StandUp4NPR: Standardizing SetUp for Empirically Comparing
Neural Program Repair Systems

Wenkang Zhong
State Key Laboratory for Novel
Software and Technology, Nanjing
University
Nanjing, Jiangsu, China
1007888882@qq.com

Chuanyi Li*
State Key Laboratory for Novel
Software and Technology, Nanjing

Hongliang Ge
State Key Laboratory for Novel
Software and Technology, Nanjing
University
Nanjing, Jiangsu, China
gehongliang123@163.com

Kui Liu
Huawei Software Engineering
Application Technology Lab

Hongfei Ai
State Key Laboratory for Novel
Software and Technology, Nanjing
University
Nanjing, Jiangsu, China
ahf876828330@163.com

Jidong Ge*
State Key Laboratory for Novel
Software and Technology, Nanjing

University Hangzhou, Zhejiang, China University
Nanjing, Jiangsu, China brucekuiliu@gmail.com Nanjing, Jiangsu, China
lcy@nju.edu.cn gjid@nju.edu.cn

Bin Luo
State Key Laboratory for Novel
Software and Technology, Nanjing
University
Nanjing, Jiangsu, China
luobin@nju.edu.cn

ABSTRACT

Recently, the emerging trend in automatic program repair is to ap-
ply deep neural networks to generate fixed code from buggy ones,
called NPR (Neural Program Repair). However, the existing NPR
systems are trained and evaluated under very different settings (e.g.,
different training data, inconsistent evaluation data, wide-ranged
candidate numbers), which makes it hard to draw fair-enough con-
clusions when comparing them. Motivated by this, we first build a
standard benchmark dataset and an extensive framework tool to
mitigate threats for the comparison. The dataset consists of a train-
ing set, a validation set and an evaluation set with 144,641, 13,739
and 13,706 bug-fix pairs of Java respectively. The tool supports
selecting specific training, validation, and evaluation datasets and
automatically conducting the pipeline of training and evaluating
NPR models, as well as easily integrating new NPR models by im-
plementing well-defined interfaces. Then, based on the benchmark
and tool, we conduct a comprehensive empirical comparison of six
SOTA NPR systems w.r.t the repairability, inclination and gener-
alizability. The experimental results reveal deeper characteristics

*Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE °22, October 1014, 2022, Rochester, MI, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9475-8/22/10...$15.00
https://doi.org/10.1145/3551349.3556943

of compared NPR systems and subvert some existing comparative
conclusions, which further verify the necessity of unifying the
experimental setups in exploring the progresses of NPR systems.
Meanwhile, we reveal some common features of NPR systems (e.g.,
they are good at dealing with code-delete bugs). Finally, we identify
some promising research directions derived from our findings.

CCS CONCEPTS
« Software and its engineering — Software testing and debug-

ging.
KEYWORDS

neural program repair, dataset, empirical study

ACM Reference Format:

Wenkang Zhong, Hongliang Ge, Hongfei Ai, Chuanyi Li, Kui Liu, Jidong
Ge, and Bin Luo. 2022. StandUp4NPR: Standardizing SetUp for Empirically
Comparing Neural Program Repair Systems. In 37th IEEE/ACM International
Conference on Automated Software Engineering (ASE "22), October 10-14, 2022,
Rochester, MI, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3551349.3556943

1 INTRODUCTION

Software bugs costed the global economy 1.1 trillion dollars and
affected over 4.4 billion people in 2016, according to the research
by Tricentis [51]. Meanwhile, bug-fixing is a time-consuming task
which often takes half of a programmer’s coding time [3]. So it’s no
surprise that Automated Program Repair (APR) [43], which aims to
repair defective code automatically, has been a hot research topic
in the software engineering community. In the past decade, with
efforts of researchers in APR field, a bunch of APR techniques have

https://doi.org/10.1145/3551349.3556943
https://doi.org/10.1145/3551349.3556943
https://doi.org/10.1145/3551349.3556943

ASE 22, October 10-14, 2022, Rochester, MI, USA

data
Buggy code Output Real Patches

Pz . Q

Patch
Validation

data

Buggy Code

NPR model

Figure 1: Training and evaluation process of NPR systems.

been proposed, which can be categorized into three mainstreams:
heuristic-based [15, 39, 41, 48, 52, 57, 65], template-based [21, 22,
24, 31, 32] and constraint-based [10, 40, 59]. Recently, the emerging
trend in APR is to apply advanced deep learning techniques in
program repair systems, known as Neural Program Repair (NPR)
[2,4,5,7,8,18, 27,36, 42, 50, 54, 55, 67]. The NPR approaches frame
the bug-fixing process as a translation task from defective code to
correct code, employing the neural machine translation models [1]
that are popular in the field of Natural Language Processing (NLP).
Compared with the previous APR approaches, a huge advantage of
NPR systems is their low dependence on domain knowledge and
extra resources such as the test suites. Consequently, more and
more researchers are paying attention to this field and a bench of
novel NPR systems have been proposed.

Though successful, a question of great concern remains to be an-
swered: how far has the NPR field progressed now? To answer
this question, it is unavoidable to compare different NPR systems
from multiple perspectives such as repairability, inclination and
generalizability. However, at the moment, there is a big challenge
in making such a comparison: previous NPR systems are trained
and evaluated in very different setups. Table 1 provides a summary
of detailed setup information for previous NPR systems. As we
observed, such differences can be summarized as three points: (1)
very-different training data, (2) inconsistent evaluation data
and (3) wide-ranged candidate numbers. For example, CoCoNut
[36] is trained on 3,241,966 samples and evaluated on 393 bugs
of Defects4J[20] and 40 bugs of QuixBugs [29], while SequenceR
[5] is trained on 35,578 samples and evaluated on 75 bugs of De-
fects4] [20]. For each bug, CoCoNut [36] generates 1,000 candidates
for evaluation while SequenceR [5] only generates 50 candidates.
We provide a detailed discussion on the above three differences in
Section 2.

Such differences may bring huge threats when comparing NPR
systems to draw some domain-level conclusions. Next, we explain
this following the training and evaluating process presented in
Figure 1: (1) First, for learning based methods, a well-known fact
is that the content and size of training data have a great impact
on their performance [14, 25, 26]. As a kind of learning-based ap-
proach, each NPR model has a offline learning phase. During this

Zhong, et al.

phase, the NPR model depends on samples from training data to
optimize its parameters. In a word, training data determines the
absolute performance of a NPR model. (2) To measure the perfor-
mance, NPR systems are evaluated on specific dataset to report
a quantified result of their repairability. Obviously, different eval-
uation sets will result in different measurements. (3) During the
prediction phase, the NPR system generates patches with the top
confidence score, forming top-k candidate patches for each buggy
input. Such candidates are then validated by executing a test suite
and further perform a manual check. If one of the k candidates
passes the validation, the model is considered to have successfully
fixed the bug. Since NPR systems are a kind of probability model, a
larger candidate set surely has a higher probability to fix the bug.
Thus, when comparing NPR systems that have the above
three differences on settings, we can not draw fair-enough
conclusions. The above three factors must be set to the same
value for an in-depth analysis of the existing NPR systems.

In this paper, we perform an empirical comparison among the
six SOTA NPR systems[4, 5, 8, 36, 54, 67]. To mitigate the potential
threats which the above three factors may bring on validity of the
comparison, we build a new benchmark dataset for NPR firstly,
named NPR4J-Benchmark. The benchmark contains 144,641 stan-
dard data samples of Java for training, 13,739 for validation and
13,706 for evaluation. We focus on Java bugs for one-line type since
it is the most popular scene researched in previous APR studies. To
ease the future research, we also implement an extensive frame-
work that supports training, reusing and evaluating NPR systems,
named NPR4j-Framework.

Then, based on the benchmark and framework, we conduct a
huge experiment to explore the current state of the six NPR systems.
Inspired in previous work that empirically evaluates test-based
APR systems [9], we design specific experiments to investigate
the repairability, inclination and generalizability of NPR systems.
Concretely, we aim to provide the answers to the following research
questions:

¢ [RQ1] Repairability
(1) How many bugs in NPR4J-Benchmark can be fixed by the
six NPR systems?
(2) How does the candidate number influence the repairability
of the NPR systems?

¢ [RQ2] Inclination
(1) When feeding the same training data, will NPR systems
tend to fix the same bugs?
(2) Do NPR systems have a repair preference for bug types?

¢ [RQ3] Generalizability
RQ3 Can the NPR systems fix the bugs which have never been
seen during training?

With respect to repairability, we first observe that the best NPR
system can repair 22% bugs of NPR4j-Benchmark. By comparing
with original evaluations, we find that different setups can lead to
different conclusions among the NPR systems. For example, the
performance ranking between models changes when the candi-
date number is set from 1 to 100. This finding verify the necessity
to standardize setups for comparing NPR systems. Then, regard-
ing inclination, we find that NPR systems share a 7%-39% unique
patching rate, indicating that combing the advantages of various

StandUp4NPR: Standardizing SetUp for Empirically Comparing Neural Program Repair Systems

ASE ’22, October 10-14, 2022, Rochester, MI, USA

Table 1: Training and evaluation setups of nine NPR systems for Java.

Evaluation Candidate

NPR System Training Source # Training Instance Evaluation Dataset
Instance Number
commits before 2010 on GitHub, Defects4] [20] 393
CoCoNut [36 3,241,966 . 20,000
oCoNut [30] projects from GitLab and Bitbucket QuixBugs [29] 40
CODIT [4] 6 projects from Defects4] [20] 22,060 Defects4] [20] 117 5
4,04 i Defe 4 1.4
Cure [18] CoCoNut’s training data ,040,000 (pretrain) N ?cts J (V14) 393 5,000
2,720,000 (finetune) QuixBugs [29] 40
BigFix: building from a Defects4] [20] 101
DLFix [27] bug detection dataset [28] 20,000 Bugs.jar [47] 1,158 10
BigFix[27] 2,176
10,235 t-st. d
Edits [8] +235 most-starred Java 55,000 EditsDataset[8] 5,000 25
repositories on GitHub
Defects4] (v1.4) 395
Java projects between 2011 Defects4] (v2.0) 420
Recoder [67] | 4 2018 on GitHub 82,868 QuixBugs [29] 40 100
IntroClassJava [11] 297
BFP (small)[54] 5,835
BFP: commits between 2010 46,680 (small) BFP (mid)[54] 6,545
Tuf: 4
ufano [34] 142017 on GitHub 52,364 (mid) CodRep (small)[6] 3,027 0
CodRep (mid)[6] 6,205
. Defects4][20] 75
SequenceR [5] original source of BFP [54] 35,578 CodRep [6] 4711 50
Tang [50] small version of BFP [54] 46,680 BFP (small) [54] 5,835 5

systems may be a viable approach for improving performance. In
addition, we find that the current NPR systems are good at generat-
ing code-removal patches but are poor at fixing complex bugs that
require multiple types of editing operations (e.g., deleting a token
followed by inserting two tokens). In terms of generalizability, we
find that NPR systems are capable of fixing bugs that they have not
encountered during training. Moreover, the NPR systems are more
effective on bugs that have a similar sample in the training data,
which suggests that collecting more data for training could be a
practical measure to improve their performance.

In summary, we make the following contributions:

(1) A well-organized benchmark, named NPR4F-Benchmark. The
benchmark provides standard bug-fix samples of Java for
training, validating and evaluating NPR systems (144,641
for training, 13,739 for validation and 13,709 for evaluation).
Samples are divided into the three subsets following certain
criteria to avoid potential data issues such as data leaking.

(2) A framework tool, named NPR4j-Framework. The framework
wraps six NPR systems’ original codes into unified interfaces,
supporting training and using trained models to fix bugs in
an easy-to-use way. Meanwhile, it is extensive to add new
NPR systems.

(3) A novel analysis in NPR field, which provides some interest-
ing findings on repairability, inclination and generalizability
of NPR systems when comparing them under same setups, as
well as several promising venues derived from the findings
for future research.

All codes and data of NPR4j-Benchmark and NPR47j-Framework

are publicly available! for the future research.

The remainder of this paper is organized as follows. Section

2 illustrates our observations on setups of the previous neural

https://github.com/kwz219/NPR4]J

program repair systems, which points out the threats that should
be excluded in the experiment. Section 3 explains our detailed study
plan to support our empirical experiments. Section 4 presents the
experiment results and points out the possible research venues
deriving from our findings. Section 5 discusses threats to validity.
Finally, we introduce related works in Section 6 and summarize our
work in Section 7.

2 DIFFERENCES ON SETUPS OF NPR SYSTEMS

Table 1 summarizes our review on training and evaluation setups
of nine NPR systems. To gather these NPR researches, we first
search the living review of Automated Program Repair [43] and a
previous summary of NPR systems [66] to get a list of NPR studies
[2,4,5,7,8, 18, 27, 36, 42, 50, 54, 55, 67]. We focus on NPR systems
for Java because Java is the most popular language researched in
previous APR studies. Thus, the NPR systems that are not evaluated
on Java are discarded [2, 7, 55]. Each row in Table 1 provides the
five categories of information: (1) the source of training data, (2) the
number of instances for training, (3) the source of evaluation data
(4) the number of instances for evaluating and (5) the setting of the
candidate number. Through the table, we find following three main
differences on training data, evaluation data and candidate
numbers:

Difference #1: NPR systems are using different training data col-
lected from different sources. As shown in Table 1, four of the nine
NPR systems [8, 36, 54, 67] mine bug-fix pairs from code reposito-
ries and build their own datasets. Such datasets are also used by
subsequent NPR systems [4, 5, 18, 50]. Although most researchers
choose GitHub? as their data source, the concrete code projects
used in each dataset are clustered by different criteria. To sum-
mary, they are either time-divided (before 2010 [18, 36], 2010-2017

Zhttps://github.com/

ASE 22, October 10-14, 2022, Rochester, MI, USA

[50, 54], 2011-2018 [67]), star-ranked [8] or derived from existing
datasets [4, 5, 27]. Even though the data sources are the same, the
final amount of training instances each system uses can be variant
(e.g., Cure [18] and CoCoNut [36]).

Difference #2: Evaluation datasets are sparsely used and the in-
stances that are used by each NPR system for evaluation may differ
even they belong to the same dataset. In total, we found the eight
different datasets (Defects4] [20], QuixBugs [29], Bugs.jar [47], Big-
Fix [27], EditsDataset [8], IntroClassJava [11], CodRep [6], BFP
[54]) being used in the evaluation process. The first issue is that
NPR systems are evaluated sparsely on those datasets. In terms of
frequency, Defects4] [20] is the most commonly used dataset that
has been used by six NPR systems. The other seven datasets are
used only 1-3 times. It means currently, if we want to compare the
existing NPR systems, their reported performance on Defects4][20]
are the only evidence we have. However, as shown in a previous
study [9], using a single benchmark when evaluating repair tools,
a bias can be introduced, which makes it hard to generalize the
performance of repair tools. Secondly, some of the NPR approaches
use different parts of the same dataset to evaluate their models. For
example, CoCoNut [36], CODIT [4], DLFix [27], Recoder [67] and
SequenceR [5] all get evaluated on Defects4] [20], but the instances
used for evaluation are different, ranging from 75 samples to 395
samples. On the one hand, the choice of samples for evaluation
may lead to a bias. In addition, for the NPR studies, a common
approach to compare with others is to copy their reported results
directly, ignoring the fact that they may have used a different part
of the benchmark. Thus, their measured performance may not be
consistent when comparing on the same base. The third issue is that
not all NPR studies illustrate how they exclude evaluation-related
bugs from the training data. According to previous study(35], 70%
of the code on GitHub contain clones of previously created files,
which may lead to a data leakage problem if the NPR studies do
not follow strict strategies to clean their training data.

Difference #3: When predicting, the number of candidate patches
generated by the NPR systems varies widely. In the evaluation process,
for each bug, the NPR systems generate 5 to 5,000 candidates for
validation. Since the NPR systems are a kind of probabilistic genera-
tive model, a large candidate set obviously has a higher probability
to contain the correct patch. Therefore, the NPR system can achieve
higher performance with a larger amount of candidates. However,
there is a ignored price at the time cost of model executing and
patch validation. Considering that in a real-world scenario, each
candidate need to be executed on test cases or checked manually,
this time price can be seen as a linear growth with the increase of
candidate number. Another factor that makes the comparison on
NPR systems difficult is that some studies [18, 36, 67] didn’t report
their performances on a smaller candidate size setting.
Conclusion: The above three differences on setups indicate that
the previous NPR systems are not compared on the same scale.
Potential threats on validity may be brought by different settings
on training data, evaluation data and candidate number.

Our Solution: In this paper, we aim to provide a domain-level view
of the NPR field through an empirical comparison of the existing
NPR systems. To mitigate the threats aforementioned, we build a
new benchmark for the NPR that contains uniformed training and
evaluation data. Besides, we develop a framework tool that defines a

Zhong, et al.

pipeline for training and evaluating the NPR systems. Based on the
benchmark and the framework tool, we perform a large experiment
that evaluates NPR systems at the same scale.

3 STUDY DESIGN

This section illustrates our detailed study designed for the empiri-
cal comparison of the NPR systems. Section 3.1 lists the research
questions used in analyzing each NPR model from three perspec-
tives. Section 3.2 briefly introduces the selected six NPR systems.
Next, we explain how we build the two milestones that support our
experiments - dataset (in section 3.3) and framework (in section
3.4). Finally, section 3.5 introduces our experiment setup.

3.1 Research Questions

e RQ1 Repairability
(1) How many bugs in NPR4J-Benchmark can be fixed by the six
NPR systems? The purpose of this question is to measure the
repairability of six NPR systems on a diversity of bugs. Addition-
ally, we intend to verify the necessity for standardizing setups
by comparing the results from our experiment with those from
the original experiment.
(2) How does the candidate number influence the repairability of
the NPR systems? We design this question based on the observa-
tion that the previous NPR systems use wide-ranging candidate
numbers, which enables us to investigate the impact of candidate
numbers on repairability and see whether they affect comparison
results across the NPR systems.

¢ RQ2 Inclination
(1) When feeding same training data, will NPR systems tend to fix
the same bugs? We seek to answer this question by calculating the
overlapping and unique patching rates of each NPR system. This
can be a reference for other researchers to improve the perfor-
mance of NPR. For example, if the unique rate is high, combining
the benefits of various NPR systems could be advantageous.
(2) Do NPR systems have a repair preference for bug types? This
question examines whether the NPR system has a comparative
advantage in fixing certain types of bugs.

e RQ3 Generalizability
Can the NPR systems fix the bugs which have never been seen
during training? This question is to investigate whether the NPR
systems have the ability to repair the unknown bugs.

3.2 Subject NPR Systems

To include NPR systems in our empirical study, we first search
the living review of APR [43] and get a list of NPR studies [2, 4,
5,7, 8, 16, 16, 18, 27, 36, 42, 50, 54, 55, 60, 60, 61, 61, 67]. Since
we focus on the NPR systems repairing dynamic defects in Java
programs, studies focusing on fixing other-type errors [16, 60, 61]
and other programming languages [2, 7, 55] are excluded during
the first round of filtering. After that, we end up with nine NPR
systems, as shown in Table 1. Next, We propose the two criteria
for selecting candidates among the nine NPR systems to further
ensure the success of this empirical comparison:

e Availability: The source code of the NPR system should be avail-
able. Thus we exclude Cure [18] and Tang et al. [50]’s model.

StandUp4NPR: Standardizing SetUp for Empirically Comparing Neural Program Repair Systems

o Executability: Some APR approaches provide publicly available
source codes, which however cannot be executed. We have tried
our best to fix inexecutable approaches. But unfortunately, we
still fail to make it a success for DLFix [27], so we exclude it.

Eventually, we derive a baseline package containing the six NPR
systems. Next, we briefly describe each selected NPR system.

Tufano [54] trains a RNN-based Encoder-Decoder model which
is able to translate the entire buggy method into a fixed version.
To reduce the difficulty of learning, they abstract identifiers and
literals in the buggy code to simplify the input and output. During
the abstraction process, the source code is firstly fed to a Java
parser, which recognizes the identifiers and literals in the stream.
Then the parser generates and substitutes a unique ID for each
identifier/literal within the buggy context. Only the most frequent
words are kept. Such abstraction reduces the model’s choices when
generating patches, therefore increasing the patching rate.

SequenceR [5] fixes bugs based on sequence-to-sequence learn-
ing on source code. Compared with Tufano’s model [54], it uses a
additional copy mechanism [49] to overcome the unlimited vocab-
ulary problem that occurs in handling big code. The model takes
the abstract context of the buggy line as the input and predicts the
fixed result of that line. The abstract buggy context consists of line-,
method-, and class-level information of the buggy line. Specifically,
at line level, special tokens are inserted before and after the buggy
line to indicate the location of the bug. Then, the remainder of the
buggy method is kept in the representation. Finally, all the instance
variables and initializers, along with the signature of the construc-
tor and non-buggy methods from the buggy class are added to the
input unless reaching a truncation limit.

CoCoNut [36] uses ensemble learning on the combination of
Convolutional Neural Networks (CNNs) [12] and a context-aware
neural machine translation architecture to automatically fix bugs for
multiple programming languages. To better represent the context
of a bug, it introduces a new context-aware architecture that repre-
sents the buggy source code and its surrounding context separately.
Such architecture enables the model to distinguish the buggy line
and the context better. To reduce the size of vocabulary, it leverages
the world-level tokenization by considering underscores, camel
letters, and numbers as separators.

CODIT [4] decomposes the task of fixing the buggy line into
two stages and each stage uses one LSTM-based Neural Machine
Translation Model. The first stage is to generate the sequence of
grammar rules for constructing the CFG (i.e., Context Free Gram-
mars) of the fixed code line. Upon the rules are generated, the CFG
can be constructed to retrieve the type of code tokens occurring
consecutively in the fixed line. The next stage is to predict the
ultimate fixed code tokens according to the code tokens and cor-
responding token types of the buggy line, and the types of code
tokens predicted in the first stage.

Edits [8] models the patch generation process as performing
token-level insertion and deletion operations on the buggy code.
Edits adds the two additional pointers[49] to Transformer[56], im-
plementing the editing operation of "insertion" and "deletion". Edits
takes the buggy code line as the input. When generating patches,
it outputs edits operations on the buggy code, each indicating the

ASE ’22, October 10-14, 2022, Rochester, MI, USA

select data source with C1 enrich data with Cs

Original data
S
split with Cz
purify with
Cs _E‘?

Validation

Figure 2: Construction process of our benchmark data.

insertion start position, the removal end position and any missing
tokens.

Recoder [67] designs a syntax-guided decoder to generate edits
on the AST of the buggy method. It takes (1) AST traversal sequence,
(2) Tag Embedding and (3) AST-based Graph as inputs. During
inference, Recoder use a novel provider/decider architecture to
output edit operations on the current AST. It uses three providers
to represent insertion, modifying and copying operations. Providers
are responsible to provide a set of choices for expanding a non-
terminal of the current AST. The decider estimates the likelihood
of using each provider.

Among the six NPR systems include in our experiments, five of
them ([4, 5, 8, 36, 67]) can only deal with one-line bugs (in a buggy
method, only one code line is buggy). Tufano [54] is the only one
that can repair any bugs within one method. It can be used to fix
one-line bugs without any modification of the original model.

3.3 Dataset Construction

To run our empirical experiments, we construct a new benchmark
dataset instead of reusing any of the existing datasets. The reasons
are two-fold. First, to avoid data leakage, samples related to bugs
in the evaluation set should be excluded from the training dataset.
However, existing training data that the previous NPR systems
use may not provide enough meta information to do the exclu-
sion. Second, some existing datasets may pose potential threats to
experimental performance due to some issues on data. For exam-
ple, although CoCoNut [36] reports that the training set they use
(Java 2006) contains over three million samples, we find that nearly
one-third of the samples are duplicated pairs and non-character
changes, through checking their raw data by string matching. We
argue that for mitigating threats brought by data issues, the ex-
periment training and evaluation data should satisfy the following
criteria:

o Criterion #1: Each data sample from the data source should provide
enough meta information.This criterion is designed for selecting
a data source. The data source we used in this experiment must
provide enough meta information to ensure the data traceabil-
ity. For NPR, such traceability is important. For example, meta
information such as the repository of bugs should be provided to
to exclude bugs from the training data that belong to the same
repository as bugs for evaluation.

ASE 22, October 10-14, 2022, Rochester, MI, USA

o Criterion #2: Evaluation-related Bugs should not appear in the
training set. Considering that codes within the same projects
may contain some cheating information which is inaccessible for
the NPR systems under empirical scenarios, we perform a strict
strategy, dividing data by projects.

o Criterion #3: Each bug in the evaluation set should be attached to a
corresponding issue or bug report. This criterion is to ensure that
the bugs we use for evaluation are highly reliable samples from
the real world.

o Criterion #4: The benchmark should be peer-reviewed and contains
human-written patches for each bug. For perfect fault-localization,
we need human-written patches to locate the buggy position of
the source program.

With the guidence of above four criteira, we construct a new
benchmark dataset called NPR4J-Benchmark, following the process
shown in Figure 2. The overall process can be summarized into the
following three steps:

Step 1: Selecting the data source. It is to collect enough bug-fix
pairs. A common way is to crawl large amounts of data from the
code repositories such as GitHub. However, it can be laborious and
time consuming. Fortunately, previous studies have done this work
[8, 36, 54, 67]. To select proper data sources from them, we obey C;.
Among the four data sources, we select source of BFP [54] as our
original data source, which contains 787,178 bug-fixing commits for
java. Each data sample is attached with meta information including
repository, commit message and commit url.

Step 2: Splitting sub-datasets. This is to construct three sub-
datasets: training, validation and evaluation. The training set con-
tains the samples that the NPR systems rely on to learn to fix bugs.
During the offline training process, the NPR systems can get a early
evaluation on the validation set to modify hyper-parameters of
repair models. Eventually, the evaluation set is used to measure the
performance of trained the NPR systems. One well-known basic
rule is that there should be no overlap between data in the training,
validation and evaluation sets. We obey C; for the splitting phase.
Concretely, we follow the practice by Recoder [67], excluding data
samples which belongs to a clone project of projects that evaluation
data uses or a program repair project that use these projects from
the training set.

Step 3: Purifying and enriching evaluation resources. To
construct a more-diverse benchmark for evaluation, we collect bugs
from multiple sources. The first source is the data source which
has been selected in the first step. According to previous research
[19], bug-fix commits without peer-reviewing may contain bug-
irrelevant changes and some of the commits are of low quality.
Thus, to ensure the reliability and quality of bugs in the evaluation
set, we follow Cs3 to purify bugs. First, We perform a regular-match
on the commit message of each bug-fix commit. Then, we only
keep data samples that identify explicit issues or bug ids in the
commit message. Next, we select the existing benchmarks in APR
as additional data sources, following C4. With the guidance of Cy,
Defects4j [20], Bugs.jar [47], QuixBugs [29] and Bears [37] are
added to our evaluation set.

The final statistics for the benchmark dataset are listed in Table
2. In total, we collect 144,641 bug-fix samples in the training set
and 13,739 in the validation set. Each sample consists of six types

Zhong, et al.
Table 2: Statistics of NPR4J-Benchmark.
Evaluation
Source Training Validation
Diversity Empirical

BFP [54] 144,641 13,739 12,815 —
Bears [37] — — — 119
Bugs.jar [47] — — 480 —
Defects4] [20] — — - 260
QuixBugs [29] — — — 32
Total 144,641 13,739 13,295 411

of information: (1) the buggy line, (2) the fix line, (3) method-level
context, (4) class-level context, (5) fault location and (6) meta infor-
mation. For evaluation, we collect 13,706 bugs in total. Specifically,
our evaluation set consists of two parts: Diversity and Empirical.
Diversity provides 13,295 bugs (12,815 bugs from BFP [54] and 480
bugs from [47]). For empirical validation, we collect 411 bugs (119
bugs from Bears [37], 260 bugs from Defects4] [20] and 32 bugs from
QuixBugs [29]) with corresponding test suites in the empirical part.
In the evaluation set, the 12,815 bugs from BFP [54] are one-line
bugs that can be fixed by a single line modifying within one method.
To enrich the number of bugs provided by established benchmarks,
the other part are bugs that can be fixed by single-line modifying
on one or multiple methods (a bug may consist of single-line errors
in multiple methods.).

3.4 Framework Implementation

Although most NPR systems open source their codes, we notice that
there exists some usability issues proposed in their GitHub reposito-
ries (For example, there are open issues concerning the evaluating
procedure, data availability, and hyper-parameter settings, etc., of
CoCoNut?®). One major reason is that codes of the NPR system are
often very complex. For example, their codes are often made up of
multiple programming languages (i.e., java for code preprocessing
and python for deep learning). The python part is implemented
with various deep learning frameworks (PyTorch?, Tensorflow>,
OpenNMT?, Fairseq’, etc.). Thus, modifying their codes to satisfy
new requirements (i.e., training on a new dataset) requires users’ ex-
pertise on both program repair and deep learning fields. To ease our
experiments and benefit future researches on NPR field, we wrap
original codes of six NPR systems (Tufano [54], SequenceR [5], Co-
CoNut [36], Codit [4], Edits [8], Recoder [67]) into a new framework,
called NPR4j-Framework. The overall workflow of NPR4j-Framework
is shown in Figure 3. NPR4j-Framework supports training NPR sys-
tems from scratch and using trained systems to fix bugs empirically.
All codes are organized into three main components: DataManager,
Preprocessor and Trainer. DataManager is responsible for process-
ing the original data into a standard data form which we named,
diff. The core part of the DataManager is the DiffParser. The Diff-
Parser parses each pair of buggy and fixed Java class files into diffs,
each of which represents the exact line-level difference between the

Shttps://github.com/lin-tan/CoCoNut-Artifact/issues
“https://pytorch.org/

Shttps://www.tensorflow.org/

®https://opennmt.net/
7https://github.com/pytorch/fairseq

StandUp4NPR: Standardizing SetUp for Empirically Comparing Neural Program Repair Systems

Trainer — Offline Training

N Scheduler N N
—>{ | Model Builder | ———

N

N\ N\

Vocab Builder NPR Model .

patch candidates

model and
training configs

il

load data

for training
DataManager Preprocessor
S — ==
IEI E ___,| L Diff Storage Abstractor
original Java - , buggy file with
file pairs ’ Diff Parser ‘ ’ Tokenizer ‘ the fault location

Figure 3: The workflow of NPR4J-Framework

buggy and the fixed program, and is associated with the position
of the buggy line. Preprocessor implements a variety of processing
methods that are designed by the six NPR systems to represent the
buggy code. It consists of a Tokenizer and an Abstractor. Tokenizer
is responsible for dividing textual codes into a list of tokens. And
the Abstractor supports common code abstraction operations that
most NPR systems use to simply the codes, such as replacing the
string elements with constant ids. Once the preparation of data
ends, Trainer is pressed into service to train the NPR model. During
this phase, all parameters such as the hyperparameters of the model
should be written on a configuration file. Then, the configuration
file will be delivered to the Vocab Builder and the Model Builder
to configure the vocab and initialize the model for training. The
Scheduler determines when to stop the training.

Besides training and evaluating a NPR system with the data
provided in NPR4J-Benchmark, the framework also allows users to
train the NPR systems on their own datasets. Users just need to
provide pairs of buggy-fix java class files and use the DataManager
and the DiffParser to process the data. What’s more, our framework
is extensive. The well-defined interface makes it easy to add a new
NPR system.

3.5 Experimental Setup

Experiment Environment: We run all our experiments on four
machines, including training and evaluating all NPR systems. Each
machine has four GPUs (NVIDIA Tesla V100 SXM2 32GB) and a
20-core CPU (Intel(R) Xeon(R) Gold 6248 CPU).

Fault Localization: All bugs we use in this experiment are per-
fectly fault-localized. We identify the buggy line for every bug with
the help of human-written patches provided in NPR4j-Benchmark
and the DiffParser component in NPR4j-Framework.

Training: To obtain well-trained models, we use random search
strategy to tune hyperparameters of NPR models. For each NPR
model, we first train a model with original hyperparameters they
reported in the paper (if provided). Then, we perform a random
search on adjustable parameters of each model (embedding size,
vocab size, learning rate). For each NPR approach, we select one
which performs best on the validation set as the final model to get
evaluation. Specifically, since CoCoNut [36] is an ensemble model,

ASE ’22, October 10-14, 2022, Rochester, MI, USA

we set the ensemble size to 10, which is the same as its original
setting.

Inference: In inference mode, we set the beam size to 100 and set
the candidate number to 100, which means for every bug in the
evaluation set, each NPR system will generate 100 candidate patches
for validation. Especially, CoCoNut [36] ensembles 10 models in
the original paper. Therefore, we also generate 100 patches for each
single model of CoCoNut according to the ensemble setting.
Patch Validation: After generation, all candidates need to be vali-
dated by executing on test cases. We stop validation when obtaining
the first plausible (test-adequate) patch.

Patch Assessment: Typically, APR tools are evaluated empirically.
If a patch pass all test cases, it is regarded as plausible. Such plau-
sible patches require manual assessment to make sure that they
are correct, considering potential faults they may bring. However,
manual assessment can introduce biases, as mentioned in previous
study [63]. Another way to assess the correctness of one patch is to
check if it is identical to the human-written patch. This way is more
objective but may loss some correct patches that have equal seman-
tics with human-written patches. In our experiment, to reduce the
bias of assessment, we use both two ways to assess the correctness
of NPR systems’ predictions. First, for bugs in the diversity part
of NPR4J-Benchmark, a patch is regarded as correct if it’s identical
to the human-written patches. Second, for bugs in the empirical
part, a patch is regarded as correct only if (1) it’s identical to the
human-written patches or (2) it can pass the corresponding test
cases and is checked by at least two of the authors.

4 STUDY RESULTS AND DISCUSSION
4.1 Repairability

RQ1.1 how many bugs in NPR4j-Benchmark can be fixed by the
six NPR systems?

Method and Results. We empirically retrain and evaluate the six
NPR systems on NPR4J-Benchmark. Table 3 reports the number of
patches correctly predicted by the six NPR systems, with a simple
comparison to their original evaluation results. For the diversity
part, we count systems’ perfect predictions that are identical to
the human-written patches. For the empirical part, we count the
number of correct/plausible patches. For comparison, we recount
their original results on the same base (bugs used for evaluation in
NPR4J-Benchmark). For example, Recoder [67] fixes the bug "Chart-
3" of Defects4] [20] in their original experiment, however "Chart-3"
is not in our 260 bugs used in Defects4] [20]. Such fix will not be
counted. This situation is caused by the fault-localization method
we use in this experiment. We aim to get precise line-level fault
position through comparing the human-written patch with buggy
program. In some cases, a bug can be fixed in just modifying one line
but its human-written patch contains multi-line changes. We can
not identify such bugs when collecting data for NPR4j-Benchmark.

Finding 1. With unified setups on training data, evaluation data
and the candidate number, we obtain a result that differs from the
original evaluation of the six NPR systems, emphasizing the ne-
cessity to standardize experimental setups when comparing NPR
systems. In our experiment, SequenceR [5] is the best system that re-
pair 22% out of 13,706 bugs in NPR4j-Benchmark. CoCoNut [36] and

ASE 22, October 10-14, 2022, Rochester, MI, USA

Table 3: Repairability of six NPR systems measured in our
experiment and their original evaluations. For the diversity
part, we count patches that are identical to human-written
patches. For the empirical part, we count the number of cor-
rect/plausible patches in our experiment and recount the
number of correct patches in their original experiment.

Diversity Empirical
NPR System Main Bugs.jar Defects4] Bears QuixBugs
12,815 bugs 480 bugs 260 bugs 119 bugs 32 bugs
—, CODIT - — 10 — -
,E Recoder — — 47 — <17
-2 CoCoNut - - 34 - 12
© SequenceR — — 13 — —
= CODIT 96 8 5/6 1/1 1/1
g Edits 179 20 15/20 2/7 6/6
= Tufano 1,080 43 25/31 9/18 7/8
£ Recoder 1,538 34 46/57 5/17 10/11
&, CoCoNut 2,403 57 48/60 19/33 13/13
3 SequenceR 2,900 56 48/57 16/26 15/16
g
"~ Total 4,526 94 73/81 23/37 22/22

Recoder [67] are two systems that show comparable performances
on Defects4] [20] or Bears [37]. However, in original evaluations,
we find Recoder [67] is the best system that repair 47 bugs on the
260 bugs, outperforming CoCoNut [36] (34 bugs) and [5] (13 bugs).
In a concrete case of Recoder [67], though the candidate number
set by their original paper is same as ours (100), but we also observe
a large difference on the performance. On QuixBugs [29], Recoder
[67] can only fix 10 bugs in our experiment, while in its original
results the number is less than 17 (we can not get a precise number
since the authors haven’t release concrete patches on QuixBugs
[29] until this paper is written). On Defects4] [20], though the num-
ber of correct fixes has little change (47 to 46), we find that only
61% bugs are overlapped. This finding indicates that the model can
produce big differences in performance depending on the setup, fur-
ther result in a different comparison result. In theory, considering
that these NPR systems are based on deep learning technologies,
when the training data and evaluation data change, the model per-
formance will surely change [25, 26]. However, from a practical
perspective, it’s important to figure out what cause such changes
because they can make NPR systems not robust when fixing differ-
ent bugs. Imaging that when a NPR system is used in a real-world
scenario, the users will never want the system to be unstable and
unpredictable. Thus, we put forward a question on NPR field which
requires further exploration: does each NPR system have a particu-
lar preference for training data or for the types of bugs repaired,
resulting in a different learning result based on different training
data ? We believe the answer to this question could provide some
practical tricks to improve NPR systems’ performance.

RQ1.2 How does the candidate number influence the repairability
of the NPR systems?

Method and Results. We evaluate NPR systems’ fix rates under
different candidate numbers on the main part of diversity (12,815
bugs). Figure 4 shows the fix rates of six NPR systems under different
candidate numbers. We set the candidate numbers from 1 to 100
with an interval of 5. The fix rate represents the ratio of perfect

Zhong, et al.

predictions. Fixing one bug under candidate size K means within
the K candidates, at least one is identical to the human-written
patch.

Finding 2. Under different candidate numbers, the comparison
results of NPR systems can be different, even when they are trained
and evaluated with unified dataset. As shown in Figure 4, when
the candidate number is limited to 1, Recoder [67] performs best
out of the six systems. As the candidate number growing, the per-
formance gain of Recoder [67] is lower than that of SequenceR
[5] and CoCoNut [36]. When the candidate number reaches 100,
SequenceR [5] is the one that behaves best. We notice that several
previous NPR systems [18, 36, 67] don’t report their repairability
on a low candidate number that are comparative with others. Thus,
it is difficult to say which NPR System is better if they use different
settings for the candidate size, since we can not know whether the
performance difference comes from a different candidate size or
from the other components of the model. This finding verify the
necessity to compare various NPR systems under same candidates
numbers. Furthermore, we suggest that for making a detailed com-
parison for NPR, future studies should report their performances
on different candidate numbers.

Finding 3. The performance of the NPR system does not improve
linearly with the increase in the candidate number. Through Figure
4, we find that the performance of the NPR system is significantly
improved when candidate number is 100 compared to that when
candidate number is 1. However, the performance does not increase
linearly. To make this point intuitive, we draw a performance sepa-
ration line in the Figure 4. We find that, when the candidate number
is set to 50, all NPR systems have already reached 85% (+-5%) perfor-
mances of that under a candidate number of 100. Considering that
under a real-world bug-fixing scenario, each candidate needs to be
executed on test cases and checked manually. The time cost can be
seen as a linear growth with the increase of the candidate number.
Inspired by this finding, here we throw an empirical question for
future research: how to balance the time cost and the fix rate? For
example, for bugs in Bears [37] , it usually takes one to a few min-
utes to compile and run the test cases of the buggy project. It seems
affordable in our experiment since the max candidate number is
100. However, some NPR systems have use a much more larger can-
didate number (1,000 in CoCoNut [36] and 5,000 in Cure [18]). Such
huge candidate numbers can surely bring a better performance,
but meanwhile means that in a worst situation (the correct patch
locates in the latter part of candidates), validating candidates for
one bug may cost several days. Is it worthwhile to fix additional
little bugs at a much higher cost in time? We suggest follow-up
researchers should pay attention to this question.

4.2 Inclination

RQ2.1 When feeding the same training data, will NPR systems tend
to fix the same bugs?

Method and Results. We calculate the overlapped and unique
patching rate of six NPR systems, as shown in Table 4. Each row
presents the percentage of overlapped patched bugs of one NPR
system with the rest of the systems. The diagonal of the table
represents the rate of fixes that can only generated by the tool.

StandUp4NPR: Standardizing SetUp for Empirically Comparing Neural Program Repair Systems

ASE ’22, October 10-14, 2022, Rochester, MI, USA

CoCoNut

CODIT Edits

Recoder: 4.64%
SequenceR: 3.82%
CoCoNut: 3.51%
Tufano: 1.72%
Edits: 0.46%

CODIT: 0.01%

Ranks by fix@100:
SequenceR: 22.63%
CoCoNut: 18.75%
Recoder: 11.77%

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

= Tufano SequenceR Recoder
25.00%
? 85 % performance
20.00% :
= |
:: 15.00% I
ox |
E 10.00% |
——
5.00% |
|
0.00% }
CANDIDATE NUMBER

Tufano: 8.43%
Edits: 1.40%
CODIT: 0.75%

Figure 4: Influence of different candidate numbers on the repairability of the six NPR systems. The candidate number is ranged

from 1 to 100.

Table 4: Overlapping and unique patching rate of six NPR
systems.

Table 5: Fix rates on bugs of different types. The second row
represents the number of bugs of each type for evaluation.

‘CODIT Edits Tufano Recoder CoCoNut SequenceR

CODIT 7% 5% 22% 69% 85%
Edits 2% 9% 35% 24% 67% 78%
Tufano 5% 5% 17% 22% 61% 75%
Recoder 1% 2% 15% 39% 31% 54%
CoCoNut 2% 5% 27% 19% 27%
SequenceR 2% 4% 28% 29% 55% 24%

For example, 69% of bugs patched by CODIT (row 2) can also be
patched by CoCoNut (column 5). Among the bugs fixed by CODIT,
7% (row 2, column 2) can’t be fixed by any other NPR systems.

Finding 4. First, we note that there is indeed an overlap between
bugs fixed by each NPR system. Regarding the fix results we obtain
in Table 3, we find that overlapped rate is correlated to the repairabil-
ity of NPR systems. Generally, the more bugs one NPR system can
fix, the higher rate other systems overlap with it. For example,
SequenceR [5] and CoCoNut [36] reach the best and second-best
performance on the main part bugs. Relatively, the overlapping rate
of other systems with SequenceR [5] and CoCoNut [36] are much
more higher. This is reasonable since NPR systems have many com-
monalities on methodology. For example, as neural-based methods,
they all use an architecture called Encoder-Decoder [1]. Next, With
respect to the unique patching rate, we find that four NPR systems
(CoCoNut [36], Recoder [67], SequenceR [5] and Tufano [54]) have
a relatively higher rate of unique fixes than others, with respect to
27% (654 bugs), 39% (597 bugs), 24% (687 bugs) and 17% (188 bugs).
We find that Recoder [67] is the one that has the highest unique
patching rate. The possible reason is that Recoder [67] designs a
special mechanism that directly edits the abstract syntax tree of the
buggy program while other systems model the patch generation
process as a textual generation of code tokens. Whatever, the ob-
servation on the unique rate indicates that searching for a way to
incorporate percentages of various NPR systems will be a feasible
schema to improve the performance of NPR.

RQ2.2 Do NPR systems have a repair preference for bug types?

Simple Delete ~ Simple Replace Simple Insert Mixed

NPR System
1,718 bugs 2,078 bugs 4,532 bugs 4,487 bugs

CODIT 3% 1% 0.4% 0.2%
Edits 3% 2% 1% 1%
Tufano 17% 11% 8% 4%
CoCoNut 40% 27% 17% 8%
Recoder 41% 8% 7% 8%
SequenceR 45% 30% 21% 13%
Total 75% 42% 31% 21%

Method and Results. We first count the fix rates of NPR systems
on different-type bugs. Relying on the buggy code and the human-
written patches provided by NPR4j-Benchmark, we divide the bugs
into four categories from the perspective of needed editing opera-
tions: Simple Delete, Simple Replace, Simple Insert and Mixed. Each
type represents the editing operation required to convert a bug to
a patch. For example, a bug of type Simple Delete represents that
the bug can be transformed to the patch by deleting some code
tokens. Mixed means the bug need at least two types of edits to fix.
Table 5 summaries our statistical results on NPR systems’ fix rates
of different-type bugs. As shown in the first row of the table, we
first count the number of bugs belonging to four types on the main
part of Diversity (12,815 bugs). The next rows present fix rates of
NPR systems on each type.

Finding 5. We find that the current NPR systems perform great
on generating code-removal patches but are poor at fixing more
complex bugs. Concretely, We observe that among the four types
of bugs, NPR systems does best on fixing ones that only requires
deleting operations. CoCoNut [36], Recoder [67] and SequenceR
[5] reach a fix rate over 40% on Simple Delete bugs. In total, we
find 75% of Simple Delete bugs can be fixed by one of the six NPR
system. Is this because there are more samples of Simple Delete
type in the training data than other types? As we counted, the
proportion of four types of bugs (14% for Simple Delete,20% for
Simple Replace,37% for Simple Insert,29% for Mixed) in the training
set is similar to that in the evaluation set. So we conclude that NPR
systems really have a preference for repairing bugs of Simple Delete
type. This is reasonable since replacing and inserting are more

ASE 22, October 10-14, 2022, Rochester, MI, USA

Zhong, et al.

Table 6: Fix rates of NPR systems on bugs with different similarity. The similarity is calculated between one bug in the evaluation
set and its nearest sample in the training set. For instance, in column 13, "= 1" and "448" denote that 448 bugs have identical
buggy lines (but different contexts) with one sample in the training set. CODIT and Edits are excluded since they do not use a

context beyond the buggy line.

=0 <=04 <=05 <=055 <=06 <=0.65

<=0.7 <=075 <=08 <=09 <1

1| <1(%) =1(%)

NPR System

363 1,053 1,906 3,427 5,283 7,112 8,757 10,134 11,772 12,367 448 ‘ 12,367 448
Tufano 5 8 65 132 235 388 538 668 800 953 1,009 71 8% 16%
Recoder 0 1 55 155 343 565 831 1,050 1,227 1,420 1,497 41 12% 9%
CoCoNut 0 2 42 129 364 682 1,022 1,359 1,687 2,080 2,234 169 18% 38%
SequenceR 2 6 81 231 518 915 1,334 1,716 2,100 2,564 2,747 153 22% 34%

complex operations that require models to search extra tokens for
fixing. We also observe that on the Mixed-type bugs that require at
least two kinds of operations to generate the patches, performances
of the NPR models are struggling. Even the best system SequenceR
[5] can only reach a fix rate of 12.66%. In total, only 21% of Mixed-
type bugs can be fixed by either one of the six NPR systems. It
should also be concerned that the distribution of four types of bugs
in the real-world may be not the same. Since the real distribution in
the world is unable to measure, we take a look into bugs in NPR47-
Benchmark, which may somehow reflect the distribution. We find
that there are 70% bugs with types of Simple Insert or Mixed. It
seems that NPR systems still have a long way to go on fixing more
complex bugs.

4.3 Generalizability

RQ3 Can the NPR systems fix the bugs which have never been seen
during training?

Method and Results. Since we have already excluded all bug-fix
pairs that appear in the evaluation set from the training data, there
is no chance for models to see the bug and its fix scheme before
fixing when evaluation. While in some cases, model may have seen
the same buggy code lines under different contexts. It should be
emphasized that this is not a data leakage problem, because
there are no same input-output pairs in the evaluation set
as in the training set. In order to measure to what extent the
NPR system has already known about the bug before generating
predictions, We calculated the similarity between the buggy line
of each bug in the evaluation set (12,815 bugs in the diversity part)
and its nearest sample in the training set. We use the similarity
measuring algorithm coming from the difflib of python®, using the
funciton difflib.SequenceMatcher.ratio(). The algorithm calculates a
measure of two sequences’ similarity as a float in the range [0, 1] via
the formula 2 M /T where M is the number of matches and T is the
total number of elements in both sequences. For example, "abcd"
and "aefg" get a similarity of 0.25. Then, for each bug, we calculate
its similarity between every bug of the 144,641 bugs that are used
for training and record the nearest sample which has the biggest
similarity with the bug. Next, we group 12,815 bugs in evaluation
set according to its similarity with the nearest sample in the training
set and count the fix rate of each NPR system in each group. We
exclude CODIT [4] and Edits [8] since they do not use a context

8https://docs.python.org/3/library/difflib.html

beyond the buggy line. The other four NPR systems use either a
method-level context [36, 54, 67] or a class-level context[5].

Finding 6. NPR systems have the ability to fix bugs that have
never been seen during training. As shown in Table 6, If the similar-
ity of a bug and its nearest sample in the training set is less than 1,
it means the NPR system has never seen an identical bug before. We
find that NPR systems have good performances on such bugs. For
example, SequenceR [5] reaches a fix rate of 22.21%, which is 98%
performance on all bugs, according to the previous results on Figure
4. When lowing down the standard to less than 0.6 (as the difflib
document reports, a ratio() value over 0.6 means the sequences
are close matches), NPR systems still reach not bad performances,
respectively reaching 39%, 18%, 81%, 85%, 56% and 67% of full perfor-
mance. Even the bugs have nothing in common with the samples in
the training data (the similarity is equal to 0), Tufano’s model [54]
and SequenceR [5] can still fix some of them. An interesting finding
is that Tufano[54] fixes 5 and 8 bugs on "= 0" and "<= 0.4" parts,
outperforming the other five NPR systems. We guess the possible
reason is that Tufano[54] introduces an abstraction on the buggy
code, replacing identifiers and variables with sequential ids. Thus,
in some case, the model can have some knowledge of a "=0" bug
after abstraction.

Finding 7. NPR systems have a higher probability to fix one bug
if it has similar samples in the training data ("similar" refers to the
similarity between bug lines). Taking a left-to-right view over Table
6, we observe that NPR systems always reach a relatively higher fix
rate on bugs that have a higher similarity with the nearest sample
in the training set. Specifically, when the NPR system has seen the
identical buggy line during training (the similarity is equal to 1),
the bug has a much more higher rate to be fixed correctly. Three
systems (Tufano [54],CoCoNut [36], SequenceR [5]) have a signif-
icant performance improvement (54% to 200%) on samples with
a similarity less than 1 and that equaling to 1. However, We find
Recoder [67] is not sensitive to the similar sample, fixing 12% on
samples with a similarity less than 1 and 9% on samples with a
similarity equaling 1. This might be caused by its special represen-
tation on the source code. For each buggy method, Recoder [67]
represents it as three inputs: (1) AST traversal sequence, (2) Tag
embedding and (3) AST-based Graph. Such processed inputs may
contain more structural information, but have less textual relation-
ship with original codes. According to the above findings, collecting
more data will be an effective way to improve the performance of

StandUp4NPR: Standardizing SetUp for Empirically Comparing Neural Program Repair Systems

NPR systems, since a larger training set is more likely to contain
samples that are similar to the bugs the systems are applied to fix.

5 THREATS TO VALIDITY

There are several threats to the validity of our study. The first
threat is the hyperparameters of the six NPR systems. As is known,
the same architecture model with different hyperparameters can
yield very different performance. To mitigate this threat, we use a
random search to make models trained to their best states. Second
is the manual checking process performed in our experiment. In
our experiment, to minimize the subjective deviation brought by
inspectors, each test-adequate patch is checked by at least two of
the authors and the reason why one is plausible or correct must be
provided. Third is that our implementation of the NPR4J-Benchmark
and NPR4j-Framework is unavoidable to have some bugs that may
bring threats. We open source all our codes, data and experimental
results for the verification of other researchers.

6 RELATED WORKS

Works related to ours are empirical studies on APR tools [13, 17, 23,
30, 33, 34, 38, 44, 46, 62, 64]. These studies focus on some empirical
properties such as the efficiency of multiple APR systems. Among
them, the most similar work is from Durieux et al.[9] that empiri-
cally validate 11 test-suite-based repair tools on 5 benchmarks. The
authors run a huge experiment on 2,141 bugs and 23,551 repair
attempts. They focus on the issue of benchmark overfitting and
analyse the causes of non-patch generation.

Recently, we also notice there rises some analysis studies specifi-
cally for NPR [8, 45, 53, 58]. Tufano et al. [53] investigate the ability
of a Neural Machine Translation (NMT) model to learn how to au-
tomatically apply code changes implemented by developers during
pull requests. Ding et al. [8] and Namavar et al. [45] empirically
compare advantages of different design on NPR such as context
length and code tokenization.

Our study has two main differences compared with previous
related works. First, to our best knowledge, this is the seminal
study that performs huge empirical validation on multiple existing
NPR systems. Second, we focus on excluding non-methodology
threats and contributes a new benchmark and a framework tool.

7 CONCLUSION

In this paper, we focus on the empirical validation of six SOTA NPR
systems. First, we identify three differences on setups of previous
NPR systems that may bring threats to the validity of the com-
parison. To mitigate such threats, we construct a well-organized
benchmark named NPR4J-Benchmark and a framework tool named
NPR4F-Framework that supports training and evaluating NPR sys-
tems on a diversity of bugs. Based on the benchmark and framework,
we perform a large-scale empirical experiment, training and eval-
uating six latest NPR system (Tufano [54], CoCoNut [36], CODIT
[4], Edits [8], SequenceR [5] and Recoder [67]) on 13,706 java bugs
under same setups.

As we investigated, NPR systems show great potential on fixing
a diversity of bugs. The best system is able to repair 22% of the bugs
in our evaluation set. However, we also find some shortcomings of
NPR systems. For example, they are goot at dealing with code-delete

ASE ’22, October 10-14, 2022, Rochester, MI, USA

bugs but poor at fixing complex bugs that require mixed editing op-
erations. Our other findings point out several promising directions
for follow-up works. First, we find that the six NPR systems share
a not-low unique patching rate, which means searching for a way
to combine advantages of various NPR systems could be useful for
performance improving. Second, our findings on generalizability
demonstrate that NPR systems have a higher probability to fix one
bug if it has similar samples in the training data. In light of this
finding, we conclude that collecting more samples for training is a
practical trick to improve NPR.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Founda-
tion of China (61802167 and 62172214), Natural Science Foundation
of Jiangsu Province, China (BK20201250 and BK20210279), Coop-
eration Fund of Huawei-NJU Creative Laboratory for the Next
Programming, and the Open Project Program of the State Key Lab-
oratory of Mathematical Engineering and Advanced Computing
(No. 2020A06). Chuanyi Li and Jidong Ge are the corresponding
authors.

REFERENCES

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1409.0473

Berkay Berabi, Jingxuan He, Veselin Raychev, and Martin T. Vechev. 2021. TFix:
Learning to Fix Coding Errors with a Text-to-Text Transformer. In Proceedings
of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event (Proceedings of Machine Learning Research, Vol. 139), Marina
Meila and Tong Zhang (Eds.). PMLR, 780-791. http://proceedings.mlr.press/
v139/berabi21a.html

Tom Britton, Lisa Jeng, Graham Carver, and Paul Cheak. 2012. Quantify the time
and cost saved using reversible debuggers. Technical Report. Technical report,
Cambridge Judge Business School.

[4] Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray.
2020. Codit: Code editing with tree-based neural models. IEEE Transactions on
Software Engineering (2020).

Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noél Pouchet, Denys
Poshyvanyk, and Martin Monperrus. 2021. SequenceR: Sequence-to-Sequence
Learning for End-to-End Program Repair. IEEE Trans. Software Eng. 47, 9 (2021),
1943-1959. https://doi.org/10.1109/TSE.2019.2940179

Zimin Chen and Martin Monperrus. 2018. The CodRep Machine Learning on
Source Code Competition. CoRR abs/1807.03200 (2018). arXiv:1807.03200 http:
//arxiv.org/abs/1807.03200

Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang.
2020. Hoppity: Learning Graph Transformations to Detect and Fix Bugs in
Programs. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.
net/forum?id=SJeqs6EFvB

Yangruibo Ding, Baishakhi Ray, Premkumar T. Devanbu, and Vincent J. Hel-
lendoorn. 2020. Patching as Translation: the Data and the Metaphor. In 35th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2020,
Melbourne, Australia, September 21-25, 2020. IEEE, 275-286. https://doi.org/10.
1145/3324884.3416587

Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019.
Empirical review of Java program repair tools: a large-scale experiment on 2,
141 bugs and 23, 551 repair attempts. In Proceedings of the ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30,
2019, Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra Russo (Eds.).
ACM, 302-313. https://doi.org/10.1145/3338906.3338911

Thomas Durieux and Martin Monperrus. 2016. DynaMoth: dynamic code synthe-
sis for automatic program repair. In Proceedings of the 11th International Workshop
on Automation of Software Test, AST@ICSE 2016, Austin, Texas, USA, May 14-15,
2016, Christof J. Budnik, Gordon Fraser, and Francesca Lonetti (Eds.). ACM, 85-91.
https://doi.org/10.1145/2896921.2896931

[2

—_
A

—
)

G

7

8

[

[10

http://arxiv.org/abs/1409.0473
http://proceedings.mlr.press/v139/berabi21a.html
http://proceedings.mlr.press/v139/berabi21a.html
https://doi.org/10.1109/TSE.2019.2940179
https://arxiv.org/abs/1807.03200
http://arxiv.org/abs/1807.03200
http://arxiv.org/abs/1807.03200
https://openreview.net/forum?id=SJeqs6EFvB
https://openreview.net/forum?id=SJeqs6EFvB
https://doi.org/10.1145/3324884.3416587
https://doi.org/10.1145/3324884.3416587
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/2896921.2896931

ASE

[11]
[12]

[13

[14]

[15

[16]

[17]

(18

[19

[20

[21

[22

[23]

[24

[25

[26]

[27

S
&

[29

[30]

’22, October 10-14, 2022, Rochester, MI, USA

Thomas Durieux and Martin Monperrus. 2016. Introclassjava: A benchmark of
297 small and buggy java programs. (2016).

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
2017. Convolutional Sequence to Sequence Learning. In Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017 (Proceedings of Machine Learning Research, Vol. 70), Doina Precup
and Yee Whye Teh (Eds.). PMLR, 1243-1252. http://proceedings.mlr.press/v70/
gehring17a.html

Davide Ginelli, Matias Martinez, Leonardo Mariani, and Martin Monperrus. 2020.
A Comprehensive Study of Code-removal Patches in Automated Program Repair.
CoRR abs/2012.06264 (2020). arXiv:2012.06264 https://arxiv.org/abs/2012.06264
Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. 2016. Deep Learning.
MIT Press. http://www.deeplearningbook.org/

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Trans. Software
Eng. 38,1 (2012), 54-72. https://doi.org/10.1109/TSE.2011.104

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish K. Shevade. 2017. DeepFix:
Fixing Common C Language Errors by Deep Learning. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA, Satinder Singh and Shaul Markovitch (Eds.). AAAI Press, 1345-
1351. http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603

Jiajun Jiang, Yingfei Xiong, and Xin Xia. 2019. A manual inspection of Defects4]
bugs and its implications for automatic program repair. Sci. China Inf. Sci. 62, 10
(2019), 200102:1-200102:16. https://doi.org/10.1007/s11432-018-1465-6

Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-Aware Neural Ma-
chine Translation for Automatic Program Repair. In 43rd IEEE/ACM International
Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021.
IEEE, 1161-1173. https://doi.org/10.1109/ICSE43902.2021.00107

Yanjie Jiang, Hui Liu, Nan Niu, Lu Zhang, and Yamin Hu. 2021. Extracting Concise
Bug-Fixing Patches from Human-Written Patches in Version Control Systems.
In 43rd IEEE/ACM International Conference on Software Engineering, ICSE 2021,
Madrid, Spain, 22-30 May 2021. IEEE, 686-698. https://doi.org/10.1109/ICSE43902.
2021.00069

René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4]: a database of
existing faults to enable controlled testing studies for Java programs. In Interna-
tional Symposium on Software Testing and Analysis, ISSTA ’14, San Jose, CA, USA -
FJuly 21 - 26, 2014, Corina S. Pasareanu and Darko Marinov (Eds.). ACM, 437-440.
https://doi.org/10.1145/2610384.2628055

Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In 35th International
Conference on Software Engineering, ICSE °13, San Francisco, CA, USA, May 18-26,
2013, David Notkin, Betty H. C. Cheng, and Klaus Pohl (Eds.). IEEE Computer
Society, 802-811. https://doi.org/10.1109/ICSE.2013.6606626

Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. 2020. FixMiner: Mining relevant fix
patterns for automated program repair. Empir. Softw. Eng. 25, 3 (2020), 1980-2024.
https://doi.org/10.1007/510664-019-09780-z

Xuan-Bach Dinh Le, David Lo, and Claire Le Goues. 2016. Empirical Study on
Synthesis Engines for Semantics-Based Program Repair. In 2016 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2016, Raleigh, NC, USA,
October 2-7, 2016. IEEE Computer Society, 423-427. https://doi.org/10.1109/
ICSME.2016.68

Xuan-Bach Dinh Le, David Lo, and Claire Le Goues. 2016. History Driven Program
Repair. In IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering, SANER 2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume 1.
IEEE Computer Society, 213-224. https://doi.org/10.1109/SANER.2016.76
Armin Lederer, Alexandre Capone, Jonas Umlauft, and Sandra Hirche. 2021. How
Training Data Impacts Performance in Learning-Based Control. IEEE Control.
Syst. Lett. 5, 3 (2021), 905-910. https://doi.org/10.1109/LCSYS.2020.3006725
Suhua Lei, Huan Zhang, Ke Wang, and Zhendong Su. 2018. How training data
affect the accuracy and robustness of neural networks for image classification.
(2018).

Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. DLFix: context-based code
transformation learning for automated program repair. In ICSE "20: 42nd In-
ternational Conference on Software Engineering, Seoul, South Korea, 27 June
- 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 602-614.
https://doi.org/10.1145/3377811.3380345

Yi Li, Shaohua Wang, Tien N. Nguyen, and Son Van Nguyen. 2019. Improving bug
detection via context-based code representation learning and attention-based
neural networks. Proc. ACM Program. Lang. 3, OOPSLA (2019), 162:1-162:30.
https://doi.org/10.1145/3360588

Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.
QuixBugs: a multi-lingual program repair benchmark set based on the quixey
challenge. In Proceedings Companion of the 2017 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications: Software for
Humanity, SPLASH 2017, Vancouver, BC, Canada, October 23 - 27, 2017, Gail C.

Murphy (Ed.f. ACM, 55-56. https://doi.org/10.1145/3135932.3135941
Kui Liu, Anil Koyuncu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein,

and Yves Le Traon. 2019. You Cannot Fix What You Cannot Find! An Investigation

Zhong, et al.

of Fault Localization Bias in Benchmarking Automated Program Repair Systems.
In 12th IEEE Conference on Software Testing, Validation and Verification, ICST 2019,
Xi’an, China, April 22-27, 2019. IEEE, 102-113. https://doi.org/10.1109/ICST.2019.
00020

Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019.
AVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations.
In 26th IEEE International Conference on Software Analysis, Evolution and Reengi-
neering, SANER 2019, Hangzhou, China, February 24-27, 2019, Xinyu Wang, David
Lo, and Emad Shihab (Eds.). IEEE, 456-467. https://doi.org/10.1109/SANER.2019.
8667970

Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar:
revisiting template-based automated program repair. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2019, Beijing, China, July 15-19, 2019, Dongmei Zhang and Anders Meller (Eds.).
ACM, 31-42. https://doi.org/10.1145/3293882.3330577

Kui Liu, Li Li, Anil Koyuncu, Dongsun Kim, Zhe Liu, Jacques Klein, and
Tegawendé F. Bissyandé. 2021. A Critical Review on the Evaluation of Au-
tomated Program Repair Systems. Journal of Systems and Software 171 (2021),
110817. https://doi.org/10.1016/j.js5.2020.110817

Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé F. Bissyandé,
Dongsun Kim, Peng Wu, Jacques Klein, Xiaoguang Mao, and Yves Le Traon. 2020.
On the efficiency of test suite based program repair: A Systematic Assessment of
16 Automated Repair Systems for Java Programs. In ICSE "20: 42nd International
Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020,
Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 615-627. https://doi.org/10.
1145/3377811.3380338

Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. 2017. DéjaVu: a map of code duplicates on GitHub.
Proc. ACM Program. Lang. 1, OOPSLA (2017), 84:1-84:28. https://doi.org/10.1145/
3133908

Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. CoCoNuT: combining context-aware neural translation models
using ensemble for program repair. In ISSTA °20: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22,
2020, Sarfraz Khurshid and Corina S. Pasareanu (Eds.). ACM, 101-114. https:
//doi.org/10.1145/3395363.3397369

Fernanda Madeiral, Simon Urli, Marcelo de Almeida Maia, and Martin Monperrus.
2019. BEARS: An Extensible Java Bug Benchmark for Automatic Program Repair
Studies. In 26th IEEE International Conference on Software Analysis, Evolution
and Reengineering, SANER 2019, Hangzhou, China, February 24-27, 2019, Xinyu
Wang, David Lo, and Emad Shihab (Eds.). IEEE, 468-478. https://doi.org/10.1109/
SANER.2019.8667991

Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. 2017. Automatic repair of real bugs in java: a large-scale experiment
on the defects4j dataset. Empir. Softw. Eng. 22, 4 (2017), 1936-1964. https:
//doi.org/10.1007/s10664-016-9470-4

Matias Martinez and Martin Monperrus. 2016. ASTOR: a program repair library
for Java (demo). In Proceedings of the 25th International Symposium on Software
Testing and Analysis, ISSTA 2016, Saarbriicken, Germany, July 18-20, 2016, Andreas
Zeller and Abhik Roychoudhury (Eds.). ACM, 441-444. https://doi.org/10.1145/
2931037.2948705

Matias Martinez and Martin Monperrus. 2018. Ultra-Large Repair Search Space
with Automatically Mined Templates: The Cardumen Mode of Astor. In Search-
Based Software Engineering - 10th International Symposium, SSBSE 2018, Mont-
pellier, France, September 8-9, 2018, Proceedings (Lecture Notes in Computer Sci-
ence, Vol. 11036), Thelma Elita Colanzi and Phil McMinn (Eds.). Springer, 65-86.
https://doi.org/10.1007/978-3-319-99241-9_3

Matias Martinez and Martin Monperrus. 2019. Astor: Exploring the design space
of generate-and-validate program repair beyond GenProg. J. Syst. Softw. 151
(2019), 65-80. https://doi.org/10.1016/j.js5.2019.01.069

Ehsan Mashhadi and Hadi Hemmati. 2021. Applying CodeBERT for Automated
Program Repair of Java Simple Bugs. In 18th IEEE/ACM International Conference
on Mining Software Repositories, MSR 2021, Madrid, Spain, May 17-19, 2021. IEEE,
505-509. https://doi.org/10.1109/MSR52588.2021.00063

Martin Monperrus. 2018. Automatic Software Repair: A Bibliography. ACM
Comput. Surv. 51, 1 (2018), 17:1-17:24. https://doi.org/10.1145/3105906

Manish Motwani, Sandhya Sankaranarayanan, René Just, and Yuriy Brun. 2018.
Do automated program repair techniques repair hard and important bugs?. In
Proceedings of the 40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chaudron, Ivica Crnkovic,
Marsha Chechik, and Mark Harman (Eds.). ACM, 25. https://doi.org/10.1145/
3180155.3182533

Marjane Namavar, Noor Nashid, and Ali Mesbah. 2021. A Controlled Experi-
ment of Different Code Representations for Learning-Based Bug Repair. CoRR
abs/2110.14081 (2021). arXiv:2110.14081 https://arxiv.org/abs/2110.14081
Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The
strength of random search on automated program repair. In 36th International

http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v70/gehring17a.html
https://arxiv.org/abs/2012.06264
https://arxiv.org/abs/2012.06264
http://www.deeplearningbook.org/
https://doi.org/10.1109/TSE.2011.104
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14603
https://doi.org/10.1007/s11432-018-1465-6
https://doi.org/10.1109/ICSE43902.2021.00107
https://doi.org/10.1109/ICSE43902.2021.00069
https://doi.org/10.1109/ICSE43902.2021.00069
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1007/s10664-019-09780-z
https://doi.org/10.1109/ICSME.2016.68
https://doi.org/10.1109/ICSME.2016.68
https://doi.org/10.1109/SANER.2016.76
https://doi.org/10.1109/LCSYS.2020.3006725
https://doi.org/10.1145/3377811.3380345
https://doi.org/10.1145/3360588
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1109/ICST.2019.00020
https://doi.org/10.1109/ICST.2019.00020
https://doi.org/10.1109/SANER.2019.8667970
https://doi.org/10.1109/SANER.2019.8667970
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1016/j.jss.2020.110817
https://doi.org/10.1145/3377811.3380338
https://doi.org/10.1145/3377811.3380338
https://doi.org/10.1145/3133908
https://doi.org/10.1145/3133908
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.1109/SANER.2019.8667991
https://doi.org/10.1109/SANER.2019.8667991
https://doi.org/10.1007/s10664-016-9470-4
https://doi.org/10.1007/s10664-016-9470-4
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1007/978-3-319-99241-9_3
https://doi.org/10.1016/j.jss.2019.01.069
https://doi.org/10.1109/MSR52588.2021.00063
https://doi.org/10.1145/3105906
https://doi.org/10.1145/3180155.3182533
https://doi.org/10.1145/3180155.3182533
https://arxiv.org/abs/2110.14081
https://arxiv.org/abs/2110.14081

StandUp4NPR: Standardizing SetUp for Empirically Comparing Neural Program Repair Systems

Conference on Software Engineering, ICSE "14, Hyderabad, India - May 31 - June
07, 2014, Pankaj Jalote, Lionel C. Briand, and André van der Hoek (Eds.). ACM,
254-265. https://doi.org/10.1145/2568225.2568254

Ripon K. Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul R. Prasad.
2018. Bugs.jar: a large-scale, diverse dataset of real-world Java bugs. In Proceedings
of the 15th International Conference on Mining Software Repositories, MSR 2018,
Gothenburg, Sweden, May 28-29, 2018, Andy Zaidman, Yasutaka Kamei, and Emily
Hill (Eds.). ACM, 10-13. https://doi.org/10.1145/3196398.3196473

Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad. 2017. ELIXIR:
effective object oriented program repair. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE 2017, Urbana,
IL, USA, October 30 - November 03, 2017, Grigore Rosu, Massimiliano Di Penta,
and Tien N. Nguyen (Eds.). IEEE Computer Society, 648-659. https://doi.org/10.
1109/ASE.2017.8115675

Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get To The Point:
Summarization with Pointer-Generator Networks. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics, ACL 2017, Van-
couver, Canada, July 30 - August 4, Volume 1: Long Papers, Regina Barzilay
and Min-Yen Kan (Eds.). Association for Computational Linguistics, 1073-1083.
https://doi.org/10.18653/v1/P17-1099

Yu Tang, Long Zhou, Ambrosio Blanco, Shujie Liu, Furu Wei, Ming Zhou, and
Muyun Yang. 2021. Grammar-Based Patches Generation for Automated Program
Repair. In Findings of the Association for Computational Linguistics: ACL/IJCNLP
2021, Online Event, August 1-6, 2021 (Findings of ACL, Vol. ACL/IJCNLP 2021),
Chengging Zong, Fei Xia, Wenjie Li, and Roberto Navigli (Eds.). Association for
Computational Linguistics, 1300-1305. https://doi.org/10.18653/v1/2021 findings-
acl.111

TRICENTIS TEAM. 2017. $1.1 Trillion Impacted by Software Defects: A Test-
ing Fail? https://www.tricentis.com/blog/1-1-trillion-in-assets-impacted-by-
software-defects-a-software-testing-fail/

Leonardo Trujillo, Omar M. Villanueva, and Daniel Eduardo Hernandez. 2021.
A Novel Approach For Search-Based Program Repair. IEEE Softw. 38, 4 (2021),
36-42. https://doi.org/10.1109/MS.2021.3070552

Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and
Denys Poshyvanyk. 2019. On learning meaningful code changes via neural
machine translation. In Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee,
Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 25-36. https://doi.org/10.
1109/ICSE.2019.00021

Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2019. An Empirical Study on Learning Bug-Fixing
Patches in the Wild via Neural Machine Translation. ACM Trans. Softw. Eng.
Methodol. 28, 4 (2019), 19:1-19:29. https://doi.org/10.1145/3340544

Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and Rishabh Singh.
2019. Neural Program Repair by Jointly Learning to Localize and Repair. In 7th
International Cunference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net. https://openreview.net/forum?id=
ByloJ20qtm

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is
All you Need. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy

ASE ’22, October 10-14, 2022, Rochester, MI, USA

Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). 5998-6008. https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa- Abstract.html

Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In 31st International
Conference on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada,
Proceedings. IEEE, 364-374. https://doi.org/10.1109/ICSE.2009.5070536

Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys
Poshyvanyk. 2019. Sorting and Transforming Program Repair Ingredients via
Deep Learning Code Similarities. In 26th IEEE International Conference on Software
Analysis, Evolution and Reengineering, SANER 2019, Hangzhou, China, February
24-27, 2019, Xinyu Wang, David Lo, and Emad Shihab (Eds.). IEEE, 479-490.
https://doi.org/10.1109/SANER.2019.8668043

Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and
Lu Zhang. 2017. Precise condition synthesis for program repair. In Proceedings of
the 39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017, Sebastian Uchitel, Alessandro Orso, and Martin P.
Robillard (Eds.). IEEE / ACM, 416-426. https://doi.org/10.1109/ICSE.2017.45
Michihiro Yasunaga and Percy Liang. 2020. Graph-based, Self-Supervised
Program Repair from Diagnostic Feedback. In Proceedings of the 37th Inter-
national Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event (Proceedings of Machine Learning Research, Vol. 119). PMLR, 10799-10808.
http://proceedings.mlr.press/v119/yasunaga20a.html

Michihiro Yasunaga and Percy Liang. 2021. Break-It-Fix-It: Unsupervised Learn-

ing for Program Repair. In Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 ﬁly 2021, Virtual Event (Proceedings of Ma-

chine Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR,
11941-11952. http://proceedings.mlr.press/v139/yasunaga21la.html

He Ye, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2021. A
comprehensive study of automatic program repair on the QuixBugs benchmark.
7. Syst. Softw. 171 (2021), 110825. https://doi.org/10.1016/j.js5.2020.110825

He Ye, Matias Martinez, and Martin Monperrus. 2021. Automated patch as-
sessment for program repair at scale. Empir. Softw. Eng. 26, 2 (2021), 20.
https://doi.org/10.1007/s10664-020-09920-w

Jooyong Yi, Umair Z. Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roy-
choudhury. 2017. A feasibility study of using automated program repair for
introductory programming assignments. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Ger-
many, September 4-8, 2017, Eric Bodden, Wilhelm Schifer, Arie van Deursen, and
Andrea Zisman (Eds.). ACM, 740-751. https://doi.org/10.1145/3106237.3106262
Yuan Yuan and Wolfgang Banzhaf. 2020. ARJA: Automated Repair of Java Pro-
grams via Multi-Objective Genetic Programming. IEEE Trans. Software Eng. 46,
10 (2020), 1040-1067. https://doi.org/10.1109/TSE.2018.2874648

Wenkang Zhong, Chuanyi Li, Jidong Ge, and Bin Luo. 2022. Neural Program
Repair: Systems, Challenges and Solutions. arXiv preprint arXiv:2202.10868 (2022).

Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A syntax-guided edit decoder for neural program repair. In
ESEC/FSE ’21: 29th ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, Athens, Greece, August 23-28,
2021, Diomidis Spinellis, Georgios Gousios, Marsha Chechik, and Massimiliano Di
Penta (Eds.). ACM, 341-353. https://doi.org/10.1145/3468264.3468544

https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1145/3196398.3196473
https://doi.org/10.1109/ASE.2017.8115675
https://doi.org/10.1109/ASE.2017.8115675
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/2021.findings-acl.111
https://doi.org/10.18653/v1/2021.findings-acl.111
https://www.tricentis.com/blog/1-1-trillion-in-assets-impacted-by-software-defects-a-software-testing-fail/
https://www.tricentis.com/blog/1-1-trillion-in-assets-impacted-by-software-defects-a-software-testing-fail/
https://doi.org/10.1109/MS.2021.3070552
https://doi.org/10.1109/ICSE.2019.00021
https://doi.org/10.1109/ICSE.2019.00021
https://doi.org/10.1145/3340544
https://openreview.net/forum?id=ByloJ20qtm
https://openreview.net/forum?id=ByloJ20qtm
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1109/SANER.2019.8668043
https://doi.org/10.1109/ICSE.2017.45
http://proceedings.mlr.press/v119/yasunaga20a.html
http://proceedings.mlr.press/v139/yasunaga21a.html
https://doi.org/10.1016/j.jss.2020.110825
https://doi.org/10.1007/s10664-020-09920-w
https://doi.org/10.1145/3106237.3106262
https://doi.org/10.1109/TSE.2018.2874648
https://doi.org/10.1145/3468264.3468544

	Abstract
	1 Introduction
	2 Differences on setups of NPR systems
	3 Study Design
	3.1 Research Questions
	3.2 Subject NPR Systems
	3.3 Dataset Construction
	3.4 Framework Implementation
	3.5 Experimental Setup

	4 Study Results and Discussion
	4.1 Repairability
	4.2 Inclination
	4.3 Generalizability

	5 Threats to Validity
	6 Related Works
	7 Conclusion
	Acknowledgments
	References

