.

2148

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on December 02,2022 at 02:32:51 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yanjie Zhao, Li Li, Kui Liu, and John Grundy

Furthermore, because of certain limitations of AppEvolve, e.g., it

cannot handle updates spanning multiple methods, CocciEvolve is

proposed to complement AppEvolve. CocciEvolve is able to achieve

better performance than AppEvolve on 112 target problems. The

authors of CocciEvolve further propose AndroEvolve that extends

CocciEvolve to achieve even better performance in automatically

repairing incompatible APIs. Therefore, in this work, we compare

our approach with AndroEvolve, the most relevant and advanced

approach closest to ours.

In order to experimentally compare the performance of Repair-

Droid against AndroEvolve, we need to ensure that these two tools

are launched to repair the same set of compatibility issues. We

hence made effort to create compatibility patch templates for all

of the issues targeted by AndroEvolve. Specifically, AndroEvolve

was evaluated against 20 problematic APIs, as shown in the first

column in Table 3. Following RepairDroid’s description language,

we were able to create templates for all the 20 APIs. This also fur-

ther demonstrates the genericity of RepairDroid’s patch description

language, complimenting our RQ1 answer above.

We then launch RepairDroid and AndroEvolve to repair Android

apps that contain the aforementioned 20 compatibility issues. We

build the corresponding projects used in the evaluation of An-

droEvolve into apps and conduct experiments based on them, as

RepairDroid requires published Android apps to check if Repair-

Droid can repair the corresponding issues. Table 3 summarizes the

experimental results. RepairDroid is able to successfully repair

all the APIs, including all of the ones that cannot be handled by

AndroEvolve. As explicitly acknowledged by Hartono et al. [12],

AndroEvolve cannot handle the updates of a single API into multi-

ple APIs. Therefore, AndroEvolve fails to repair getAllNetworkInfo()

API as its fix requires to access two APIs, i.e., getAllNetworks() and

getNetworkInfo(). Moreover, AndroEvolve cannot deal with the case

when multiple API invocations are written in a single line of code.

It is indeed non-trivial to resolve this challenge as it may involve

complicated operations in that line of code. However, this challenge

will not be an issue for RepairDroid. Indeed, RepairDroid repairs

Android apps at the Jimple code level for which the multiple invoca-

tions are separated into different lines. These experimental results

show that RepairDroid goes beyond the state-of-the-art to repair

compatibility issues in Android apps.

� RepairDroid outperforms the state-of-the-art tools by achieving

better performance in automatically repairing compatibility issues

in Android apps.

4.3 RQ3: Effectiveness of RepairDroid

Our third research question concerns the effectiveness of Repair-

Droid in automatically repairing compatibility issues in published

Android apps. To answer this RQ we randomly selected 1,000 real-

world Android apps from AndroZoo to form our test dataset. These

1,000 apps were originally collected from the official Google Play

store and hence are all published apps (i.e., their source codes are

not available anyway). Recall that, when answering RQ1 and RQ2,

we have created templates for 42 distinct compatibility issues. We

used all of these 42 templates when applying RepairDroid to try

and detect and repair compatibility issues in the randomly selected

Table 3: Comparison results betweenRepairDroid and the state-of-the-art An-
droEvolve approach.

API AndroEvolve RepairDroid

<AccessibilityNodeInfo: void addAction(...)> � �

<ConnectivityManager: NetworkInfo[] getAllNetwork-

Info()>

� �

<TimePicker: Integer getCurrentHour()> � �

<TimePicker: Integer getCurrentMinute()> � �

<TimePicker: void setCurrentHour(...)> � �

<TimePicker: void setCurrentMinute(...)> � �

<TextView: void setTextAppearance(...)> � �

<LocationManager: boolean addGpsStatusListener(...)> � �

<Html: Spanned fromHtml(...)> � �

<ContentProviderClient: boolean release()> � �

<LocationManager: boolean addGpsStatusListener(...)> � �

<WebViewClient: boolean shouldOverrideUrlLoading(...)> �∗ �

<View: boolean startDrag(...)> � �

<AudioManager: int abandonAudioFocus(...)> � �

<TelephonyManager: String getDeviceId()> � �

<AudioManager: int requestAudioFocus(...)> � �

<Canvas: int saveLayer(...)> � �

<MediaPlayer: void setAudioStreamType(int)> � �

<Vibrator: void vibrate(long)> � �

<Vibrator: void vibrate(long[],int)> � �

∗ No examples and scripts provided.

apps. Note that at this stage, we do not know yet whether these

apps contain true compatibility issues or not.

Table 4 summarizes the experimental results. 714 apps contain

potential OS-induced compatibility issues (i.e., 8,519 in total3), and

492 apps suffer from potential device-specific issues (i.e., 3,086 in to-

tal). Only seven apps contain potential inter-callback compatibility

issues (i.e., 31 in total). In this experiment, we consider an app that

contains inter-callback compatibility issues only if the unsupported

callback methods are explicitly overridden by developers. Among

all the identified issues, RepairDroid locates that 5,932 OS-induced,

3,042 device-specific, and 2 inter-callback compatibility issues are

true issues for which they are not already protected. For each of the

located issues, RepairDroid then applies its corresponding template

to perform the automated repair. Eventually, 4,616 OS-induced,

3,042 device-specific, and 2 inter-callback compatibility issues can

be successfully fixed, giving a success rate at 77.82%, 100%, and

100%, respectively. To validate the fixes, we randomly sample 20

apps and leverage Soot’s grammar checker to check if their updated

code is grammatically correct. Then, we evaluate the repaired app

through (1) manually comparing the repaired code with the original

buggy code and (2) actually executing the repaired apps (as well as

their original counterparts) to verify the fixes of the corresponding

compatibility issues. The repaired code of the 20 sampled apps has

been manually verified and confirmed to be correct, and all the

repaired apps can also be normally installed on Android devices.

Overall, RepairDroid is able to achieve an 85.34% of success

rate when repairing 1,000 randomly selected Android apps.

Figure 3 plots the distribution of the number of detected and the

number of successfully fixed compatibility issues, i.e., the median

and mean numbers are 10, 12.77, and 9, 11.12, respectively. The fact

that the majority of located issues can be automatically repaired

demonstrates the effectiveness of our approach.

The failure cases are mainly caused by the variable search mod-

ule, for which RepairDroid fails to pinpoint the required variables

based on the variable keywords leveraged in the template. Taking

the code snippet displayed in Listing 1 again as an example, in our

experiment, a total of 760 compatibility issues related to API getType

are located. However, for around 25% at the moment, RepairDroid

3Issues lie in Android framework code are ignored.

2149

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on December 02,2022 at 02:32:51 UTC from IEEE Xplore. Restrictions apply.

Towards Automatically Repairing Compatibility Issues in Published Android Apps ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

currently fails to search and locate the actual variable for keyword

cm. Furthermore, due to limitations of Soot, RepairDroid also fails to

repair a number of issues. Moreover, there might be multiple ways

to fix an issue. We respectively provide a general repair template

targeting each issue, which may not fully meet all cases’ require-

ments. As of our future work, we commit to continuously improve

our approach to increase its success rate in automatically fixing

compatibility issues in published Android apps.

Table 4: Performance achieved by RepairDroid for repairing 1,000 randomly
selected Android apps.

Issue # Apps # Potential # Located Issues # Fixed

Type Issues (No Protection) Issues

OS-induced 714 8,519 5,932 4,616

Device-specific 492 3,086 3,042 3,042

Inter-callback 7 31 2 2

Total 725∗ 11,636 8,976 7,660 (85.34%)

∗ One app may suffer from multiple type of issues.

Figure 3: Distribution of the located and successfully fixed compatibility is-
sues in each of the selected apps.

� With an overall 85.34% of success rate, the experimental results

show that RepairDroid is effective in automatically repairing real-

world Android apps.

4.4 RQ4: Time Performance of RepairDroid

In our last research question, we investigate the time performance

of RepairDroid when applied to repair real-world published Android

apps. Taking the same 1,000 apps as leveraged for answering RQ3 as

input, Figure 4 presents the distribution of the execution time that

RepairDroid spends for analyzing an app. The distribution is plotted

with respect to the number of located compatibility issues identified

in an app and the DEX size of each app, respectively. As the number

of located issues per-app increases, the time spent to repair the

app also increases. Nevertheless, the increase seems to be gradual.

Indeed, the Pearson correlation coefficient confirms that there is

(a) # Located Issues. (b) DEX Size.

Figure 4: Distribution of the execution time with respect to the number of
issues contained per app and its DEX size, respectively.

only a weak correlation (𝑟 = 0.34, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.001) between them.
When DEX size is concerned, we cannot observe direct connections

between the DEX size of the app and the time that RepairDroid

spends to repair the app. Pearson correlation analysis also confirms

our observation that there is literally no correlation (𝑟 = −0.07, 𝑝 −

𝑣𝑎𝑙𝑢𝑒 = 0.05) between them.
The results suggest that the time performance of Repair-

Droid is quite stable in analyzing a real-world Android apps,

no matter how large the code size is or how many compatibility

issues it suffers from. This evidence further suggests that our ap-

proach is suitable to be applied to repair large-scale Android apps.

� The time spent by RepairDroid to repair a real-world Android

app is stable, with no impact by the app’s code size and only a

slight impact by the number of compatibility issues that needed to

be fixed.

5 DISCUSSION

5.1 Limitations

While RepairDroid aims for precise and sound analysis and repair, it

does share some inherent limitations with most other static analysis

tools [26]. RepairDroid is oblivious to reflective calls, native code,

multi-threading features, which may impact the static analysis

results and hence lead to inaccurate locations of compatibility issues.

As of our future, we plan to leverage the DroidRA [24, 25, 45] and

JuCify [42] tool to mitigate the impact of reflective calls and native

code, respectively. Currently RepairDroid is only aware of the most

common expression types defined in Soot. In some rare cases, when

the reserved keywords such as [CUT] and [PASTE] involve unusual

expressions, RepairDroid may not be able to recognize them and

hencewill not generate executable statements, resulting in incorrect

repairs. However, it is relatively easy to extend RepairDroid for

including more of Soot’s expression types. This limitation could

be mitigated in practice. Furthermore, we have only evaluated the

correctness of device-specific compatibility issue repairings through

manual confirmation because we cannot find the relevant devices

for testing. Such manual processes are, however, known to be error-

prone. To mitigate the threat, we have cross-validated the results.

We have also released our tool and dataset for public reference.

5.2 Mining Fix patterns from existing Android
apps

RepairDroid is limited by the set of templates prepared for analysis.

The more templates created and included, the more compatibil-

ity issues will likely be automatically fixed. However, it might be

non-trivial to create templates for some issues as it could require

complicated background knowledge to understand the issues and

their corresponding fixes. This burden could be significantly mit-

igated if we can locate real-world code examples relevant to fix

compatibility issues. Following the idea of Fazzini et al. [9], who

propose to learn fix patterns from the evolution of open-source An-

droid apps, we propose to mine such fix patterns from the evolution

of published Android apps. We believe the evolution of published

Android apps could provide much more knowledge than mining

2150

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on December 02,2022 at 02:32:51 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yanjie Zhao, Li Li, Kui Liu, and John Grundy

open-source apps since the majority of apps have only released

their published versions (i.e., source code not available).

Table 5: The list of the top-5 API Pairs mined from real-world Android apps.

Incompatible API Replacement API # Apps

setBackgroundDrawable setBackground 5,382

isScreenOn isInteractive 2,129

getDrawable(int) getDrawable(int,Theme) 1,543

setOnUtteranceCompletedListener setOnUtteranceProgressListener 1,240

getColorStateList(int) getColorStateList(int,Theme) 1,085

To this end, we randomly selected 20,000 apps fromAndroZoo [3]

and conducted a lightweight static analysis to locate API calls that

are protected by SDK version checks (e.g., based on the follow-

ing pattern: if (condition) 𝐴𝑃𝐼𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 else 𝐴𝑃𝐼𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡). To

ensure that the located API calls are indeed relevant to fix compat-

ibility issues, we further resort to the list of 228 API deprecated-

and-replacement pairs disclosed by Li et al. [28]. We consider a

potential fix pattern is located if the following conditions are satis-

fied: (1) the API calls are protected by SDK version checks, (2) the

problematic API and its replacements are respectively presented

in the two branches separated by the SDK version check. Among

the 228 pairs, we are able to locate 34 practical fix patterns, for

which the top-5 ones are illustrated in Table 5. Following the lo-

cated fix patterns, we could indeed easily create templates for the

involved problematic APIs. Those templates can subsequently help

RepairDroid in automatically repairing the pinpointed issues in the

corresponding real-world apps. This preliminary study experimen-

tally shows that our approach RepairDroid could indeed benefit

from existing compatibility issue fixes conducted by developers in

practice. This study is our initial attempt and is part of our ongoing

efforts at creating more templates for repairing compatibility issues

in published apps.

5.3 Supporting automated repair for both Java
and Kotlin written Android apps

Since 2017, Google has promoted Kotlin as the official programming

language for developing Android apps. In 2019, Google further

declared that Android becomes ‘Kotlin-first’ (i.e., new API, libraries,

documentationwill target Kotlin first) and hence advised developers

to develop new apps using Kotlin instead of Java. Since then, more

and more Android apps have completely migrated from Java to

Kotlin. However, to the best of our knowledge, all existing app

repairing approaches only focus on Java written apps, letting a

large number of Kotlin written apps untouched. Indeed, since Java

and Kotlin are two different programming languages, code repairing

approaches proposed for one language cannot be applied to the

other. Analysts have to completely rewrite the code parser and

repair module following the new languages’ syntax. We hence

argue that there is a need to support automated repair for both Java

and Kotlin written apps.

Fortunately, no matter which language is leveraged, the pub-

lished Android apps will be in Dalvik bytecode. Therefore, Re-

pairDroid could be directly applied to repair both Java and Kotlin

written apps. For example, RepairDroid tool can perform successful

fixes on the DuckDuckGo-Kotlin [1] app.

6 RELATEDWORK

Compatibility Analysis: Compatibility issues have been a key re-

search topic in the Android community [6, 15, 27, 37, 44, 51, 53, 54].

To assist developers in exhaustive app testing, Wei et al. [53] em-

pirically study the fragmentation-induced issues to characterize

the symptoms and root causes and propose a technique named

FicFinder to detect such compatibility issues. After that, the au-

thors [54] further present an API-device correlation extracting

and learning approach named Pivot to help detect fragmentation-

induced compatibility issues. Huang et al. [15] delve into the call-

back API evolution induced compatibility issues and provide a

technique named CIDER, leveraging a graph-based model to de-

tect two types of callback compatibility issues. Unfortunately, both

Pivot and CIDER focus on detecting some types of incompatibility

issues instead of repairing them, the motivation of our RepairDroid.

The exploration of compatibility issues caused by Android OS

evolution is needed as apps are inseparably linked to the official

Android APIs. Researchers have put a lot of effort into deprecated

APIs [9, 11, 13, 23, 28, 29, 56], which could eventually lead to com-

patibility issues. Li et al. [28] build a prototype tool called CDA and

apply it to different revisions of the Android framework to charac-

terize deprecated Android APIs. Based on an extensive empirical

study, He et al. [13] reveal that drastic API changes exist between

neighboring Android versions. They have additionally developed a

tool named IctApiFinder to detect incompatible API usages. Simi-

larly, Li et al. [27] propose an approach named CiD to model the

lifecycle of the Android APIs and flag the error usages capable

of causing compatibility issues, the issues declared by which are

also regarded as one of our motivations. Xia et al. [55] perform

a large-scale study on the practice of handling OS-induced API

compatibility issues and their solutions, and propose a tool, RAPID,

to ascertain whether a compatibility issue has been addressed.

In non-Android communities, research on API deprecated is also

ubiquitous [4, 14, 40, 43, 52, 58]. Zhou et al. [58] study API depreca-

tion usage in open-source Java frameworks and libraries. They also

propose a framework to detect deprecated API usages in source code

examples on the Web. Brito et al. [4] perform a large-scale analysis

of real-world Java systems and reveal that there is almost no sig-

nificant effort to improve deprecation messages. Some researchers

concentrate on the impact of API deprecation [7, 14, 40, 43]. Hora

et al. [14] report on an exploratory study that aims to observe API

evolution and its impact on the Pharo ecosystem. Sawant et al. [43]

extend the study on Java and investigate how many API clients

update their dependencies to actively maintain their projects and

count the number of affected projects by deprecation.

Program Repair: Program transformations and repairing have

been widely researched [5, 8, 16, 17, 19, 20, 22, 34, 36, 38, 41, 47, 48,

50]. For instance, LASE [16, 38] is an example-based program repair

tool by learning non-trivial data and its context from multiple edit-

ing examples and automatically searching for editing locations to

apply customized editing to these locations. Liu et al. [30] present

a technique based on the code edits performed by developers for

automatically learning program transformations that are leveraged

to repair program defects automatically [32, 33], while the patch

validation of such program repair relies on the test cases of the

targeted programs [31, 35, 39, 57]. Coccinelle [5, 22] is a C-based

2151

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on December 02,2022 at 02:32:51 UTC from IEEE Xplore. Restrictions apply.

Towards Automatically Repairing Compatibility Issues in Published Android Apps ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

program matching and source-to-source transformation tool that

has been employed for the automatic evolution of the Linux ker-

nel. Coccinelle provides Semantic Patch Language (SmPL) to write

its transformation rules. As a Java extension to Coccinelle, Coc-

cinelle4J [17] is designed to apply for Java programs. Similar to

Coccinelle, it uses semantic patches written in SmPL.

Recently, studies have begun to focus on the usage of automati-

cally updating incompatible Android APIs. As one of the first tools

to implement this goal, AppEvolve [9] using GitHub as the code

base to perform API updates by learning examples before and after

the update. Haryono et al. [11] improve AppEvolve by proposing

CocciEvolve, which uses a single updated example to perform API

updates and provides readable and configurable scripts in the form

of semantic templates. They further broaden their study by propos-

ing AndroEvolve [12], which addresses the defects of CocciEvolve

with data flow analysis and variable name denormalization. Simi-

lar to their works, RepairDroid also rely on semantic templates to

automatically perform API updates. Lamothe et al. [21] leverage

the basic diff in the version control system to learn API migration

patterns, where they use the ASTs to match the API calls in the

source code to the code examples. Unlike the above researches

that directly act on the Java source code, our study concentrates

on the low-level programming language, intending to modify Dex

files directly and break the limitation that they can only take effect

within the scope of a method or file.

7 CONCLUSION

We have proposed a novel prototype tool RepairDroid for auto-

matically repairing compatibility issues in published Android apps.

RepairDroid provides a patch description language for users to cre-

ate fix templates for given compatibility issues. RepairDroid then

applies these created templates directly to the Android app byte-

code to repair the corresponding compatibility issues. Experimental

results show that the patch description language is generic, being

able to correctly describe 42 out of 44 issues, and the repair module

is effective, being able to outperform the state-of-the-art approaches

and achieve an overall 85.34% of success rate in repairing 1,000 real-

word Android apps. RepairDroid’s execution time per app is also

stable, making it suitable to be applied to conduct market-scale

repairings.

ACKNOWLEDGEMENTS

This work is supported by ARC Laureate Fellowship FL190100035,

Discovery Early Career Researcher Award DE200100016, Discovery

Project DP200100020. This work is also partially supported by the

National Natural Science Foundation of China (Grant No. 62172214),

the National Key R&D Program of China (No. 2020AAA0107704),

the Natural Science Foundation of Jiangsu Province, China (Grant

No. BK20210279), and the Open Project Program of the State Key

Laboratory of Mathematical Engineering and Advanced Computing

(No. 2020A06).

REFERENCES
[1] 2017. DuckDuckGo Android App. https://github.com/duckduckgo/Android.
[2] 2021. Towards Automatically Repairing Compatibility Issues in Published An-

droid Apps. https://zenodo.org/record/5430715.
[3] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016.

Androzoo: Collecting millions of android apps for the research community. In

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR).
IEEE, 468–471.

[4] Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. 2016. Do
developers deprecate apis with replacement messages? a large-scale analysis on
java systems. In 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), Vol. 1. IEEE, 360–369.

[5] Julien Brunel, Damien Doligez, René Rydhof Hansen, Julia L Lawall, and Gilles
Muller. 2009. A foundation for flow-based program matching: using temporal
logic and model checking. In Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 114–126.

[6] Haipeng Cai, Ziyi Zhang, Li Li, and Xiaoqin Fu. 2019. A Large-Scale Study of
Application Incompatibilities in Android. In The 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2019).

[7] Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang. 2020. Tam-
ing behavioral backward incompatibilities via cross-project testing and analysis.
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engi-
neering. 112–124.

[8] Bruce Collie, Philip Ginsbach, Jackson Woodruff, Ajitha Rajan, and Michael
O’Boyle. 2020. M3: Semantic API Migrations. arXiv preprint arXiv:2008.12118
(2020).

[9] Mattia Fazzini, Qi Xin, and Alessandro Orso. 2019. Automated API-usage up-
date for Android apps. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 204–215.

[10] Jun Gao, Pingfan Kong, Li Li, Tegawendé F Bissyandé, and Jacques Klein. 2019.
Negative Results on Mining Crypto-API Usage Rules in Android Apps. In The
16th International Conference on Mining Software Repositories (MSR 2019).

[11] Stefanus Agus Haryono, Ferdian Thung, Hong Jin Kang, Lucas Serrano, Gilles
Muller, Julia Lawall, David Lo, and Lingxiao Jiang. 2020. Automatic Android
Deprecated-API Usage Update by Learning from Single Updated Example. arXiv
preprint arXiv:2005.13220 (2020).

[12] Stefanus A Haryono, Ferdian Thung, David Lo, Lingxiao Jiang, Julia Lawall,
Hong Jin Kang, Lucas Serrano, and Gilles Muller. 2020. AndroEvolve: Automated
Android API Update with Data Flow Analysis and Variable Denormalization.
arXiv preprint arXiv:2011.05020 (2020).

[13] Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue.
2018. Understanding and detecting evolution-induced compatibility issues in
android apps. In 2018 33rd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 167–177.

[14] André Hora, Romain Robbes, Nicolas Anquetil, Anne Etien, Stéphane Ducasse,
and Marco Tulio Valente. 2015. How do developers react to API evolution?
The Pharo ecosystem case. In 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 251–260.

[15] Huaxun Huang, Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2018. Under-
standing and detecting callback compatibility issues for android applications. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. 532–542.

[16] John Jacobellis, Na Meng, and Miryung Kim. 2013. LASE: an example-based
program transformation tool for locating and applying systematic edits. In 2013
35th International Conference on Software Engineering (ICSE). IEEE, 1319–1322.

[17] Hong Jin Kang, Ferdian Thung, Julia Lawall, Gilles Muller, Lingxiao Jiang, and
David Lo. 2019. Semantic Patches for Java Program Transformation (Experience
Report). In 33rd European Conference on Object-Oriented Programming (ECOOP
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[18] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F Bissyandé, and Jacques Klein.
2018. Automated Testing of Android Apps: A Systematic Literature Review. IEEE
Transactions on Reliability (2018).

[19] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Martin Monper-
rus, Jacques Klein, and Yves Le Traon. 2019. iFixR: Bug Report driven Program
Repair. In Proceedings of the 27the ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ACM,
314–325. https://doi.org/10.1145/3338906.3338935

[20] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Martin Mon-
perrus, Jacques Klein, and Yves Le Traon. 2020. FixMiner: Mining Relevant Fix
Patterns for Automated Program Repair. Empirical Software Engineering 25, 3
(2020), 1980–2024. https://doi.org/10.1007/s10664-019-09780-z

[21] Maxime Lamothe, Weiyi Shang, and Tse-Hsun Peter Chen. 2020. A3: Assisting
Android API Migrations Using Code Examples. IEEE Transactions on Software
Engineering (2020).

[22] Julia Lawall and Gilles Muller. 2018. Coccinelle: 10 years of automated evolution
in the Linux kernel. In 2018 USENIX Annual Technical Conference. 601–614.

[23] Li Li, Tegawendé F Bissyandé, Yves Le Traon, and Jacques Klein. 2016. Access-
ing Inaccessible Android APIs: An Empirical Study. In The 32nd International
Conference on Software Maintenance and Evolution (ICSME 2016).

[24] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. 2016. DroidRA:
Taming Reflection to Support Whole-Program Analysis of Android Apps. In The
2016 International Symposium on Software Testing and Analysis (ISSTA 2016).

2152

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on December 02,2022 at 02:32:51 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yanjie Zhao, Li Li, Kui Liu, and John Grundy

[25] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. 2016. Reflection-
Aware Static Analysis of Android Apps. In The 31st IEEE/ACM International
Conference on Automated Software Engineering, Demo Track (ASE 2016).

[26] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre
Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon. 2017. Static Analysis
of Android Apps: A Systematic Literature Review. Information and Software
Technology (2017).

[27] Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. 2018. Cid:
Automating the detection of api-related compatibility issues in android apps.
In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 153–163.

[28] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2018.
Characterising deprecated android apis. In Proceedings of the 15th International
Conference on Mining Software Repositories. 254–264.

[29] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2020.
CDA: Characterising Deprecated Android APIs. Empirical Software Engineering
(2020), 1–41.

[30] Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Shin Yoo, and Yves Le Traon.
2021. Mining Fix Patterns for FindBugs Violations. IEEE Transactions on Software
Engineering 47, 1 (2021), 165–188. https://doi.org/10.1109/TSE.2018.2884955

[31] Kui Liu, Anil Koyuncu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein,
and Yves Le Traon. 2019. You Cannot FixWhat You Cannot Find! An Investigation
of Fault Localization Bias in Benchmarking Automated Program Repair Systems.
In Proceedings of the 12th IEEE International Conference on Software Testing, Veri-
fication and Validation. IEEE, 102–113. https://doi.org/10.1109/ICST.2019.00020

[32] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019.
AVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations.
In Proceedings of the 26th IEEE International Conference on Software Analysis,
Evolution and Reengineering. IEEE, 456–467. https://doi.org/10.1109/SANER.2019.
8667970

[33] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar:
Revisiting Template-based Automated Program Repair. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM,
31–42. https://doi.org/10.1145/3293882.3330577

[34] Kui Liu, Anil Koyuncu, Kisub Kim, Dongsun Kim, and Tegawendé F. Bissyandé.
2018. LSRepair: Live Search of Fix Ingredients for Automated Program Repair.
In Proceedings of the 25th Asia-Pacific Software Engineering Conference. IEEE,
658–662. https://doi.org/10.1109/APSEC.2018.00085

[35] Kui Liu, Li Li, Anil Koyuncu, Dongsun Kim, Zhe Liu, Jacques Klein, and
Tegawendé F. Bissyandé. 2021. A critical review on the evaluation of automated
program repair systems. Journal of Systems and Software 171 (2021), 110817.
https://doi.org/10.1016/j.jss.2020.110817

[36] Kui Liu, Shangwen Wang, Anil Koyuncu, Tegawendé F. Bissyandé, Dongsun
Kim, Peng Wu, Jacques Klein, Xiaoguang Mao, and Yves Le Traon. 2020. On
the Efficiency of Test Suite based Program Repair: A Systematic Assessment
of 16 Automated Repair Systems for Java Programs. In Proceedings of the 42nd
International Conference on Software Engineering. ACM, 615–627. https://doi.org/
10.1145/3377811.3380338

[37] Pei Liu, Li Li, Yichun Yan, Mattia Fazzini, and John Grundy. 2021. Identifying
and Characterizing Silently-Evolved Methods in the Android API. In The 43rd
ACM/IEEE International Conference on Software Engineering, SEIP Track (ICSE-SEIP
2021).

[38] Na Meng, Miryung Kim, and Kathryn S McKinley. 2013. LASE: locating and
applying systematic edits by learning from examples. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 502–511.

[39] Yihao Qin, Shangwen Wang, Kui Liu, Xiaoguang Mao, and Tegawendé F Bis-
syandé. 2021. On the Impact of Flaky Tests in Automated Program Repair. In
Proceedings of the 2021 IEEE International Conference on Software Analysis, Evolu-
tion and Reengineering. IEEE, 295–306.

[40] Romain Robbes, Mircea Lungu, and David Röthlisberger. 2012. How do developers
react to API deprecation? The case of a Smalltalk ecosystem. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. 1–11.

[41] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit
Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017. Learning syntactic
program transformations from examples. In 2017 IEEE/ACM 39th International

Conference on Software Engineering (ICSE). IEEE, 404–415.
[42] Jordan Samhi, Jun Gao, Nadia Daoudi, Pierre Graux, Henri Hoyez, Xiaoyu Sun,

Kevin Allix, Tegawendé F Bissyandé, and Jacques Klein. 2021. JuCify: A Step
Towards Android Code Unification for Enhanced Static Analysis. arXiv preprint
arXiv:2112.10469 (2021).

[43] Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. 2018. On the
reaction to deprecation of clients of 4+ 1 popular Java APIs and the JDK. Empirical
Software Engineering 23, 4 (2018), 2158–2197.

[44] Simone Scalabrino, Gabriele Bavota, Mario Linares-Vásquez, Michele Lanza, and
Rocco Oliveto. 2019. Data-driven solutions to detect api compatibility issues in
android: an empirical study. In 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR). IEEE, 288–298.

[45] Xiaoyu Sun, Li Li, Tegawendé F Bissyandé, Jacques Klein, Damien Octeau, and
John Grundy. 2020. Taming Reflection: An Essential Step Towards Whole-
Program Analysis of Android Apps. ACM Transactions on Software Engineering
and Methodology (TOSEM) (2020).

[46] Ferdian Thung, Stefanus A Haryono, Lucas Serrano, Gilles Muller, Julia Lawall,
David Lo, and Lingxiao Jiang. 2020. Automated Deprecated-API Usage Update
for Android Apps: How Far are We?. In 2020 IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, 602–611.

[47] Haoye Tian, Yinghua Li, Weiguo Pian, Abdoul Kader Kabore, Kui Liu, Andrew
Habib, Jacques Klein, and Tegawendé F. Bissyandé. 2022. Predicting Patch Cor-
rectness Based on the Similarity of Failing Test Cases. ACM Transactions on
Software Engineering and Methodology (2022).

[48] Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques Klein,
and Tegawendé F. Bissyandé. 2020. Evaluating Representation Learning of Code
Changes for Predicting Patch Correctness in Program Repair. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering.
IEEE, 981–992. https://doi.org/10.1145/3324884.3416532

[49] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In
CASCON First Decade High Impact Papers. 214–224.

[50] Eelco Visser. 2001. Stratego: A language for program transformation based on
rewriting strategies system description of stratego 0.5. In International Conference
on Rewriting Techniques and Applications. Springer, 357–361.

[51] Haoyu Wang, Hongxuan Liu, Xusheng Xiao, Guozhu Meng, and Yao Guo. 2019.
Characterizing Android app signing issues. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 280–292.

[52] Jiawei Wang, Li Li, Kui Liu, and Haipeng Cai. 2020. Exploring How Deprecated
Python Library APIs are (Not) Handled. In The 28th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE 2020).

[53] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android fragmen-
tation: Characterizing and detecting compatibility issues for Android apps. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering. 226–237.

[54] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2019. Pivot: learning API-device
correlations to facilitate Android compatibility issue detection. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 878–888.

[55] Hao Xia, Yuan Zhang, Yingtian Zhou, Xiaoting Chen, YangWang, Xiangyu Zhang,
Shuaishuai Cui, Geng Hong, Xiaohan Zhang, Min Yang, et al. 2020. How Android
developers handle evolution-induced API compatibility issues: a large-scale study.
In 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE).
IEEE, 886–898.

[56] Guowei Yang, Jeffrey Jones, Austin Moninger, and Meiru Che. 2018. How do
Android operating system updates impact apps?. In 2018 IEEE/ACM 5th Inter-
national Conference on Mobile Software Engineering and Systems (MOBILESoft).
IEEE, 156–160.

[57] Jingtang Zhang, Kui Liu, Dongsun Kim, Li Li, Zhe Liu, Jacques Klein, and
Tegawendé F Bissyandé. 2021. Revisiting Test Cases to Boost Generate-and-
Validate Program Repair. In Proceedings of the 37th International Conference on
Software Maintenance and Evolution. IEEE, 35–46.

[58] Jing Zhou and Robert JWalker. 2016. API deprecation: a retrospective analysis and
detection method for code examples on the web. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
266–277.

2153

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on December 02,2022 at 02:32:51 UTC from IEEE Xplore. Restrictions apply.

