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ABSTRACT
Recently, the emerging trend in automatic program repair is to ap-
ply deep neural networks to generate fixed code from buggy ones,
called NPR (Neural Program Repair). However, the existing NPR
systems are trained and evaluated under very different settings (e.g.,
different training data, inconsistent evaluation data, wide-ranged
candidate numbers), which makes it hard to draw fair-enough con-
clusions when comparing them. Motivated by this, we first build a
standard benchmark dataset and an extensive framework tool to
mitigate threats for the comparison. The dataset consists of a train-
ing set, a validation set and an evaluation set with 144,641, 13,739
and 13,706 bug-fix pairs of Java respectively. The tool supports
selecting specific training, validation, and evaluation datasets and
automatically conducting the pipeline of training and evaluating
NPR models, as well as easily integrating new NPR models by im-
plementing well-defined interfaces. Then, based on the benchmark
and tool, we conduct a comprehensive empirical comparison of six
SOTA NPR systems w.r.t the repairability, inclination and gener-
alizability. The experimental results reveal deeper characteristics
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of compared NPR systems and subvert some existing comparative
conclusions, which further verify the necessity of unifying the
experimental setups in exploring the progresses of NPR systems.
Meanwhile, we reveal some common features of NPR systems (e.g.,
they are good at dealing with code-delete bugs). Finally, we identify
some promising research directions derived from our findings.
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1 INTRODUCTION
Software bugs costed the global economy 1.1 trillion dollars and
affected over 4.4 billion people in 2016, according to the research
by Tricentis [51]. Meanwhile, bug-fixing is a time-consuming task
which often takes half of a programmer’s coding time [3]. So it’s no
surprise that Automated Program Repair (APR) [43], which aims to
repair defective code automatically, has been a hot research topic
in the software engineering community. In the past decade, with
efforts of researchers in APR field, a bunch of APR techniques have
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Figure 1: Training and evaluation process of NPR systems.

been proposed, which can be categorized into three mainstreams:
heuristic-based [15, 39, 41, 48, 52, 57, 65], template-based [21, 22,
24, 31, 32] and constraint-based [10, 40, 59]. Recently, the emerging
trend in APR is to apply advanced deep learning techniques in
program repair systems, known as Neural Program Repair (NPR)
[2, 4, 5, 7, 8, 18, 27, 36, 42, 50, 54, 55, 67]. The NPR approaches frame
the bug-fixing process as a translation task from defective code to
correct code, employing the neural machine translation models [1]
that are popular in the field of Natural Language Processing (NLP).
Compared with the previous APR approaches, a huge advantage of
NPR systems is their low dependence on domain knowledge and
extra resources such as the test suites. Consequently, more and
more researchers are paying attention to this field and a bench of
novel NPR systems have been proposed.

Though successful, a question of great concern remains to be an-
swered: how far has the NPR field progressed now? To answer
this question, it is unavoidable to compare different NPR systems
from multiple perspectives such as repairability, inclination and
generalizability. However, at the moment, there is a big challenge
in making such a comparison: previous NPR systems are trained
and evaluated in very different setups. Table 1 provides a summary
of detailed setup information for previous NPR systems. As we
observed, such differences can be summarized as three points: (1)
very-different training data, (2) inconsistent evaluation data
and (3) wide-ranged candidate numbers. For example, CoCoNut
[36] is trained on 3,241,966 samples and evaluated on 393 bugs
of Defects4J[20] and 40 bugs of QuixBugs [29], while SequenceR
[5] is trained on 35,578 samples and evaluated on 75 bugs of De-
fects4J [20]. For each bug, CoCoNut [36] generates 1,000 candidates
for evaluation while SequenceR [5] only generates 50 candidates.
We provide a detailed discussion on the above three differences in
Section 2.

Such differences may bring huge threats when comparing NPR
systems to draw some domain-level conclusions. Next, we explain
this following the training and evaluating process presented in
Figure 1: (1) First, for learning based methods, a well-known fact
is that the content and size of training data have a great impact
on their performance [14, 25, 26]. As a kind of learning-based ap-
proach, each NPR model has a offline learning phase. During this

phase, the NPR model depends on samples from training data to
optimize its parameters. In a word, training data determines the
absolute performance of a NPR model. (2) To measure the perfor-
mance, NPR systems are evaluated on specific dataset to report
a quantified result of their repairability. Obviously, different eval-
uation sets will result in different measurements. (3) During the
prediction phase, the NPR system generates patches with the top
confidence score, forming top-k candidate patches for each buggy
input. Such candidates are then validated by executing a test suite
and further perform a manual check. If one of the k candidates
passes the validation, the model is considered to have successfully
fixed the bug. Since NPR systems are a kind of probability model, a
larger candidate set surely has a higher probability to fix the bug.
Thus, when comparing NPR systems that have the above
three differences on settings, we can not draw fair-enough
conclusions. The above three factors must be set to the same
value for an in-depth analysis of the existing NPR systems.

In this paper, we perform an empirical comparison among the
six SOTA NPR systems[4, 5, 8, 36, 54, 67]. To mitigate the potential
threats which the above three factors may bring on validity of the
comparison, we build a new benchmark dataset for NPR firstly,
named NPR4J-Benchmark. The benchmark contains 144,641 stan-
dard data samples of Java for training, 13,739 for validation and
13,706 for evaluation. We focus on Java bugs for one-line type since
it is the most popular scene researched in previous APR studies. To
ease the future research, we also implement an extensive frame-
work that supports training, reusing and evaluating NPR systems,
named NPR4J-Framework.

Then, based on the benchmark and framework, we conduct a
huge experiment to explore the current state of the six NPR systems.
Inspired in previous work that empirically evaluates test-based
APR systems [9], we design specific experiments to investigate
the repairability, inclination and generalizability of NPR systems.
Concretely, we aim to provide the answers to the following research
questions:

• [RQ1] Repairability
(1) How many bugs in NPR4J-Benchmark can be fixed by the
six NPR systems?
(2) How does the candidate number influence the repairability
of the NPR systems?

• [RQ2] Inclination
(1) When feeding the same training data, will NPR systems
tend to fix the same bugs?
(2) Do NPR systems have a repair preference for bug types?

• [RQ3] Generalizability
RQ3 Can the NPR systems fix the bugs which have never been
seen during training?

With respect to repairability, we first observe that the best NPR
system can repair 22% bugs of NPR4J-Benchmark. By comparing
with original evaluations, we find that different setups can lead to
different conclusions among the NPR systems. For example, the
performance ranking between models changes when the candi-
date number is set from 1 to 100. This finding verify the necessity
to standardize setups for comparing NPR systems. Then, regard-
ing inclination, we find that NPR systems share a 7%-39% unique
patching rate, indicating that combing the advantages of various
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Table 1: Training and evaluation setups of nine NPR systems for Java.

NPR System Training Source # Training Instance Evaluation Dataset # Evaluation Candidate
Instance Number

commits before 2010 on GitHub, Defects4J [20] 393 20,000CoCoNut [36] projects from GitLab and Bitbucket 3,241,966 QuixBugs [29] 40
CODIT [4] 6 projects from Defects4J [20] 22,060 Defects4J [20] 117 5

Cure [18] CoCoNut’s training data 4,040,000 (pretrain) Defects4J (V1.4) 393 5,0002,720,000 (finetune) QuixBugs [29] 40
BigFix: building from a Defects4J [20] 101
bug detection dataset [28] Bugs.jar [47] 1,158DLFix [27] 20,000

BigFix[27] 2,176
10

10,235 most-starred JavaEdits [8] repositories on GitHub 55,000 EditsDataset[8] 5,000 25

Defects4J (v1.4) 395
Java projects between 2011 Defects4J (v2.0) 420
and 2018 on GitHub QuixBugs [29] 40Recoder [67] 82,868

IntroClassJava [11] 297

100

BFP (small)[54] 5,835
BFP: commits between 2010 46,680 (small) BFP (mid)[54] 6,545
and 2017 on GitHub 52,364 (mid) CodRep (small)[6] 3,027Tufano [54]

CodRep (mid)[6] 6,205

50

Defects4J[20] 75SequenceR [5] original source of BFP [54] 35,578 CodRep [6] 4,711 50

Tang [50] small version of BFP [54] 46,680 BFP (small) [54] 5,835 5

systems may be a viable approach for improving performance. In
addition, we find that the current NPR systems are good at generat-
ing code-removal patches but are poor at fixing complex bugs that
require multiple types of editing operations (e.g., deleting a token
followed by inserting two tokens). In terms of generalizability, we
find that NPR systems are capable of fixing bugs that they have not
encountered during training. Moreover, the NPR systems are more
effective on bugs that have a similar sample in the training data,
which suggests that collecting more data for training could be a
practical measure to improve their performance.

In summary, we make the following contributions:
(1) A well-organized benchmark, named NPR4J-Benchmark. The

benchmark provides standard bug-fix samples of Java for
training, validating and evaluating NPR systems (144,641
for training, 13,739 for validation and 13,709 for evaluation).
Samples are divided into the three subsets following certain
criteria to avoid potential data issues such as data leaking.

(2) A framework tool, namedNPR4J-Framework. The framework
wraps six NPR systems’ original codes into unified interfaces,
supporting training and using trained models to fix bugs in
an easy-to-use way. Meanwhile, it is extensive to add new
NPR systems.

(3) A novel analysis in NPR field, which provides some interest-
ing findings on repairability, inclination and generalizability
of NPR systems when comparing them under same setups, as
well as several promising venues derived from the findings
for future research.

All codes and data of NPR4J-Benchmark and NPR4J-Framework
are publicly available1 for the future research.

The remainder of this paper is organized as follows. Section
2 illustrates our observations on setups of the previous neural
1https://github.com/kwz219/NPR4J

program repair systems, which points out the threats that should
be excluded in the experiment. Section 3 explains our detailed study
plan to support our empirical experiments. Section 4 presents the
experiment results and points out the possible research venues
deriving from our findings. Section 5 discusses threats to validity.
Finally, we introduce related works in Section 6 and summarize our
work in Section 7.

2 DIFFERENCES ON SETUPS OF NPR SYSTEMS
Table 1 summarizes our review on training and evaluation setups
of nine NPR systems. To gather these NPR researches, we first
search the living review of Automated Program Repair [43] and a
previous summary of NPR systems [66] to get a list of NPR studies
[2, 4, 5, 7, 8, 18, 27, 36, 42, 50, 54, 55, 67]. We focus on NPR systems
for Java because Java is the most popular language researched in
previous APR studies. Thus, the NPR systems that are not evaluated
on Java are discarded [2, 7, 55]. Each row in Table 1 provides the
five categories of information: (1) the source of training data, (2) the
number of instances for training, (3) the source of evaluation data
(4) the number of instances for evaluating and (5) the setting of the
candidate number. Through the table, we find following three main
differences on training data, evaluation data and candidate
numbers:

Difference #1: NPR systems are using different training data col-
lected from different sources. As shown in Table 1, four of the nine
NPR systems [8, 36, 54, 67] mine bug-fix pairs from code reposito-
ries and build their own datasets. Such datasets are also used by
subsequent NPR systems [4, 5, 18, 50]. Although most researchers
choose GitHub2 as their data source, the concrete code projects
used in each dataset are clustered by different criteria. To sum-
mary, they are either time-divided (before 2010 [18, 36], 2010-2017

2https://github.com/
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[50, 54], 2011-2018 [67]), star-ranked [8] or derived from existing
datasets [4, 5, 27]. Even though the data sources are the same, the
final amount of training instances each system uses can be variant
(e.g., Cure [18] and CoCoNut [36]).

Difference #2: Evaluation datasets are sparsely used and the in-
stances that are used by each NPR system for evaluation may differ
even they belong to the same dataset. In total, we found the eight
different datasets (Defects4J [20], QuixBugs [29], Bugs.jar [47], Big-
Fix [27], EditsDataset [8], IntroClassJava [11], CodRep [6], BFP
[54]) being used in the evaluation process. The first issue is that
NPR systems are evaluated sparsely on those datasets. In terms of
frequency, Defects4J [20] is the most commonly used dataset that
has been used by six NPR systems. The other seven datasets are
used only 1-3 times. It means currently, if we want to compare the
existing NPR systems, their reported performance on Defects4J[20]
are the only evidence we have. However, as shown in a previous
study [9], using a single benchmark when evaluating repair tools,
a bias can be introduced, which makes it hard to generalize the
performance of repair tools. Secondly, some of the NPR approaches
use different parts of the same dataset to evaluate their models. For
example, CoCoNut [36], CODIT [4], DLFix [27], Recoder [67] and
SequenceR [5] all get evaluated on Defects4J [20], but the instances
used for evaluation are different, ranging from 75 samples to 395
samples. On the one hand, the choice of samples for evaluation
may lead to a bias. In addition, for the NPR studies, a common
approach to compare with others is to copy their reported results
directly, ignoring the fact that they may have used a different part
of the benchmark. Thus, their measured performance may not be
consistent when comparing on the same base. The third issue is that
not all NPR studies illustrate how they exclude evaluation-related
bugs from the training data. According to previous study[35], 70%
of the code on GitHub contain clones of previously created files,
which may lead to a data leakage problem if the NPR studies do
not follow strict strategies to clean their training data.

Difference #3: When predicting, the number of candidate patches
generated by the NPR systems varies widely. In the evaluation process,
for each bug, the NPR systems generate 5 to 5,000 candidates for
validation. Since the NPR systems are a kind of probabilistic genera-
tive model, a large candidate set obviously has a higher probability
to contain the correct patch. Therefore, the NPR system can achieve
higher performance with a larger amount of candidates. However,
there is a ignored price at the time cost of model executing and
patch validation. Considering that in a real-world scenario, each
candidate need to be executed on test cases or checked manually,
this time price can be seen as a linear growth with the increase of
candidate number. Another factor that makes the comparison on
NPR systems difficult is that some studies [18, 36, 67] didn’t report
their performances on a smaller candidate size setting.
Conclusion: The above three differences on setups indicate that
the previous NPR systems are not compared on the same scale.
Potential threats on validity may be brought by different settings
on training data, evaluation data and candidate number.
Our Solution: In this paper, we aim to provide a domain-level view
of the NPR field through an empirical comparison of the existing
NPR systems. To mitigate the threats aforementioned, we build a
new benchmark for the NPR that contains uniformed training and
evaluation data. Besides, we develop a framework tool that defines a

pipeline for training and evaluating the NPR systems. Based on the
benchmark and the framework tool, we perform a large experiment
that evaluates NPR systems at the same scale.

3 STUDY DESIGN
This section illustrates our detailed study designed for the empiri-
cal comparison of the NPR systems. Section 3.1 lists the research
questions used in analyzing each NPR model from three perspec-
tives. Section 3.2 briefly introduces the selected six NPR systems.
Next, we explain how we build the two milestones that support our
experiments - dataset (in section 3.3) and framework (in section
3.4). Finally, section 3.5 introduces our experiment setup.

3.1 Research Questions
• RQ1 Repairability
(1) How many bugs in NPR4J-Benchmark can be fixed by the six
NPR systems? The purpose of this question is to measure the
repairability of six NPR systems on a diversity of bugs. Addition-
ally, we intend to verify the necessity for standardizing setups
by comparing the results from our experiment with those from
the original experiment.
(2) How does the candidate number influence the repairability of
the NPR systems? We design this question based on the observa-
tion that the previous NPR systems use wide-ranging candidate
numbers, which enables us to investigate the impact of candidate
numbers on repairability and see whether they affect comparison
results across the NPR systems.

• RQ2 Inclination
(1) When feeding same training data, will NPR systems tend to fix
the same bugs? We seek to answer this question by calculating the
overlapping and unique patching rates of each NPR system. This
can be a reference for other researchers to improve the perfor-
mance of NPR. For example, if the unique rate is high, combining
the benefits of various NPR systems could be advantageous.
(2) Do NPR systems have a repair preference for bug types? This
question examines whether the NPR system has a comparative
advantage in fixing certain types of bugs.

• RQ3 Generalizability
Can the NPR systems fix the bugs which have never been seen
during training? This question is to investigate whether the NPR
systems have the ability to repair the unknown bugs.

3.2 Subject NPR Systems
To include NPR systems in our empirical study, we first search
the living review of APR [43] and get a list of NPR studies [2, 4,
5, 7, 8, 16, 16, 18, 27, 36, 42, 50, 54, 55, 60, 60, 61, 61, 67]. Since
we focus on the NPR systems repairing dynamic defects in Java
programs, studies focusing on fixing other-type errors [16, 60, 61]
and other programming languages [2, 7, 55] are excluded during
the first round of filtering. After that, we end up with nine NPR
systems, as shown in Table 1. Next, We propose the two criteria
for selecting candidates among the nine NPR systems to further
ensure the success of this empirical comparison:

• Availability: The source code of the NPR system should be avail-
able. Thus we exclude Cure [18] and Tang et al. [50]’s model.
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• Executability: Some APR approaches provide publicly available
source codes, which however cannot be executed. We have tried
our best to fix inexecutable approaches. But unfortunately, we
still fail to make it a success for DLFix [27], so we exclude it.

Eventually, we derive a baseline package containing the six NPR
systems. Next, we briefly describe each selected NPR system.

Tufano [54] trains a RNN-based Encoder-Decoder model which
is able to translate the entire buggy method into a fixed version.
To reduce the difficulty of learning, they abstract identifiers and
literals in the buggy code to simplify the input and output. During
the abstraction process, the source code is firstly fed to a Java
parser, which recognizes the identifiers and literals in the stream.
Then the parser generates and substitutes a unique ID for each
identifier/literal within the buggy context. Only the most frequent
words are kept. Such abstraction reduces the model’s choices when
generating patches, therefore increasing the patching rate.

SequenceR [5] fixes bugs based on sequence-to-sequence learn-
ing on source code. Compared with Tufano’s model [54], it uses a
additional copy mechanism [49] to overcome the unlimited vocab-
ulary problem that occurs in handling big code. The model takes
the abstract context of the buggy line as the input and predicts the
fixed result of that line. The abstract buggy context consists of line-,
method-, and class-level information of the buggy line. Specifically,
at line level, special tokens are inserted before and after the buggy
line to indicate the location of the bug. Then, the remainder of the
buggy method is kept in the representation. Finally, all the instance
variables and initializers, along with the signature of the construc-
tor and non-buggy methods from the buggy class are added to the
input unless reaching a truncation limit.

CoCoNut [36] uses ensemble learning on the combination of
Convolutional Neural Networks (CNNs) [12] and a context-aware
neural machine translation architecture to automatically fix bugs for
multiple programming languages. To better represent the context
of a bug, it introduces a new context-aware architecture that repre-
sents the buggy source code and its surrounding context separately.
Such architecture enables the model to distinguish the buggy line
and the context better. To reduce the size of vocabulary, it leverages
the world-level tokenization by considering underscores, camel
letters, and numbers as separators.

CODIT [4] decomposes the task of fixing the buggy line into
two stages and each stage uses one LSTM-based Neural Machine
Translation Model. The first stage is to generate the sequence of
grammar rules for constructing the CFG (i.e., Context Free Gram-
mars) of the fixed code line. Upon the rules are generated, the CFG
can be constructed to retrieve the type of code tokens occurring
consecutively in the fixed line. The next stage is to predict the
ultimate fixed code tokens according to the code tokens and cor-
responding token types of the buggy line, and the types of code
tokens predicted in the first stage.

Edits [8] models the patch generation process as performing
token-level insertion and deletion operations on the buggy code.
Edits adds the two additional pointers[49] to Transformer[56], im-
plementing the editing operation of "insertion" and "deletion". Edits
takes the buggy code line as the input. When generating patches,
it outputs edits operations on the buggy code, each indicating the

◼ Benchmark building process
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Figure 2: Construction process of our benchmark data.

insertion start position, the removal end position and any missing
tokens.

Recoder [67] designs a syntax-guided decoder to generate edits
on the AST of the buggymethod. It takes (1) AST traversal sequence,
(2) Tag Embedding and (3) AST-based Graph as inputs. During
inference, Recoder use a novel provider/decider architecture to
output edit operations on the current AST. It uses three providers
to represent insertion, modifying and copying operations. Providers
are responsible to provide a set of choices for expanding a non-
terminal of the current AST. The decider estimates the likelihood
of using each provider.

Among the six NPR systems include in our experiments, five of
them ([4, 5, 8, 36, 67]) can only deal with one-line bugs (in a buggy
method, only one code line is buggy). Tufano [54] is the only one
that can repair any bugs within one method. It can be used to fix
one-line bugs without any modification of the original model.

3.3 Dataset Construction
To run our empirical experiments, we construct a new benchmark
dataset instead of reusing any of the existing datasets. The reasons
are two-fold. First, to avoid data leakage, samples related to bugs
in the evaluation set should be excluded from the training dataset.
However, existing training data that the previous NPR systems
use may not provide enough meta information to do the exclu-
sion. Second, some existing datasets may pose potential threats to
experimental performance due to some issues on data. For exam-
ple, although CoCoNut [36] reports that the training set they use
(Java 2006) contains over three million samples, we find that nearly
one-third of the samples are duplicated pairs and non-character
changes, through checking their raw data by string matching. We
argue that for mitigating threats brought by data issues, the ex-
periment training and evaluation data should satisfy the following
criteria:

• Criterion #1: Each data sample from the data source should provide
enough meta information.This criterion is designed for selecting
a data source. The data source we used in this experiment must
provide enough meta information to ensure the data traceabil-
ity. For NPR, such traceability is important. For example, meta
information such as the repository of bugs should be provided to
to exclude bugs from the training data that belong to the same
repository as bugs for evaluation.
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• Criterion #2: Evaluation-related Bugs should not appear in the
training set. Considering that codes within the same projects
may contain some cheating information which is inaccessible for
the NPR systems under empirical scenarios, we perform a strict
strategy, dividing data by projects.

• Criterion #3: Each bug in the evaluation set should be attached to a
corresponding issue or bug report. This criterion is to ensure that
the bugs we use for evaluation are highly reliable samples from
the real world.

• Criterion #4: The benchmark should be peer-reviewed and contains
human-written patches for each bug. For perfect fault-localization,
we need human-written patches to locate the buggy position of
the source program.

With the guidence of above four criteira, we construct a new
benchmark dataset called NPR4J-Benchmark, following the process
shown in Figure 2. The overall process can be summarized into the
following three steps:

Step 1: Selecting the data source. It is to collect enough bug-fix
pairs. A common way is to crawl large amounts of data from the
code repositories such as GitHub. However, it can be laborious and
time consuming. Fortunately, previous studies have done this work
[8, 36, 54, 67]. To select proper data sources from them, we obey𝐶1.
Among the four data sources, we select source of BFP [54] as our
original data source, which contains 787,178 bug-fixing commits for
java. Each data sample is attached with meta information including
repository, commit message and commit url.

Step 2: Splitting sub-datasets. This is to construct three sub-
datasets: training, validation and evaluation. The training set con-
tains the samples that the NPR systems rely on to learn to fix bugs.
During the offline training process, the NPR systems can get a early
evaluation on the validation set to modify hyper-parameters of
repair models. Eventually, the evaluation set is used to measure the
performance of trained the NPR systems. One well-known basic
rule is that there should be no overlap between data in the training,
validation and evaluation sets. We obey 𝐶2 for the splitting phase.
Concretely, we follow the practice by Recoder [67], excluding data
samples which belongs to a clone project of projects that evaluation
data uses or a program repair project that use these projects from
the training set.

Step 3: Purifying and enriching evaluation resources. To
construct a more-diverse benchmark for evaluation, we collect bugs
from multiple sources. The first source is the data source which
has been selected in the first step. According to previous research
[19], bug-fix commits without peer-reviewing may contain bug-
irrelevant changes and some of the commits are of low quality.
Thus, to ensure the reliability and quality of bugs in the evaluation
set, we follow𝐶3 to purify bugs. First, We perform a regular-match
on the commit message of each bug-fix commit. Then, we only
keep data samples that identify explicit issues or bug ids in the
commit message. Next, we select the existing benchmarks in APR
as additional data sources, following 𝐶4. With the guidance of 𝐶4,
Defects4j [20], Bugs.jar [47], QuixBugs [29] and Bears [37] are
added to our evaluation set.

The final statistics for the benchmark dataset are listed in Table
2. In total, we collect 144,641 bug-fix samples in the training set
and 13,739 in the validation set. Each sample consists of six types

Table 2: Statistics of NPR4J-Benchmark.

Source Training Validation
Evaluation

Diversity Empirical

BFP [54] 144,641 13,739 12,815 —
Bears [37] — — — 119
Bugs.jar [47] — — 480 —
Defects4J [20] — — — 260
QuixBugs [29] — — — 32

Total 144,641 13,739 13,295 411

of information: (1) the buggy line, (2) the fix line, (3) method-level
context, (4) class-level context, (5) fault location and (6) meta infor-
mation. For evaluation, we collect 13,706 bugs in total. Specifically,
our evaluation set consists of two parts: Diversity and Empirical.
Diversity provides 13,295 bugs (12,815 bugs from BFP [54] and 480
bugs from [47]). For empirical validation, we collect 411 bugs (119
bugs from Bears [37], 260 bugs fromDefects4J [20] and 32 bugs from
QuixBugs [29]) with corresponding test suites in the empirical part.
In the evaluation set, the 12,815 bugs from BFP [54] are one-line
bugs that can be fixed by a single line modifying within one method.
To enrich the number of bugs provided by established benchmarks,
the other part are bugs that can be fixed by single-line modifying
on one or multiple methods (a bug may consist of single-line errors
in multiple methods.).

3.4 Framework Implementation
Although most NPR systems open source their codes, we notice that
there exists some usability issues proposed in their GitHub reposito-
ries (For example, there are open issues concerning the evaluating
procedure, data availability, and hyper-parameter settings, etc., of
CoCoNut3). One major reason is that codes of the NPR system are
often very complex. For example, their codes are often made up of
multiple programming languages (i.e., java for code preprocessing
and python for deep learning). The python part is implemented
with various deep learning frameworks (PyTorch4, Tensorflow5,
OpenNMT6, Fairseq7, etc.). Thus, modifying their codes to satisfy
new requirements (i.e., training on a new dataset) requires users’ ex-
pertise on both program repair and deep learning fields. To ease our
experiments and benefit future researches on NPR field, we wrap
original codes of six NPR systems (Tufano [54], SequenceR [5], Co-
CoNut [36], Codit [4], Edits [8], Recoder [67]) into a new framework,
called NPR4j-Framework. The overall workflow of NPR4j-Framework
is shown in Figure 3. NPR4j-Framework supports training NPR sys-
tems from scratch and using trained systems to fix bugs empirically.
All codes are organized into three main components: DataManager,
Preprocessor and Trainer. DataManager is responsible for process-
ing the original data into a standard data form which we named,
diff. The core part of the DataManager is the DiffParser. The Diff-
Parser parses each pair of buggy and fixed Java class files into diffs,
each of which represents the exact line-level difference between the

3https://github.com/lin-tan/CoCoNut-Artifact/issues
4https://pytorch.org/
5https://www.tensorflow.org/
6https://opennmt.net/
7https://github.com/pytorch/fairseq
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Figure 3: The workflow of NPR4J-Framework

buggy and the fixed program, and is associated with the position
of the buggy line. Preprocessor implements a variety of processing
methods that are designed by the six NPR systems to represent the
buggy code. It consists of a Tokenizer and an Abstractor. Tokenizer
is responsible for dividing textual codes into a list of tokens. And
the Abstractor supports common code abstraction operations that
most NPR systems use to simply the codes, such as replacing the
string elements with constant ids. Once the preparation of data
ends, Trainer is pressed into service to train the NPR model. During
this phase, all parameters such as the hyperparameters of the model
should be written on a configuration file. Then, the configuration
file will be delivered to the Vocab Builder and the Model Builder
to configure the vocab and initialize the model for training. The
Scheduler determines when to stop the training.

Besides training and evaluating a NPR system with the data
provided in NPR4J-Benchmark, the framework also allows users to
train the NPR systems on their own datasets. Users just need to
provide pairs of buggy-fix java class files and use the DataManager
and the DiffParser to process the data. What’s more, our framework
is extensive. The well-defined interface makes it easy to add a new
NPR system.

3.5 Experimental Setup
Experiment Environment:We run all our experiments on four
machines, including training and evaluating all NPR systems. Each
machine has four GPUs (NVIDIA Tesla V100 SXM2 32GB) and a
20-core CPU (Intel(R) Xeon(R) Gold 6248 CPU).
Fault Localization: All bugs we use in this experiment are per-
fectly fault-localized. We identify the buggy line for every bug with
the help of human-written patches provided in NPR4J-Benchmark
and the DiffParser component in NPR4j-Framework.
Training: To obtain well-trained models, we use random search
strategy to tune hyperparameters of NPR models. For each NPR
model, we first train a model with original hyperparameters they
reported in the paper (if provided). Then, we perform a random
search on adjustable parameters of each model (embedding size,
vocab size, learning rate). For each NPR approach, we select one
which performs best on the validation set as the final model to get
evaluation. Specifically, since CoCoNut [36] is an ensemble model,

we set the ensemble size to 10, which is the same as its original
setting.
Inference: In inference mode, we set the beam size to 100 and set
the candidate number to 100, which means for every bug in the
evaluation set, each NPR systemwill generate 100 candidate patches
for validation. Especially, CoCoNut [36] ensembles 10 models in
the original paper. Therefore, we also generate 100 patches for each
single model of CoCoNut according to the ensemble setting.
Patch Validation: After generation, all candidates need to be vali-
dated by executing on test cases. We stop validation when obtaining
the first plausible (test-adequate) patch.
Patch Assessment: Typically, APR tools are evaluated empirically.
If a patch pass all test cases, it is regarded as plausible. Such plau-
sible patches require manual assessment to make sure that they
are correct, considering potential faults they may bring. However,
manual assessment can introduce biases, as mentioned in previous
study [63]. Another way to assess the correctness of one patch is to
check if it is identical to the human-written patch. This way is more
objective but may loss some correct patches that have equal seman-
tics with human-written patches. In our experiment, to reduce the
bias of assessment, we use both two ways to assess the correctness
of NPR systems’ predictions. First, for bugs in the diversity part
of NPR4J-Benchmark, a patch is regarded as correct if it’s identical
to the human-written patches. Second, for bugs in the empirical
part, a patch is regarded as correct only if (1) it’s identical to the
human-written patches or (2) it can pass the corresponding test
cases and is checked by at least two of the authors.

4 STUDY RESULTS AND DISCUSSION
4.1 Repairability

RQ1.1 how many bugs in NPR4J-Benchmark can be fixed by the
six NPR systems?

Method and Results. We empirically retrain and evaluate the six
NPR systems on NPR4J-Benchmark. Table 3 reports the number of
patches correctly predicted by the six NPR systems, with a simple
comparison to their original evaluation results. For the diversity
part, we count systems’ perfect predictions that are identical to
the human-written patches. For the empirical part, we count the
number of correct/plausible patches. For comparison, we recount
their original results on the same base ( bugs used for evaluation in
NPR4J-Benchmark). For example, Recoder [67] fixes the bug "Chart-
3" of Defects4J [20] in their original experiment, however "Chart-3"
is not in our 260 bugs used in Defects4J [20]. Such fix will not be
counted. This situation is caused by the fault-localization method
we use in this experiment. We aim to get precise line-level fault
position through comparing the human-written patch with buggy
program. In some cases, a bug can be fixed in just modifying one line
but its human-written patch contains multi-line changes. We can
not identify such bugs when collecting data for NPR4J-Benchmark.

Finding 1. With unified setups on training data, evaluation data
and the candidate number, we obtain a result that differs from the
original evaluation of the six NPR systems, emphasizing the ne-
cessity to standardize experimental setups when comparing NPR
systems. In our experiment, SequenceR [5] is the best system that re-
pair 22% out of 13,706 bugs in NPR4J-Benchmark. CoCoNut [36] and
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Table 3: Repairability of six NPR systems measured in our
experiment and their original evaluations. For the diversity
part, we count patches that are identical to human-written
patches. For the empirical part, we count the number of cor-
rect/plausible patches in our experiment and recount the
number of correct patches in their original experiment.

NPR System

Diversity Empirical

Main Bugs.jar Defects4J Bears QuixBugs

12,815 bugs 480 bugs 260 bugs 119 bugs 32 bugs

or
ig
in
al CODIT — — 10 — —

Recoder — — 47 — <17
CoCoNut — — 34 — 12
SequenceR — — 13 — —

in
ou

re
xp

er
im

en
t CODIT 96 8 5/6 1/1 1/1

Edits 179 20 15/20 2/7 6/6
Tufano 1,080 43 25/31 9/18 7/8
Recoder 1,538 34 46/57 5/17 10/11
CoCoNut 2,403 57 48/60 19/33 13/13
SequenceR 2,900 56 48/57 16/26 15/16

Total 4,526 94 73/81 23/37 22/22

Recoder [67] are two systems that show comparable performances
on Defects4J [20] or Bears [37]. However, in original evaluations,
we find Recoder [67] is the best system that repair 47 bugs on the
260 bugs, outperforming CoCoNut [36] (34 bugs) and [5] (13 bugs).
In a concrete case of Recoder [67], though the candidate number
set by their original paper is same as ours (100), but we also observe
a large difference on the performance. On QuixBugs [29], Recoder
[67] can only fix 10 bugs in our experiment, while in its original
results the number is less than 17 (we can not get a precise number
since the authors haven’t release concrete patches on QuixBugs
[29] until this paper is written). On Defects4J [20], though the num-
ber of correct fixes has little change (47 to 46), we find that only
61% bugs are overlapped. This finding indicates that the model can
produce big differences in performance depending on the setup, fur-
ther result in a different comparison result. In theory, considering
that these NPR systems are based on deep learning technologies,
when the training data and evaluation data change, the model per-
formance will surely change [25, 26]. However, from a practical
perspective, it’s important to figure out what cause such changes
because they can make NPR systems not robust when fixing differ-
ent bugs. Imaging that when a NPR system is used in a real-world
scenario, the users will never want the system to be unstable and
unpredictable. Thus, we put forward a question on NPR field which
requires further exploration: does each NPR system have a particu-
lar preference for training data or for the types of bugs repaired,
resulting in a different learning result based on different training
data ? We believe the answer to this question could provide some
practical tricks to improve NPR systems’ performance.

RQ1.2 How does the candidate number influence the repairability
of the NPR systems?

Method and Results. We evaluate NPR systems’ fix rates under
different candidate numbers on the main part of diversity (12,815
bugs). Figure 4 shows the fix rates of six NPR systems under different
candidate numbers. We set the candidate numbers from 1 to 100
with an interval of 5. The fix rate represents the ratio of perfect

predictions. Fixing one bug under candidate size 𝐾 means within
the 𝐾 candidates, at least one is identical to the human-written
patch.

Finding 2. Under different candidate numbers, the comparison
results of NPR systems can be different, even when they are trained
and evaluated with unified dataset. As shown in Figure 4, when
the candidate number is limited to 1, Recoder [67] performs best
out of the six systems. As the candidate number growing, the per-
formance gain of Recoder [67] is lower than that of SequenceR
[5] and CoCoNut [36]. When the candidate number reaches 100,
SequenceR [5] is the one that behaves best. We notice that several
previous NPR systems [18, 36, 67] don’t report their repairability
on a low candidate number that are comparative with others. Thus,
it is difficult to say which NPR System is better if they use different
settings for the candidate size, since we can not know whether the
performance difference comes from a different candidate size or
from the other components of the model. This finding verify the
necessity to compare various NPR systems under same candidates
numbers. Furthermore, we suggest that for making a detailed com-
parison for NPR, future studies should report their performances
on different candidate numbers.

Finding 3. The performance of the NPR system does not improve
linearly with the increase in the candidate number. Through Figure
4, we find that the performance of the NPR system is significantly
improved when candidate number is 100 compared to that when
candidate number is 1. However, the performance does not increase
linearly. To make this point intuitive, we draw a performance sepa-
ration line in the Figure 4. We find that, when the candidate number
is set to 50, all NPR systems have already reached 85% (+-5%) perfor-
mances of that under a candidate number of 100. Considering that
under a real-world bug-fixing scenario, each candidate needs to be
executed on test cases and checked manually. The time cost can be
seen as a linear growth with the increase of the candidate number.
Inspired by this finding, here we throw an empirical question for
future research: how to balance the time cost and the fix rate? For
example, for bugs in Bears [37] , it usually takes one to a few min-
utes to compile and run the test cases of the buggy project. It seems
affordable in our experiment since the max candidate number is
100. However, some NPR systems have use a much more larger can-
didate number (1,000 in CoCoNut [36] and 5,000 in Cure [18]). Such
huge candidate numbers can surely bring a better performance,
but meanwhile means that in a worst situation (the correct patch
locates in the latter part of candidates), validating candidates for
one bug may cost several days. Is it worthwhile to fix additional
little bugs at a much higher cost in time? We suggest follow-up
researchers should pay attention to this question.

4.2 Inclination
RQ2.1 When feeding the same training data, will NPR systems tend

to fix the same bugs?

Method and Results. We calculate the overlapped and unique
patching rate of six NPR systems, as shown in Table 4. Each row
presents the percentage of overlapped patched bugs of one NPR
system with the rest of the systems. The diagonal of the table
represents the rate of fixes that can only generated by the tool.
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Figure 4: Influence of different candidate numbers on the repairability of the six NPR systems. The candidate number is ranged
from 1 to 100.

Table 4: Overlapping and unique patching rate of six NPR
systems.

CODIT Edits Tufano Recoder CoCoNut SequenceR

CODIT 7% 5% 61% 22% 69% 85%
Edits 2% 9% 35% 24% 67% 78%
Tufano 5% 5% 17% 22% 61% 75%
Recoder 1% 2% 15% 39% 31% 54%
CoCoNut 2% 5% 27% 19% 27% 66%
SequenceR 2% 4% 28% 29% 55% 24%

For example, 69% of bugs patched by CODIT (row 2) can also be
patched by CoCoNut (column 5). Among the bugs fixed by CODIT,
7% (row 2, column 2) can’t be fixed by any other NPR systems.

Finding 4. First, we note that there is indeed an overlap between
bugs fixed by each NPR system. Regarding the fix results we obtain
in Table 3, we find that overlapped rate is correlated to the repairabil-
ity of NPR systems. Generally, the more bugs one NPR system can
fix, the higher rate other systems overlap with it. For example,
SequenceR [5] and CoCoNut [36] reach the best and second-best
performance on the main part bugs. Relatively, the overlapping rate
of other systems with SequenceR [5] and CoCoNut [36] are much
more higher. This is reasonable since NPR systems have many com-
monalities on methodology. For example, as neural-based methods,
they all use an architecture called Encoder-Decoder [1]. Next, With
respect to the unique patching rate, we find that four NPR systems
(CoCoNut [36], Recoder [67], SequenceR [5] and Tufano [54]) have
a relatively higher rate of unique fixes than others, with respect to
27% (654 bugs), 39% (597 bugs), 24% (687 bugs) and 17% (188 bugs).
We find that Recoder [67] is the one that has the highest unique
patching rate. The possible reason is that Recoder [67] designs a
special mechanism that directly edits the abstract syntax tree of the
buggy program while other systems model the patch generation
process as a textual generation of code tokens. Whatever, the ob-
servation on the unique rate indicates that searching for a way to
incorporate percentages of various NPR systems will be a feasible
schema to improve the performance of NPR.

RQ2.2 Do NPR systems have a repair preference for bug types?

Table 5: Fix rates on bugs of different types. The second row
represents the number of bugs of each type for evaluation.

NPR System
Simple Delete Simple Replace Simple Insert Mixed

1,718 bugs 2,078 bugs 4,532 bugs 4,487 bugs

CODIT 3% 1% 0.4% 0.2%
Edits 3% 2% 1% 1%
Tufano 17% 11% 8% 4%
CoCoNut 40% 27% 17% 8%
Recoder 41% 8% 7% 8%
SequenceR 45% 30% 21% 13%

Total 75% 42% 31% 21%

Method and Results. We first count the fix rates of NPR systems
on different-type bugs. Relying on the buggy code and the human-
written patches provided by NPR4J-Benchmark, we divide the bugs
into four categories from the perspective of needed editing opera-
tions: Simple Delete, Simple Replace, Simple Insert and Mixed. Each
type represents the editing operation required to convert a bug to
a patch. For example, a bug of type Simple Delete represents that
the bug can be transformed to the patch by deleting some code
tokens. Mixed means the bug need at least two types of edits to fix.
Table 5 summaries our statistical results on NPR systems’ fix rates
of different-type bugs. As shown in the first row of the table, we
first count the number of bugs belonging to four types on the main
part of Diversity (12,815 bugs). The next rows present fix rates of
NPR systems on each type.

Finding 5. We find that the current NPR systems perform great
on generating code-removal patches but are poor at fixing more
complex bugs. Concretely, We observe that among the four types
of bugs, NPR systems does best on fixing ones that only requires
deleting operations. CoCoNut [36], Recoder [67] and SequenceR
[5] reach a fix rate over 40% on Simple Delete bugs. In total, we
find 75% of Simple Delete bugs can be fixed by one of the six NPR
system. Is this because there are more samples of Simple Delete
type in the training data than other types? As we counted, the
proportion of four types of bugs (14% for Simple Delete,20% for
Simple Replace,37% for Simple Insert,29% for Mixed) in the training
set is similar to that in the evaluation set. So we conclude that NPR
systems really have a preference for repairing bugs of Simple Delete
type. This is reasonable since replacing and inserting are more
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Table 6: Fix rates of NPR systems on bugs with different similarity. The similarity is calculated between one bug in the evaluation
set and its nearest sample in the training set. For instance, in column 13, "= 1" and "448" denote that 448 bugs have identical
buggy lines (but different contexts) with one sample in the training set. CODIT and Edits are excluded since they do not use a
context beyond the buggy line.

NPR System
= 0 <= 0.4 <= 0.5 <= 0.55 <= 0.6 <= 0.65 <= 0.7 <= 0.75 <= 0.8 <= 0.9 < 1 1 < 1 (%) = 1 (%)

263 363 1,053 1,906 3,427 5,283 7,112 8,757 10,134 11,772 12,367 448 12,367 448

Tufano 5 8 65 132 235 388 538 668 800 953 1,009 71 8% 16%
Recoder 0 1 55 155 343 565 831 1,050 1,227 1,420 1,497 41 12% 9%
CoCoNut 0 2 42 129 364 682 1,022 1,359 1,687 2,080 2,234 169 18% 38%
SequenceR 2 6 81 231 518 915 1,334 1,716 2,100 2,564 2,747 153 22% 34%

complex operations that require models to search extra tokens for
fixing. We also observe that on the Mixed-type bugs that require at
least two kinds of operations to generate the patches, performances
of the NPR models are struggling. Even the best system SequenceR
[5] can only reach a fix rate of 12.66%. In total, only 21% of Mixed-
type bugs can be fixed by either one of the six NPR systems. It
should also be concerned that the distribution of four types of bugs
in the real-world may be not the same. Since the real distribution in
the world is unable to measure, we take a look into bugs in NPR4J-
Benchmark, which may somehow reflect the distribution. We find
that there are 70% bugs with types of Simple Insert or Mixed. It
seems that NPR systems still have a long way to go on fixing more
complex bugs.

4.3 Generalizability
RQ3 Can the NPR systems fix the bugs which have never been seen

during training?

Method and Results. Since we have already excluded all bug-fix
pairs that appear in the evaluation set from the training data, there
is no chance for models to see the bug and its fix scheme before
fixing when evaluation. While in some cases, model may have seen
the same buggy code lines under different contexts. It should be
emphasized that this is not a data leakage problem, because
there are no same input-output pairs in the evaluation set
as in the training set. In order to measure to what extent the
NPR system has already known about the bug before generating
predictions, We calculated the similarity between the buggy line
of each bug in the evaluation set (12,815 bugs in the diversity part)
and its nearest sample in the training set. We use the similarity
measuring algorithm coming from the difflib of python8, using the
funciton difflib.SequenceMatcher.ratio(). The algorithm calculates a
measure of two sequences’ similarity as a float in the range [0, 1] via
the formula 2∗𝑀/𝑇 where𝑀 is the number of matches and𝑇 is the
total number of elements in both sequences. For example, "abcd"
and "aefg" get a similarity of 0.25. Then, for each bug, we calculate
its similarity between every bug of the 144,641 bugs that are used
for training and record the nearest sample which has the biggest
similarity with the bug. Next, we group 12,815 bugs in evaluation
set according to its similarity with the nearest sample in the training
set and count the fix rate of each NPR system in each group. We
exclude CODIT [4] and Edits [8] since they do not use a context

8https://docs.python.org/3/library/difflib.html

beyond the buggy line. The other four NPR systems use either a
method-level context [36, 54, 67] or a class-level context[5].

Finding 6. NPR systems have the ability to fix bugs that have
never been seen during training. As shown in Table 6, If the similar-
ity of a bug and its nearest sample in the training set is less than 1,
it means the NPR system has never seen an identical bug before. We
find that NPR systems have good performances on such bugs. For
example, SequenceR [5] reaches a fix rate of 22.21%, which is 98%
performance on all bugs, according to the previous results on Figure
4. When lowing down the standard to less than 0.6 (as the difflib
document reports, a ratio() value over 0.6 means the sequences
are close matches), NPR systems still reach not bad performances,
respectively reaching 39%, 18%, 81%, 85%, 56% and 67% of full perfor-
mance. Even the bugs have nothing in common with the samples in
the training data (the similarity is equal to 0), Tufano’s model [54]
and SequenceR [5] can still fix some of them. An interesting finding
is that Tufano[54] fixes 5 and 8 bugs on "= 0" and "<= 0.4" parts,
outperforming the other five NPR systems. We guess the possible
reason is that Tufano[54] introduces an abstraction on the buggy
code, replacing identifiers and variables with sequential ids. Thus,
in some case, the model can have some knowledge of a "=0" bug
after abstraction.

Finding 7. NPR systems have a higher probability to fix one bug
if it has similar samples in the training data ("similar" refers to the
similarity between bug lines). Taking a left-to-right view over Table
6, we observe that NPR systems always reach a relatively higher fix
rate on bugs that have a higher similarity with the nearest sample
in the training set. Specifically, when the NPR system has seen the
identical buggy line during training (the similarity is equal to 1),
the bug has a much more higher rate to be fixed correctly. Three
systems (Tufano [54],CoCoNut [36], SequenceR [5]) have a signif-
icant performance improvement (54% to 200%) on samples with
a similarity less than 1 and that equaling to 1. However, We find
Recoder [67] is not sensitive to the similar sample, fixing 12% on
samples with a similarity less than 1 and 9% on samples with a
similarity equaling 1. This might be caused by its special represen-
tation on the source code. For each buggy method, Recoder [67]
represents it as three inputs: (1) AST traversal sequence, (2) Tag
embedding and (3 ) AST-based Graph. Such processed inputs may
contain more structural information, but have less textual relation-
ship with original codes. According to the above findings, collecting
more data will be an effective way to improve the performance of
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NPR systems, since a larger training set is more likely to contain
samples that are similar to the bugs the systems are applied to fix.

5 THREATS TO VALIDITY
There are several threats to the validity of our study. The first
threat is the hyperparameters of the six NPR systems. As is known,
the same architecture model with different hyperparameters can
yield very different performance. To mitigate this threat, we use a
random search to make models trained to their best states. Second
is the manual checking process performed in our experiment. In
our experiment, to minimize the subjective deviation brought by
inspectors, each test-adequate patch is checked by at least two of
the authors and the reason why one is plausible or correct must be
provided. Third is that our implementation of theNPR4J-Benchmark
and NPR4J-Framework is unavoidable to have some bugs that may
bring threats. We open source all our codes, data and experimental
results for the verification of other researchers.

6 RELATEDWORKS
Works related to ours are empirical studies on APR tools [13, 17, 23,
30, 33, 34, 38, 44, 46, 62, 64]. These studies focus on some empirical
properties such as the efficiency of multiple APR systems. Among
them, the most similar work is from Durieux et al.[9] that empiri-
cally validate 11 test-suite-based repair tools on 5 benchmarks. The
authors run a huge experiment on 2,141 bugs and 23,551 repair
attempts. They focus on the issue of benchmark overfitting and
analyse the causes of non-patch generation.

Recently, we also notice there rises some analysis studies specifi-
cally for NPR [8, 45, 53, 58]. Tufano et al. [53] investigate the ability
of a Neural Machine Translation (NMT) model to learn how to au-
tomatically apply code changes implemented by developers during
pull requests. Ding et al. [8] and Namavar et al. [45] empirically
compare advantages of different design on NPR such as context
length and code tokenization.

Our study has two main differences compared with previous
related works. First, to our best knowledge, this is the seminal
study that performs huge empirical validation on multiple existing
NPR systems. Second, we focus on excluding non-methodology
threats and contributes a new benchmark and a framework tool.

7 CONCLUSION
In this paper, we focus on the empirical validation of six SOTA NPR
systems. First, we identify three differences on setups of previous
NPR systems that may bring threats to the validity of the com-
parison. To mitigate such threats, we construct a well-organized
benchmark named NPR4J-Benchmark and a framework tool named
NPR4J-Framework that supports training and evaluating NPR sys-
tems on a diversity of bugs. Based on the benchmark and framework,
we perform a large-scale empirical experiment, training and eval-
uating six latest NPR system (Tufano [54], CoCoNut [36], CODIT
[4], Edits [8], SequenceR [5] and Recoder [67]) on 13,706 java bugs
under same setups.

As we investigated, NPR systems show great potential on fixing
a diversity of bugs. The best system is able to repair 22% of the bugs
in our evaluation set. However, we also find some shortcomings of
NPR systems. For example, they are goot at dealing with code-delete

bugs but poor at fixing complex bugs that require mixed editing op-
erations. Our other findings point out several promising directions
for follow-up works. First, we find that the six NPR systems share
a not-low unique patching rate, which means searching for a way
to combine advantages of various NPR systems could be useful for
performance improving. Second, our findings on generalizability
demonstrate that NPR systems have a higher probability to fix one
bug if it has similar samples in the training data. In light of this
finding, we conclude that collecting more samples for training is a
practical trick to improve NPR.
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