
Towards Automated Android App Internationalisation:
An Exploratory Study

Pei Liua, Qingxin Xiab,∗, Kui Liuc, Juncai Guod, Xin Wangd, Jin Liud, John Grundya, Li Lie

aMonash University, Victoria, Australia
bNorth China Institute of Science and Technology, Hebei, China

cHuawei, China
dWuhan University, Wuhan, China

eBeihang University, Beijing, China

Abstract

Android has become the most popular mobile platform with over 2.5 billion active users who use many different languages

across many different countries. In order for Android apps to be usable by all of them, app developers usually need to add

an internationalisation feature that adapts the app to the users’ linguistic and cultural requirements. Such a process,

including the translation from the default language to up to thousands of languages, is usually achieved via manual

efforts and hence is resource-intensive, time-consuming, and error-prone. Automated approaches are hence in demand

to help developers mitigate such manual efforts. Since there are millions of apps proposed already for Android users, we

are interested in knowing to what extent internationalisation has been supported. Our experimental results show that

Android apps, at least the ones released on online markets, have mostly been equipped with internationalisation features,

with the number of supported languages varies significantly. By mapping the actual term translations among different

languages, we further find that the translations tend to be consistent among different apps, suggesting the possibility to

learn from this data to achieve automated app internalization. To explore this idea we implemented a Transformer-based

prototype approach Androi18n, that learns from developers’ practical translations to achieve automated mobile app text

translations. Experimental results show that Androi18n is effective in achieving our objective, and its high performance

is generic across the translations of different languages.

1. Introduction

Android, as the most popular Mobile Operating Sys-

tem [1], very widely used since its first version released in

September 2008. As of May 2019, there are 2.5 billion ac-

tive Android devices worldwide. To date, there are more

∗Corresponding author
Email addresses: Pei.Liu@monash.edu (Pei Liu),

xiaqingxin@ncist.edu.cn (Qingxin Xia), brucekuiliu@gmail.com

(Kui Liu), guojuncai1992@163.com (Juncai Guo),

xinwang0920@whu.edu.cn (Xin Wang), jinliu@whu.edu.cn (Jin

Liu), John.Grundy@monash.edu (John Grundy),

lilicoding@ieee.org (Li Li)

than 3 million Android apps on the official Google Play

store.

Among many reasons making Android a huge success in

the mobile market, internationalisation (or i18n in short) is

an important one1. Internationalisation enables the apps

to be used with various languages and regions without en-

gineering changes. This is achieved by preparing the code

to load content from multiple files representing supported

usage locales. A toggle is then used between different con-

tent and settings based on the chosen locale (e.g., FR for

1https://www.martechadvisor.com/articles/proximity-

marketing/mobile-app-localization-and-internationalization/

Preprint submitted to Elsevier November 22, 2022

https://www.martechadvisor.com/articles/proximity-marketing/mobile-app-localization-and-internationalization/
https://www.martechadvisor.com/articles/proximity-marketing/mobile-app-localization-and-internationalization/

French). This approach allows the app to be smoothly

used by users from different countries and regions speaking

different languages. While increasing the visibility of the

app, it also positively impacts the app’s install and usage

rate. As recently revealed by Infopulse2, the largest num-

ber of mobile users are located in India, Indonesia, South

Africa, Turkey, and China. Ignoring those languages could

be the main reason causing an app to be low-downloaded

or low-rated. As disclosed by the Common Sense Advisory

Survey [2], users will also have an emotional connection to

the app that talks in their mother tongue and hence will

be more likely to choose apps supporting their native lan-

guages.

Internationalisation is the key to successfully spread An-

droid apps in the world. However, it is not clear how inter-

nationalisation is currently supported in practice in real-

world Android apps. The internationalisation rate of apps

in the Android ecosystem and the number of languages

supported by real-world Android apps remain unclear for

researchers and practitioners. It is also unknown if the

provided language translations are complete and reliable

for those apps that do have internationalisation feature.

To the best of our knowledge, this research direction has

been little explored by the research community.

To deepen our systematic knowledge of Android app in-

ternationalisation, we first conducted an exploratory study

on the internationalisation status quo of real-world An-

droid apps. Our experimental results reveal that existing

apps, especially closed-source ones, are most likely to sup-

port internationalisation with a range of languages sup-

ported. We further looked into the internationalisation

provided by Android apps and confirm that similar terms

have recurrently appeared in different Android apps, and

those apps generally agree with each other when translat-

ing the terms to other languages. This empirical evidence

2https://medium.com/@infopulseglobal_9037/mobile-app-

internationalization-ways-and-methods-to-boost-revenue-by-26-

4f8985d3c4bd

suggests that it is possible to achieve automated Android

app internationalisation by learning from existing apps’

internationalisation contents.

There are, to the best of our knowledge, no existing

works conducted to help developers characterize interna-

tionalisation for the development of Android apps. Each

development team has to rely on professional translators to

implement dedicated internationalisation features for their

apps, resulting in uncountable efforts spent on repetitive

yet boring tasks. Hence, we argue that there is a strong

need for inventing an automated Android app internation-

alisation approach that can liberate developers from com-

pleting such labor-intensive tasks. The only work we are

aware of is the one proposed by Wang et al. [3], who pro-

posed an RNN-based approach [4] to achieve such a pur-

pose. Unfortunately, RNN-based approaches process em-

bedded tokens one by one sequentially and hence will suf-

fer from long dependency issues, which will subsequently

impact the prediction results.

Motivated by these findings, we have prototyped an au-

tomated app internationalisation approach based on the

famous Transformer model3 trained on the translation

agreements among real-world Android apps. Experimen-

tal results show that our approach is effective, being able

to outperform the state-of-the-art and achieve reliable text

translations when fulfilling the internationalisation feature

for Android apps.

To summarise, this research makes the following key

contributions:

• We present the first exploratory study to understand

the status quo of app internationalisation in the An-

droid community.

3Unlike RNN, which treats a sentence word by word, Transformer

processes sentences as a whole. Transformer further goes beyond

RNN by supporting multi-head attention and positional embeddings,

which further provide information about the relationship between

different words.

2

https://medium.com/@infopulseglobal_9037/mobile-app-internationalization-ways-and-methods-to-boost-revenue-by-26-4f8985d3c4bd
https://medium.com/@infopulseglobal_9037/mobile-app-internationalization-ways-and-methods-to-boost-revenue-by-26-4f8985d3c4bd
https://medium.com/@infopulseglobal_9037/mobile-app-internationalization-ways-and-methods-to-boost-revenue-by-26-4f8985d3c4bd

• We design and prototype a neural network-based tool

called Androi18n for achieving automated app inter-

nationalisation through learning knowledge from ex-

isting Android apps.

• We evaluate Androi18n using a large set of real-world

Android apps and against five popular speaking lan-

guages. The corresponding experimental results show

that our approach is effective, being able to outper-

form the state-of-the-art approaches and generate re-

liable translations.

Open source. The source code and datasets are all

made publicly available in our artifact package [5].

2. Background

Internationalisation has been a common feature imple-

mented in modern software to enter the global market

for decades [6]. The idea of internationalisation is to de-

couple multi-language support from engineering works, so

that developers can exclusively focus on function develop-

ment while dedicated language translators can address the

translations between different languages.

System.out.println("Hello.");
System.out.println("How are you?");

Locale currentLocale new Locale(language, country);
ResourceBundle messages = getBundle(currentLocale);
System.out.println(messages.getString("greetings"));
System.out.println(messages.getString("inquiry"));

message-us.txt
 greetings:Hello.
 inquiry:How are you?

message-fr.txt
 greetings:Bonjour.
 inquiry:Comment allez-vous?

(1) Isolating hard-coded
texts to configuration files

(2) Switching texts based on
locale

Figure 1: Example of Java internationalisation excerpted from [7].

Figure 1 shows a simple example4 excerpted from [7]

that illustrates how the internationalisation of programs is

(manually) achieved. At the beginning, developers need to

identify all the hard-coded texts that will be shown to users

4The full example is available as a tutorial [7].

and should be translated based on users’ locale. The iden-

tified hard-coded texts are then maintained in a dedicated

configuration file. Their corresponding translations are

subsequently maintained in other configuration files (i.e.,

one per language). After that, the programming code can

refer to these files for accessing the texts needed to show

on the software (e.g., messages.getString(”greetings”)).

Based on users’ locale, the corresponding configuration file

can be loaded (without largely modifying the program-

ming code), and the displaying languages will be switched

to the one best fit for the users.

My App

build.gradle
(build.gradle.kts)

settings.gradle gradle gradlew gradlew.bat app

wrapper

gradle-wrapper.jar gradle-wrapper.properties

build.gradle
(build.gradle.kts)

build libs src

main
java res AndroidManifest.xml

...

... drawable layout anim xml raw values values-fr values-ja values-...

strings.xml strings.xml strings.xml strings.xml

Figure 2: The typical directory structure of an Android application.

1 <!-- Code snippet from strings.xml under directory values -->

2 <resources>

3 <string name=”app_name”>Launcher Play</string>

4 <string name=”wallpaper”>Wallpaper</string>

5 <string name=”a_beer”>A Beer</string>

6 <string name=”icon_size”>Icon size</string>

7 <string name=”circle_menu_apps”>Circle menu apps</

string>

8 ...

9

10 <!-- Code snippet from strings.xml under directory values-es -->

11 <resources>

12 <string name=”app_name”>Launcher Play</string>

13 <string name=”wallpaper”>Fondo de pantalla</string>

14 <string name=”a_beer”>Una cerveza</string>

15 <string name=”icon_size”>Tamaño de icono</string>

16 <string name=”circle_menu_apps”>Aplicaciones del circulo<

/string>

17 ...

Listing 1: Code snippets of strings.xml excerpted from Android

project [8].

3

The internationalisation of Android apps is supported

in a way similar to traditional programs. The interna-

tionalisation mechanism adopted by Android apps is also

implemented through configuration files. Figure 2 illus-

trates the typical file structure of an Android project.

The configuration files are located under the res direc-

tory. The texts configured in file values/strings.xml will

be displayed as the default setting, which should be the

language that most intended users are familiar with. The

alternative texts for different languages are provided in

file strings.xml in dedicated directories (often in the form

of values-<qualifier> in the res directory. The <quali-

fier> is a locale name indicating the language that is pro-

vided for [9]. For example, values-es indicates that its

strings.xml configuration file is written in Spanish (hence

the app will display Spanish if the users’ locale is config-

ured as so) as the example in Listing 1. When users run

the app, the Android system selects the specific resources

according to the devices’ locale. If no specific <qualifier>

is provided, the default setting will be used.

3. Exploratory Study

3.1. Dataset

We plan to conducted our exploratory study on real-

world Android apps, including both open-source and

closed-source Android apps.

Open-source Android apps: Apps in this cate-

gory have their source code made publicly available in

the community, e.g., on popular code hosting sites such

as Github and Bitbucket or dedicated sharing sites such

as F-Droid for distributing open-source Android apps. In

this work, we used the AndroZooOpen [10] dataset which

collects many open-source Android apps. AndroZooOpen

currently contains over 70,000 open-source Android apps

collected from the aforementioned resources (i.e., Github,

Bitbucket, F-Droid, etc.).

Closed-source Android apps: Apps in this category

come as compiled versions that are usually distributed by

their developers through app markets such as the official

Google Play store. In the current mobile ecosystem, there

are over 300 app stores today, including over 60 app mar-

kets in China and what’s more, this number is still grow-

ing5. In this work, instead of directly crawling apps from

those app markets, we leverage AndroZoo to collect closed-

source apps. The team of AndroZoo has pre-crawled over

10 million Android apps from various app markets, includ-

ing the official Google Play store and Chinese ones such

as App China.

3.2. Research Questions

To fulfill our exploratory study aiming at understand-

ing the status quo of Android app internationalisation,

we resort to answering the following four research ques-

tions, formed mainly from two perspectives: (1) configu-

ration and (2) content. The former perspective concerns

the internationalisation mechanism at the file level (e.g.,

whether internationalisation has been introduced and how

many languages are supported, etc.). The latter perspec-

tive investigates the actual internationalisation content

provided by app developers. This will only apply to such

apps that have been supported with an internationalisa-

tion mechanism.

RQ1 Randomly Selected Apps

RQ2 Randomly Selected Apps
with Internationalization

807

5000 RQ4 Same Set of
Closed-source Apps

807 RQ3 Subset
of Apps

AndroZooOpen

AndroZoo

5000

5000

5000

5000

Figure 3: The number of selected apps leveraged in the experiments

designed to answer the four research questions.

Particularly, the four research questions are as follows:

RQ1: To what extent are real-world Android apps in-

ternationalized?

Motivation and Dataset. There are two types of real-

world Android apps (e.g., open-source and closed-source

5https://www.businessofapps.com/guide/app-stores-list/

4

ones) frequently leveraged by our fellow researchers to ex-

plore security and quality issues of Android apps. As the

first research question, we would like to understand if in-

ternationalisation has been considered by these two types

of apps. Specifically, as illustrated in Figure 3, we ran-

domly select 5,000 open-source apps from AndroZooOpen

and 5,000 closed-source apps from AndroZoo to support

this research question.

Main Findings. Internationalisation is widely ad-

dressed in the closed-source Android apps, while it has

not been seriously taken into account by open-source app

developers.

RQ2: How many languages are supported by real-world

Android apps?

Motivation and Dataset. For such apps (both open-

source and closed-source) that have been provided with

internationalisation, we explore how many languages they

support. This research question will be helpful in under-

standing the most popular languages supported by real-

world Android apps. Since not all the apps of the 10,000

apps selected for answering the first RQ have been inter-

nationalised, we have to randomly re-select 10,000 apps

(5,000 open-source and 5,000 closed-source) to fulfill this

research question. This time, we guarantee that both of

the 5,000 apps have been internationalized.

Main Findings. Closed-source Android apps gener-

ally support more languages than that supported by open-

source apps. In terms of the most popular supported

languages, the difference between open-source and closed-

source apps is relatively small, i.e., English and Spanish

the most popular two languages for both open-source and

closed-source apps.

RQ3: Do the supported languages change during the

evolution of the Android apps?

Motivation and Dataset. This research question

concerns the evolution of the internationalisation feature.

With this research question, we aim to understand if the

supported languages will be changed in the lifetime of

given Android apps and observe hints in understanding

why such changes need to happen. Since this research

question concerns the history of Android apps, we have to

limit our experimental apps to have (1) explicit releases

(tags) for open-source apps and (2) lineage versions for

closed-source apps. To this end, we are able to select 807

open-source apps and 807 closed-source apps from the cor-

responding datasets used in the second research question

to prepare the experimental study of this research ques-

tion.

Main Findings. During the evolution of Android

apps, app developers will likely support new popular lan-

guages to attract more users.

RQ4: To what extent is the internationalisation pro-

vided by existing apps consistent with each other?

Motivation and Dataset. This research question goes

beyond file-level investigation to further look at the con-

tents of supported languages. Since open-source apps are

generally non-commercial ones (as revealed in the find-

ings of RQ1, only a small set of open-source apps are also

uploaded to Google Play), they might not have been de-

signed to be used by large-scale app users. Their quality,

including the contents put into supporting internationali-

sation, cannot be guaranteed. Therefore, in this research

question, we decide to only look at the internationalisation

contents of closed-source Android apps. Specifically, the

same set of 5,000 closed-source apps used in RQ2 is used

to prepare the experiments for this research question.

Main Findings. With over 95% of consistency rate,

the translation tends to be consistent among different An-

droid apps.

3.3. RQ1: Internationalisation Rate

Experimental Setup: To understand the status

quo of Android app internationalisation, we investigate to

what extent real-world Android apps supported with inter-

nationalisation feature. We randomly selected 5,000 real-

world open-source Android apps from AndroZooOpen [10].

5

We then randomly selected 5,000 closed-source Android

apps from AndroZoo [11].

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%
100.00%

ED
UC

AT
IO
N

BU
SIN

ES
S

TO
OL
S

FIN
AN

CE

NE
W
S_
AN

D_
M
AG
AZ
IN
ES

LIF
ES
TY
LE

PR
OD

UC
TIV

IT
Y

TR
AV

EL
_A
ND

_L
OC

AL

BO
OK
S_
AN

D_
RE
FE
RE
NC

E

EN
TE
RT
AI
NM

EN
T

PE
RS
ON

AL
IZA

TIO
N

GA
M
E_
CA
SU
AL

GA
M
E_
PU

ZZ
LE

SP
OR

TS

M
US
IC
_A
ND

_A
UD

IO

M
AP
S_
AN

D_
NA

VI
GA
TI
ON

SH
OP
PI
NG

HE
AL
TH
_A
ND

_F
ITN

ES
S

CO
M
M
UN

IC
AT
IO
N

GA
M
E_
AC
TI
ON

Figure 4: The percentage of internationalisation among the top-20

categories.

For each of the selected apps, we checked if it has been

supported with internationalisation feature based on the

following two rules: Rule 1: The app has adopted the

internationalisation mechanism introduced in Section 2

(e.g., the non-empty strings.xml shown in Figure 2 ex-

ists in Android apps). Rule 2: The app supports at least

two languages. For open-source apps, we directly search

for the relevant files in their repositories, while for closed-

source apps, we leverage the Android Asset Packaging Tool

(AAPT) [12] to traverse the res directory to locate the rel-

evant files. To determine the type of the supported lan-

guage, we check the qualifier of the directory containing

the strings.xml. The actual supported language is deter-

mined based on the name of the directory (e.g., the direc-

tory values-fr in Figure 2) where the internationalisation

file is located. However, the default language of the app

does not provide such information (e.g., directory values),

we resort to a popular Python tool (polyglot) [13] to iden-

tify the languages of internationalisation. We extract the

values of the items in the strings.xml and feed the values

into the popular package polyglot [13] to determine the

type of the language.

Results: Table 1 illustrates the international rate of

Android apps. Overall, 5,485 of the selected 10,000

real-world Android apps are supported with inter-

nationalisation feature, giving an internationalisation

Table 1: International rate of Android apps.

Open-source Closed-source Total

#. Apps 5,000 5,000 10,000

#. Apps (inter.) 497 4,988 5,485

Ratio (%) 9.91 99.76 54.85

rate of 54.85%.

Among the 5,000 open-source apps, only 497 apps sup-

port at least two different languages, giving an internation-

alisation rate of 9.91%. The low internationalisation rate

of open-source Android apps may be caused by the lack of

a dedicated team to develop and maintain the internation-

alisation task. Indeed, it requires experienced multilingual

developers to implement the internationalisation feature.

We further go one step deeper to check to what extent

the selected open-source apps are also released on the of-

ficial Google Play store. Our experimental result reveals

that only 2.74% (137/5,000) of the open-source Android

apps are currently available on Google Play.6 Among the

137 Android apps, only 48 of them support international-

isation, giving an internationalisation rate of 35%, which

is much higher than that of apps not available on Google

Play, for which the internationalisation rate is only around

9.2% (449/4863).

In contrast, most of the selected closed-source Android

apps (i.e., 99.76%=4,988/5,000) do support internation-

alisation. This big contrast, compared with open-source

Android app development teams, indicates that interna-

tionalisation is regarded as important by closed-source An-

droid apps. Indeed, almost every app released to app

markets has supported internationalisation, which is ex-

pected as app developers usually want to obtain as many

worldwide users as possible. We further go one step fur-

ther to check the internationalisation rate across different

categories among the selected real-world Android apps.

6There might be more apps uploaded to Google Play initially as

Google Play is regularly removing apps [14].

6

Since AndroZoo does not provide the category informa-

tion about the Google Play Apps. We write scripts to

crawl such categories directly from Google Play, for which

each published Android app has been assigned to a cate-

gory. We then calculate the internationalisation rate for

apps in each category. Figure 4 illustrates the rate for the

top-20 categories. As shown in the figure, as well as re-

vealed in our experimental results, the internationalisation

rate crossing different categories is generally stable. This

experimental evidence strongly suggests that category has

a limited impact on the adoption of the internationalisa-

tion feature in Android apps.

Answer to RQ1

Internationalisation is widely addressed in the closed-

source Android apps, while it has not been seriously

taken into account by open-source app developers.

3.4. RQ2: Diversity of Supported Languages

Experimental Setup: In our second research ques-

tion, we further investigate the diversity of languages sup-

ported by the apps that have internationalisation. Since

there are only 497 Android apps with the internation-

alisation feature (cf. Section 3.3), which may not be

representative enough to fulfill the experiment, we thus

re-select 5,000 open-source Android apps (We actually

checked more apps and only stopped at the point when

5,000 apps (with internationalisation supported) are lo-

cated.) that have been internationalized (i.e., with at least

two languages supported). We did the same re-selection

for closed-source Android apps (i.e., eventually collecting

5,000 closed-source apps with internationalisation). We

follow the approach presented in Section 3.3 to collect the

set of languages supported by each app.

Results: Table 2 summarises the statistic results, in-

cluding the most supported language, language pair (i.e.,

two different languages that are supported simultane-

ously), and language triple (i.e., three different languages

that are supported simultaneously). English and Span-

ish are the two most popular languages for both

open-source and closed-source Android apps. This

is consistent with the fact that English and Spanish are the

most popular (in terms of the number of countries and re-

gions) spoken languages in the world. Among the top-10

popular languages, nine of them are considered by both

open-source and closed-source Android apps. It implies

that app developers prefer to support the most popular

languages first when supporting internationalisation as it

enlarges the potential user base of their apps.

When looking at the number of apps each language is

supported, we can observe that the number of lan-

guages supported decreases sharply for the open-

source app set while that is generally stable in the

closed-source app set. This phenomenon also applies

to the top supported language pairs and language triples.

This result suggests that closed-source apps are not only

more likely to be integrated with internationalisation fea-

ture than open-source apps (as confirmed previously) but

also tend to include more languages compared to open-

source apps when implementing internationalisation. Sim-

ilar trends could also be observed when concerning lan-

guage pairs and language triples between open-source and

closed-source apps. This finding is further backed up by

the distribution of the number of supported languages in

open-source and closed-source apps, as illustrated in Fig-

ure 5. The difference is also statistically significant, as

confirmed by an MWW test.

op
en

cl
os

e

0 20 40 60 80 100

Figure 5: Distribution on the number of languages supported by

open-source and close-source Android apps.

7

Table 2: Top-10 languages, language pairs, and language triples ranked by the number of apps that supported them. To better present the

results, we have considered different language dialects as the same language (e.g., both American English (i.e., en-rUS) and British English

(i.e., en-rGB) are regarded as English (i.e., en).

Open-source Apps # Closed-source Apps

Language Language Pair Language Triple Language Language Pair Language Triple

en (English) 4,883 en - es 2,088 de - en - fr 1,498 en 4,988 en - es 4,805 de - en - fr 4,756

es (Spanish) 2,112 en - zh 1,937 en - es - fr 1,498 es 4,814 en - fr 4,802 en - es - fr 4,755

zh (Chinese) 1,988 de - en 1,929 de - en - es 1,471 fr 4,808 de - en 4,782 de - en - es 4,744

de (German) 1,941 en - fr 1,875 de - es - fr 1,402 de 4,784 es - fr 4,759 de - es - fr 4,737

fr (French) 1,888 en - ru 1,827 en - fr - ru 1,371 ru 4,750 de - fr 4,758 en - fr - it 4,720

ru (Russian) 1,838 en - pt 1,606 de - en - it 1,369 zh 4,737 en - ru 4,749 en - es - it 4,719

pt (Portuguese) 1,625 en - it 1,543 en - es - ru 1,368 it 4,733 de - es 4,746 en - es - ru 4,719

it (Italian) 1,551 es - fr 1,506 de - en - ru 1,367 pt 4,722 en - zh 4,735 es - fr - it 4,717

ja (Japanese) 1,398 de - fr 1,504 en - es - pt 1,364 ja 4,717 en - it 4,730 en - es - pt 4,716

pl (Polish) 1,319 de - es 1,477 en - fr - it 1,357 ko (Korean) 4,694 fr - it 4,723 en - fr - ru 4,716

Answer to RQ2

When supporting internationalisation, app developers

tend to include the most popular speaking languages

first, which is true for both open-source and closed-

source Android apps. In practice, closed-source apps

have generally included more languages than open-

source Android apps.

3.5. RQ3: Evolution of Internationalisation

Experimental Setup: In this research question, we

are interested in understanding how internationalisation

evolves during development and maintenance phases of

Android apps.

For the open-source projects, as mentioned early, we

have retained 807 projects to support this study. The

807 apps are selected from the initial 5,000 apps lever-

aged for answering the previous research question. The

reason why 807 apps are selected is that we limit the se-

lected apps to contain at least two public releases (via

tags on Github). Among the 5,000 open-source apps,

only 20.48% (1,024/5,000) of them have been explicitly

released by their developers. Unfortunately, 217 of the

1,024 projects contain only one release, which cannot be

used to support our evolutionary study. Therefore, we

have to further exclude them from consideration. Finally,

we retain a total of 807 open-source Android app projects

to fulfill this study.

For closed-source Android apps, we cannot extract their

evolutionary histories from the apps per se as such infor-

mation is not included. To overcome this limitation, we

followed the idea of Gao et al. [15, 16] to extract the evo-

lutionary histories based on the apps’ historically released

versions (termed as app lineages). We selected 807 apps

(the same number as the open-source apps) from 5,000

closed-source apps and resorted to AndroZoo again to mine

their historical releases (i.e., the same app but is released

at a different time). Eventually, we mined five versions

for each of the selected 807 apps based on the app’s last

modification time (one version per year7). This process

leads to in total 4,035 closed-source apps, which are then

leveraged to fulfill this study.

To determine the languages supported in our selected

Android apps, we first exclude languages represented

by the directory values-<qualifier> but with an empty

strings.xml file. For such language translations that are

indeed not empty, we investigate the proportion of terms

7If multiple versions are released in the same year, we will only

consider the last one in that year to form the dataset.

8

translated in their strings.xml files compared with the de-

fault setting (i.e., strings.xml file). We further exclude

languages with less than 30% terms translated for the se-

lected Android apps. The rationale behind this exclusion

is that such translations (with less than 30% terms trans-

lated) may not be representative, i.e., haven’t been fully

completed or come with low qualities.

Results: We present our analysis results both for open-

source projects and closed-source apps, respectively.

0.0 0.5 1.0 1.5 2.0
Figure 6: Language update times during the development of open

source Android apps. (open-source apps)

• Open source evolution: Among all the se-

lected open-source projects, we excluded 357 empty

strings.xml. Since there is no strings.xml containing

items less than 30% compared with the default one,

all the remaining strings.xml (69,349 files) are consid-

ered.

Figure 6 illustrates the distribution of the number

of languages additionally updated based on the two

subsequent releases for every project. Interestingly,

over 42% of the projects have updated at least

one language during their developments. Ta-

ble 3 further shows the number of languages added

or removed during the evolution based on the two

consecutive releases among the total 807 multiple re-

leases available projects. From the release perspective

in repeated cases, the most frequently updated

languages are Spanish and Russian, with 119

times added (cf. columns 1-3 on row 3) and

20 times removed (cf. columns 4-6 on row

3), respectively. The number of projects is nearly

the same as the number of times given languages are

added or removed in their releases. In general, new

languages are added along with the releases of the

projects which is what we expect. However, a few

languages are still added or removed multiple times

as the projects releases since the number of projects

and languages addition and removal are different be-

tween repeated and non-repeated cases.

We then manually looked into some of the projects

and confirmed that this is indeed the case for some of

the Android apps. Based on our understanding, the

main reason causing those repeated cases is that the

developers try to merge other branches with differ-

ent languages support before the release, such as the

project edipo2s/TESLegendsTracker [17]. For exam-

ple, suppose developers d1 and d2 have independently

contributed to branches b1 and b2, respectively. De-

velopers d1 has added the support of language l when

started to contribute to b1 while developers d2 has not

involved any changes related to the app international-

isation. Once b1 and b2 is merged, all the commits in

b1 will contain l while commits in b2 will not, leading

to repeated cases, e.g., language l is added, removed,

and then added again, and so on so forth. After ex-

cluding the repeated cases (columns 7-12 in Table 3),

the number of added and removed cases are reduced.

The aforementioned experimental results show that

app developers are more likely to add new languages

rather than removing existing ones when developing

their apps, as suggested by the high number of added

languages and the low number of removed languages

after excluding repeated cases.

• Closed source evolution: Of the total selected

4,035 closed-source apps (807 app lineages), we ex-

cluded 8 empty strings.xml and 105,447 strings.xml

containing items less than 30% compared with the

default one. As a result, 245,378 strings.xml files are

9

Table 3: The top-10 added and removed languages during the evolution of the open-source Android app projects on the basis of release.

With Repeated Cases include projects that have both added and removed the same languages, while those projects are excluded for

Without Repeated Cases.

With Repeated Cases Without Repeated Cases

Addition Count #. Projects Removal Count #. Projects Addition Count #. Projects Removal Count #. Projects

es 119 116 ru 20 19 es 86 86 zh 7 7

fr 107 105 es 20 19 de 75 75 in 7 7

de 103 100 id 19 17 fr 74 74 zh-rTW 6 6

ru 92 89 zh 19 19 ru 64 64 zh-rCN 6 6

zh-rTW 87 85 de 19 19 zh-rCN 53 53 nb 6 6

zh-rCN 77 77 fr 18 18 zh-rTW 52 52 es 6 6

pt-rBR 75 73 it 16 15 ja 49 49 de 5 5

nl 73 72 nl 15 14 nl 49 49 ru 5 5

ja 72 71 uk 13 13 it 47 47 fr 5 5

it 72 71 pt-rBR 12 12 pl 44 44 nl 5 5

Table 4: The top-10 added and removed languages during the evolution of the closed-source Android apps (i.e., app lineages). With
Repeated Cases include lineages that have both added and removed the same languages, while those lineages are excluded for Without
Repeated Cases.

With Repeated Cases Without Repeated Cases

Addition Count #. Lineages Removal Count #. Lineages Addition Count #. Lineages Removal Count #. Lineages

ms 358 350 ms-rMY 239 237 ms 140 140 ms-rMY 65 65

sq 350 346 et-rEE 239 237 sq 135 135 et-rEE 65 65

ur 350 345 mn-rMN 237 235 vi 133 133 hy-rAM 64 64

bn 349 344 lo-rLA 237 235 nb 133 133 ka-rGE 64 64

ml 349 344 km-rKH 237 235 th 133 133 lo-rLA 64 64

gu 346 341 ka-rGE 236 234 ur 132 132 mn-rMN 64 64

kn 345 339 hy-rAM 236 234 da 131 131 km-rKH 64 64

nb 345 334 my-rMN 205 205 fi 130 130 en-rIN 53 53

hy 338 334 ur-rPK 205 205 in 130 130 pt 52 52

be 328 321 ta-rIN 203 203 el 130 130 ml-rIN 68 68

retained for our study.

Figure 7 illustrates the distribution of the number of

supported languages with respect to the app versions

in the selected lineages. Clearly, as time goes by, de-

velopers of closed-source Android apps have appeared

to be interested in supporting more languages in their

apps. Similar to that of open-source projects, we

compare the extracted languages for two subsequent

apps (based on their release times) to decide whether

new languages are added or existing languages are re-

moved. Table 4 summarises the experimental results

obtained based on the evolution of closed-source An-

droid apps. Surprisingly, we also observe repeated

cases (i.e., add and remove the same language) dur-

ing the apps’ evolution history. Unfortunately, at

this stage, we do not have evidence to explain why

such cases happened in real-world Android apps. Af-

ter excluding the repeated cases, we could obtained

more or less similar observations compared to

that obtained during the evolution of the open-

source Android app projects. Nevertheless, the

top-10 list of added languages during the evolution of

10

year−1 year−2 year−3 year−4 year−5

0
50

10
0

15
0

#.
 s

up
po

rt
ed

 la
ng

ua
ge

Figure 7: Number of languages supported by five consecutive

closed-source Android app releases. As time goes by, the number

of supported languages generally increases.

closed-source Android apps is quite different (actually

less popular) that that of open-source Android app

projects. This result can be explained by the fact that

the popular languages (as listed in the open-source

projects) have already been included in the closed-

source apps during their first release in their lineages.

In summary, internationalisation has been regarded

as an important feature by Android app developers,

no matter they are developing open-source or closed-

source Android apps. Aiming for attracting as many

users as possible, developers are interested in sup-

porting more languages (during the evolution of their

apps) and tend to prioritize the popular ones.

Answer to RQ3

For both open-source and closed-source Android apps,

developers are interested in adding new languages to at-

tract more potential users during the evolution of their

apps. When adding new languages, they tend to include

and prioritize popular languages over less popular ones.

3.6. RQ4: Consistency

Experimental Setup: One of the objectives of this

work is to check if it is possible to learn from historical

internationalized apps to achieve automated app interna-

tionalisation. For example, if we empirically find that a

given term a (e.g., Wallpaper) in English has always been

translated to term b (e.g., Fondo de pantall) in Spanish in

a randomly selected set of apps (c.f. Listing 1), we could

conclude that Fondo de pantall is the Spanish version of

Wallpaper.

In this research question, we are hence interested in

checking if such consistency has been kept in real-world

Android apps. To this end, we use our 5,000 closed-source

Android apps that support at least two languages to in-

vestigate the term translation consistency among different

apps. To determine the translation consistency, we wrote

scripts to map translation terms between different lan-

guages among the collected Android apps and concluded

that the translation is consistent if and only if these exists

only one translation between two different languages for

the same term, such as the translation from Wallpaper in

English to Fondo de pantall in Spanish is consistent if and

only if the English term Wallpaper is always translated to

Fondo de pantall in Spanish among the selected Android

Apps.

Results: For the sake of simplicity, we only discuss the

top-10 term translations. Figure 8 illustrates the coverage

of term translations (i.e., how many terms are translated

w.r.t. the total number of terms needed to be translated)

of the top-10 pairs. Surprisingly, not all the terms dis-

played to app users are translated when supporting a new

language. In such a case, the default terms will be dis-

played. Nevertheless, the fact that only a small number

of terms are not covered shows that this impact could be

neglected, not even mention that some terms look very

similar between different languages.

For the translated terms, Table 5 further summarises

the experimental results concerning the consistency of the

translations. Again, the top-10 language pairs are consid-

ered, which are listed in the first column. The second and

third columns indicate the number of consistent transla-

tions (term a in language X is always translated to term

b in language Y in different apps) with respect to case

11

sensitive (i.e., exactly the same) and case insensitive (i.e.,

the same text, but some characters come with different

cases) comparisons. The fourth column shows the per-

centage of inconsistent translations, i.e., the same term is

translated to different ones by different apps. For exam-

ple, the term “View Posts” in English has been translated

to both “Ver publicaciones” and “Ver posts” in Spanish.

The fact that only a small amount of translations is

inconsistent among different Android apps shows

that the existing translations, with at least 95%

of translations agreed by randomly selected apps,

are quite reliable. Thus it seems very possible to learn

from those existing (or historical) translations to perform

automated text translation so as to achieve accurate and

automated internationalisation for Android apps.

0.00

0.25

0.50

0.75

1.00

es
−>

fr

es
−>

it

es
−>

ru
fr−

>it

fr−
>r

u

de
−>

fr

de
−>

es

de
−>

it

de
−>

ru
it−

>r
u

%
. o

f t
ra

ns
la

tio
n

ite
m

s

Uncover Cover

Figure 8: The coverage of translated items of the top-10 language

pairs.

Answer to RQ4

When supporting app internationalisation, not all the

terms have been translated to the targeted languages.

Nevertheless, for such terms that are indeed translated,

the translation tends to be consistent among different

Android apps (with over 95% of consistency rate).

4. Automated App Internationalisation

Our preliminary study experimentally shows that the

term translations provided by existing Android apps are

reliable sources for mining practical term translations,

which are essential to achieve automated app internation-

alisation. Motivated by those experimental results, we de-

signed and prototyped an automated approach called An-

droi18n to help app developers more effectively implement

app internationalisation.

4.1. Androi18n

Figure 9 illustrates the working process of our An-

droi18n tool, made up of two key modules. The two mod-

ules are named (1) Knowledge Base Construction and (2)

Transformer-based Term Translation. We now briefly in-

troduce these two modules, respectively.

Module #1: Knowledge Graph Construction:

The first module of Androi18n constructs a large knowl-

edge graph [18, 19] recording all the term translations in

real-world Android apps provided by app developers. This

module starts by disassembling real-world Android apps

(from their bytecode format) and locating their intern-

ationalization-related resources. The terms and their prac-

tical translations are then extracted for building our An-

droi18n knowledge graph. This knowledge graph will then

be leveraged by Androi18n to guide the second module

to achieve automated term translations. In our extracted

knowledge graph, we model each term in a language as

a node and the connection between two nodes containing

the same term but with different languages as an edge.

For example, Choose an image in English and Sélection-

ner une image in French will be regarded as two indepen-

dent nodes in the knowledge graph. Since these two terms

are essentially equivalent (i.e., with the same meaning),

the corresponding two nodes will be connected with an

edge. To model the agreements among different apps for

a given translation, we further assign each edge a weight,

12

Table 5: Top ten closed source Android apps language translation.

Language

Pair

Consistent
Inconsistent Total

Case Sensitive Case Insensitive

es->fr 205,306 (93.26%) 6,695 (3.04%) 8,146 (3.70%) 220,147

de->fr 200,279 (92.82%) 6,971 (3.23%) 8,519 (3.95%) 215,769

de->es 199,358 (93.18%) 6,671 (3.12%) 7,917 (3.70%) 213,946

fr->it 178,267 (93.76%) 5,548 (2.92%) 6,310 (3.32%) 190,125

es->it 173,828 (93.73%) 5,536 (2.98%) 6,099 (3.29%) 185,463

de->it 172,621 (93.27%) 6,005 (3.24%) 6,446 (3.48%) 185,072

es->ru 162,299 (93.19%) 4,509 (2.59%) 7,357 (4.22%) 174,165

fr->ru 160,851 (93.32%) 4,198 (2.44%) 7,318 (4.25%) 172,367

de->ru 156,717 (93.05%) 4,503 (2.67%) 7,211 (4.28%) 168,431

it->ru 142,639 (93.18%) 3,969 (2.59%) 6,474 (4.23%) 153,082

… …
Knowledge Graph

Construction

Android Apps Graph Database

Transformer-based
Term Translator

Terms in
Language X

Terms in
Language Y

Figure 9: The working process of Androi18n.

indicating the number of apps that have shared the same

translation.

Module #2: Transformer-based Term Transla-

tion: The second module of Androi18n takes the state-of-

the-art Transformer model [20] to achieve our automated

term translation objective. The transformer model is a

deep learning method that adopts the self-attention mech-

anism to deferentially weigh the significance of each part

of the input data, i.e., the ability to attend to different po-

sitions of the input sequence to compute a representation

of that sequence. This model has been widely used (and

demonstrated to be useful) in the fields of natural language

processing and computer vision. In this work, the Trans-

former model will be trained based on the practical term

translations recorded in the graph database.

Before feeding the text translations into the neural net-

work, the model first embeds the texts into numerical vec-

tors. After that, the model leverages the encoding blocks

to extract the input’s semantics layer by layer. Each layer

here includes two sub-layers: multi-head attention mech-

anism and fully connected position-wise feed-forward net-

work, which are responsible for mining the relationships

between the words in the text and further extracting se-

mantics in text sequences. Different from the encoding

blocks, each decoding block includes three sub-layers, with

an additional sub-layer called masked multi-head attention

included at the beginning of each block. This additional

sub-layer is designed to enable output generation in par-

allel.

We now evaluate the effectiveness and usefulness of An-

droi18n by answering the following two research questions.

• RQ5: How effective is Androi18n in automatically

translating terms in Android apps?

• RQ6: How useful is Androi18n in helping developers

achieve automated Android app internationalisation?

13

0

20

40

60

BLE
U

BLE
U−1

BLE
U−2

BLE
U−3

BLE
U−4

ROUGE

Algorithm

Google

Baseline

Androi18n

English to Arabic

0

20

40

60

BLE
U

BLE
U−1

BLE
U−2

BLE
U−3

BLE
U−4

ROUGE

Algorithm

Google

Baseline

Androi18n

English to Spanish

0

20

40

60

BLE
U

BLE
U−1

BLE
U−2

BLE
U−3

BLE
U−4

ROUGE

Algorithm

Google

Baseline

Androi18n

English to French

0

20

40

BLE
U

BLE
U−1

BLE
U−2

BLE
U−3

BLE
U−4

ROUGE

Algorithm

Google

Baseline

Androi18n

English to Russian

0

20

40

60

BLE
U

BLE
U−1

BLE
U−2

BLE
U−3

BLE
U−4

ROUGE

Algorithm

Google

Baseline

Androi18n

English to Chinese

Figure 10: Translation results over Google-based, RNN-based baseline and Androi18n.

4.2. RQ5: Effectiveness Evaluation

Experimental Setup: To evaluate Androi18n’s au-

tomated app term translation capability, we first select

50,000 closed-source Android apps and then construct a

knowledge graph with language texts extracted from these

50,000 different Android apps. We then query the trans-

lations between English and the other five United Nations

(UN) official languages (e.g. Arabic, Chinese, French,

Spanish, Russian) [21], and based on the obtained trans-

lation texts, we train our Transformer-based model to

achieve automated term translation. For each language A

to language B translation, the whole dataset would be split

into train/valid/test sets with respectively 80%/10%/10%

items. In the data pre-processing, the tokens/words that

appear in the train set less than three times would be

excluded, which is a common step in natural language

processing. As for tokenization (or word segmentation)

of the texts in train/valid/test sets, we selected different

open-source tools for different languages. For example,

we performed the widely-used NLPIR toolkit to tokenize

Chinese and the well-known NLTK package for English

tokenization. In the training process on the train set, we

additionally used the valid set to choose the best-trained

model. That is, the model with the best performance on

the valid set is considered and subsequently be taken as

the final trained model for testing.

We compare the performance of Androi18n against two

baselines.

• Baseline #1: Google Translate. Google Trans-

late is often regarded as one of the most performant

translation services that have been widely used in the

software engineering community. With the fast devel-

opment of Natural Language Processing (NLP) tech-

niques, the performance of Google Translate has been

continuously improved. Many practical software ap-

plications (such as Transifex) have directly embedded

it to achieve automated text translations. Therefore,

in this work, we take Google Translate as the first

baseline for comparison.

• Baseline #2: The RNN-based approach pro-

posed by Wang et al. [3]. Wang et al. [3] leverage

an RNN [4] model to achieve domain-specific machine

translation for software localization. To the best of

our knowledge, this is only one work in the literature

that is closely related to ours. They experimentally

evaluated their approach based on a set of human-

translated bilingual text pairs collected from different

Android apps crawled from the official Google Play

14

Table 6: Metrics of different language translations

Language

Translation
Algorithm

Metrics (%)

BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

en -> ar

Google 31.75 57.94 37.55 26.10 17.88 54.40

Baseline 35.37 59.24 39.42 29.29 22.89 57.08

Androi18n 38.93 61.39 43.29 33.16 26.07 57.49

en -> es

Google 39.25 63.64 44.86 33.19 25.04 61.46

Baseline 40.64 65.31 46.14 34.36 26.34 62.40

Androi18n 43.16 66.46 48.28 37.22 29.05 61.68

en -> fr

Google 40.34 63.11 45.14 34.50 26.94 60.75

Baseline 40.43 62.84 45.02 34.69 27.23 60.86

Androi18n 43.16 65.36 48.12 37.38 29.52 62.44

en -> ru

Google 29.24 52.33 34.21 23.56 17.33 53.69

Baseline 29.66 54.83 34.46 23.99 17.07 53.56

Androi18n 32.65 56.84 37.49 26.72 19.97 54.13

en -> zh

Google 32.57 60.94 37.90 26.12 18.66 57.40

Baseline 30.14 57.56 34.86 23.97 17.17 56.66

Androi18n 33.75 61.13 39.09 27.39 19.83 59.72

Table 7: Effect Size of different metrics with regard to Androi18n

Algorithm BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

Google 0.75 0.62 0.68 0.74 0.81 0.44

Baseline 0.60 0.57 0.63 0.60 0.57 0.28

store. Their experimental results show that their ap-

proach is effective and can generate acceptable trans-

lation with fewer needs for human revisions. We thus

consider it as one of our baselines to compare it w.r.t.

the effectiveness of Androi18n.

For Google Translate, we directly leverage the Google

Translate API8 to obtain the translation results for the

sampled data. For the approach proposed by Wang et

al. [3], unfortunately, the authors have not made their tool

implementation publicly available, and we cannot directly

reuse their approach for comparison. To this end, we re-

implemented a text-to-text translator based on the RNN

encoder-decoder model (hereinafter referred to as Base-

line) and use it for comparison. Following the strategy

applied by Wang et al. [3],9 we also add an attention mech-

8https://cloud.google.com/translate
9Wang et al. [3] have adopted three mechanisms to improve the

anism and copy mechanism to improve the default RNN

model.

Results: Figure 10 and Table 6 summarise our experi-

mental results.For all five experiments, our Androi18n ap-

proach is able to outperform both the Google Translate

and RNN-based baseline approaches, giving both higher

BLEU and ROUGE scores. To be more specific, An-

droi18n is 3.7% and 3.08% higher than Google Trans-

late and RNN-based baseline on average, respectively, in

terms of BLEU. With regard to ROUGE, Androi18n is on

average 1.55% and 0.98% higher than Google Translate

and RNN-based baseline. Our Mann-Whitney-Wilcoxon

(MWW) tests confirm that the performance differences be-

tween our approach and the two baseline approaches are

all significant, i.e., the p-values are always smaller than

0.005. 10 The effect sizes with regard to our approach

performance of their RNN encoder-decoder neural translation. We

have replicated two of them. The remaining one concerning the cat-

egory information of collected Android apps is ignored as we don’t

have the category information of the randomly selected apps (An-

droZoo does not provide category information at the moment).
10Given a significance level α = 0.005, if p-value < α, there is one

15

listed in Table 7 are all greater than 0.2 (the small ef-

fect size 11). Especially, they are greater than 0.55 when

it comes to the BLEU related metrics, representing that

our experimental results are significantly different and our

approach is better than others. BLEU (Bilingual Eval-

uation Understudy, the most important metric used in

NLP community) [22] and ROUGE (Recall-Oriented Un-

derstudy for Gisting Evaluation) [23] are the standard

metrics to evaluate the performance of machine transla-

tions, for which the BLEU score measures the precision

(how many words generated by machine appears in hu-

man summarises) while the ROUGE score measures the

recall (how many words in human summaries appeared in

the machine-generated summarises). Interestingly, Wang

et al. [3] have demonstrated in their evaluation in 2019

that their approach achieves significantly better perfor-

mance than Google. This is no longer the case, at least

based on the results yielded by our reproduced version.

This result is expected as Google constantly improves its

translation service, and the latest version also relies on the

Transfomer neural network. However, even with Google’s

improvements (including the model itself and the large-

scale resources for training [20]), Google Translate still

cannot outperform Androi18n, which directly leverages the

original Transformer model (without improvements) and

is only trained on the translations of a limited number of

Android apps. This evidence experimentally shows that

domain knowledge is vital for implementing machine trans-

lation, confirming our previous finding that it is possible

to achieve automated app internationalisation by learning

from existing apps.

chance in two hundred that the difference between the datasets is

due to a coincidence.
11https://en.wikipedia.org/wiki/Effect_size

Answer to RQ5

Androi18n is effective in achieving automated app inter-

nationalisation, outperforming both Google Translate

and the RNN-based state-of-the-art in terms of both

BLEU and ROUGE scores.

4.3. RQ6: Usefulness Evaluation

Our approach has been experimentally demonstrated to

be effective and be able to outperform two baselines. We

now go one step further to evaluate the usefulness of the

translations through a user study.

Experimental Setup: To fulfill this purpose, we first

recruited six students who are all bilingual in English and

Mandarin and then involved three professional Android

app developers who are also familiar with English and

Mandarin. We randomly selected 278 translation items

(from English to Chinese) from our dataset for which the

translated results are all different among Androi18n, the

RNN-based translation, and the Google Translate base-

line. The number of translation items was determined by

the well-known Sample Size Calculator [24] with a confi-

dence level of 95% and a margin of error of 5%. It gave out

a sample size of 278 based on the total sample size 1,000.

For each selected translation item, we set up a multiple-

choice question that includes the original English sentence

as the title and the outputs of the three approaches (in

random order) as options. We further add an additional

option for each question to indicate that the translations

are almost the same among the three approaches. We

then put all the generated questions onto a Google Sur-

vey Form and independently share it with the six students

and the additional three professional developers. The re-

cruited participants are asked to answer all the questions

by ticking the best suitable option.

Results. The user study results clearly show in Ta-

ble 8 that our approach generates more human acceptable

translations than Google Translate and the RNN-based

baseline, which have only received better votes for 68 and

16

https://en.wikipedia.org/wiki/Effect_size

Table 8: Number of sampled translated items voted better for the

corresponding approaches.

Participant Google RNN-based Androi18n Same

6 Students 68 (24.46%) 21 (7.55%) 113 (40.65%) 57 (20.50%)

3 Developers 51 (18.35%) 20 (7.19%) 113 (40.65%) 75 (26.98%)

9 Participants 63 (22.66%) 23 (8.27%) 117 (42.09%) 63 (22.66%)

21 questions among six recruited students, respectively.

For around one-fifth (57/278) of the cases, the users be-

lieve that the translated results are more or less the same

among the three approaches. As for the three profes-

sional developers, their votes are generally consistent with

the ones given by the students even though they cate-

gorise slightly more translated items into the same. In

total, 42.09% (117/278) items performed better, i.e., our

approach generally yields better translation results with

the help of Transformer than with Google Translate or

the RNN-based baselines. This result suggests that it

is possible to achieve automated app internationalisation

through machine translations, especially when trained over

domain-specific knowledge. For example, the English text

“Editing this mails will cost much data. Want to con-

tinue?” is translated into Chinese as “编辑此邮件将花费大

量数据。想继续吗？”, “编辑此邮件将花费较多数据。是

否要继续？”,“编辑此邮件将耗费较多流量，是否继续？”

by Google Translate, RNN-based baseline, and Androi18n

, respectively. The translation clearly shows that our An-

droi18n outperforms other tools as it takes context and do-

main knowledge into consideration. The keyword “data”

in the text is literally translated by Google Translate and

RNN-based baseline into “数据” rather than the more

meaningful term “流量” by Androi18n. This simple ex-

ample demonstrates that context and convention would

achieve better translation results if considered. Another

English text “You received a security code” is also trans-

lated into “您收到了安全代码”, “您收到了一个验证码”,

and “您已收到安全码” by Google Translate, RNN-based

baseline, and Androi18n, respectively. The key phrase

“security code” was translated by the RNN-based base-

line into “验证码”, which is not as accurate as the other

two translations. Compared to Google Translation, An-

droi18n’s translation explicitly expresses the tense of the

English text, leading to higher satisfaction for users who

are familiar with Chinese.

Answer to RQ6

Androi18n is useful in achieving more human acceptable

translations than both the Google Translate and the

RNN-based baseline.

5. Discussion

5.1. Threats to Validity

The primary threat to external validity of our study con-

cerns the choice of experimental Android projects. In this

work, we selected different Android projects without con-

sidering their intended languages support for specific coun-

tries from AndroZoo and AndroZooOpen. Moreover, some

of the projects in AndroZooOpen are not even published

on the commercialized App Store. To mitigate this, we

randomly selected projects from these two datasets, con-

sidered the open-source projects with public release infor-

mation available, and selected a reasonably large number

of apps to make the projects in this study more represen-

tative.

We assumed that all the text translations collected from

real-world Android apps are validated by humans (hence

are with high-quality). However, there is no such guar-

antee in practice. Nevertheless, as confirmed by a small

empirical study conducted by Wang et al. [3], among 50

randomly selected apps, none of them have solely relied on

machine translations to achieve mobile app text transla-

tion. This empirical evidence suggests that this threat will

not significantly impact our empirical findings and exper-

imental results.

Furthermore, except for looking at the self-recognized

app category, we have not considered the actual scope of

the selected apps (i.e., what are the apps primarily used

17

for?). We simply consider an app containing the inter-

nationalisation feature as long as it supports two or more

languages. For example, some Android apps may be devel-

oped only to provide specific services for targeted regions

or countries by supporting only the languages spoken by

their residents, which may make the feature of interna-

tionalisation unnecessary. To mitigate this, we sample 100

apps12 from the 5,000 selected Google Play apps used in

RQ1 to manually check the impact of ignoring the scope

of Android apps. We manually check the description of

the sampled apps on the Google Play Store to determine

if such a restriction exists for any app. Our exploration

finds that none of our sampled apps has such restrictions in

their description. Even though some of the apps are devel-

oped for specific countries, they still have various types of

languages supported. For example, the app [25] moBILET

provides a service to buy tickets for public transportation

or pay for parking in Poland or Germany. Even though the

app was developed for these two countries, it still provides

more than 90 different languages for users to select.

The major threat to the construct validity of our study

lies in possible error in the implementation of our ex-

perimental scripts and tools, such as the default lan-

guage detection with the Python package polyglot, and

the text string extraction with the special placeholder tag

“<xliff:g>”. To mitigate this threat, we have carefully

reviewed the toolchain and manually validate partial ex-

perimental results against selected datasets.

Under different contexts, the same text expression may

need to be translated into different forms. Such contexts,

unfortunately, have not been considered in this work. The

corresponding translation results hence may be less accu-

rate under certain conditions. Nevertheless, our manual

validation has not yet found such cases, indicating that

this threat may not be significant. We have hence decided

12The number is first calculated through a well-known sample size

calculator [24] with a confidence level of 95% and a margin of error

of 10% and then rounded to the nearest hundred.

to mitigate this threat in our future work.

We conclude the effectiveness of our tool under the ex-

perimental translations from English to other five lan-

guages, including Arabic, Chinese, French, Spanish and

Russian. These languages are the six official languages of

the United Nations. However, the tool could have different

performances in other language translations, which could

threaten the usefulness and extensibility of the tool. We

do believe better experimental settings should be designed

to evaluate the genericity of our automated translation ap-

proach. We consider this as our potential future work.

5.2. Implications

The empirical findings and experimental results of this

study have raised a number of opportunities for the re-

search and practice communities.

Better release note description: In the study, we

manually inspected the description of the sampled apps on

the Google Play Store and found that almost all of the app

descriptions do not clearly specify which languages the app

supports, which is not user-friendly for app users. There-

fore, we argue that app developers should describe the

languages supported in the description intentionally. App

users could comment for new language support if they are

not familiar with any of the languages provided initially,

which would boost the spread of the app.

Better internationalisation validation: Our study

reveals that a few languages are repeatedly added and

deleted during the evolution of the Android apps, even

though some of the languages may be deleted intention-

ally by the developers. The inconsistent language support

would leave a bad expression to app users and, thus, hin-

der the app’s spread. To have a consistent and better user

experience, a strict internationalisation validation proce-

dure before release is necessary. Even for the intentionally

deleted ones, a detailed specification in the release note is

indispensable. Besides, we intend to investigate the devel-

opers to reveal the rationale behind the language addition

18

and removal in the future work.

Better domain-specific training: In this work, we

have experimentally demonstrated that the existing text

translations conducted by app developers are an effective

and useful basis for achieving automated app internation-

alisation. Nevertheless, we believe that the performance

of our Androi18n approach can be further improved if

better domain-specific information could be leveraged to

help in training the model. For example, Wang et al. [3]

have empirically shown that the category information of

Android apps is useful for improving the performance of

neural network-based text translation. Indeed, apps be-

longing to the same category are more likely to share the

same patterns of translations, including the translations of

conventional terms that are only available in certain cat-

egories. In this work, our closed-source apps are collected

from AndroZoo, which does not include apps’ category in-

formation. We have hence not explored the possibility of

including category information to implement Androi18n.

Human-in-the-loop translation validation: In

this work, we have constructed the translation graph

database based on learning from term translations in ex-

isting Android apps. The translation accuracy (based on

the number of similar translation occurrences in the pub-

lished Android apps) has been demonstrated to be promis-

ing. However, the translation results obtained via the

Transformer-based translator (if not directly matched over

the database) are not always the case. There is a need

to involve human efforts to confirm or revise the auto-

matically translated results. The confirmed translations

could then be written back into the database to avoid fur-

ther human involvement. However, app developers may

not always be familiar with the targeted language. The

translated expressions given by the automated approaches

may not be as accurate as what is expected by the de-

velopers but cannot be spotted. Therefore, we argue that

crowd-sourced human-in-the-loop validation is required to

achieve highly accurate automated app internationalisa-

tion.

Going beyond automated text translation: To

achieve automated app internationalisation, in addition

to automated text translation, there is another essential

step needed. That is to set up the internationalisation en-

vironment and automatically identify all the hard-coded

constant strings (scattered in the code) that need to be

translated to other languages. Such constant strings need

to be externalized to resource files, allowing translators to

translate the app into other languages without actually

modifying the app source code. There are no such auto-

mated approaches specifically proposed for mobile apps.

Nonetheless, our community does have contributed vari-

ous approaches for other types of applications, such as the

TranStrL tool for Java GUI applications.

Translation of non-text content: Some of the apps’

non-text content may also need to be translated when

preparing for internationalisation. For example, iconic

forms may only include textual content in a language,

which unfortunately will not be translated by the current

form of internationalisation. Indeed, they may need more

sophisticated image-based analysis techniques to achieve

the translation.

6. Related work

There are some IDEs, such as [26], indeed provide

some mechanisms to highlight hard-coded string literals in

source code. However, they just extract these strings into

properties files for further internationalisation or just ig-

nore them if internationalisation is not necessary for them.

To the best of our knowledge, we are the first to exten-

sively study the internationalisation of Android applica-

tions. However, there are several other works [3, 27–37]

that have studied the internationalisation of other differ-

ent systems. In this section, we summarise and discuss the

most relevant ones.

Wang et al. [3] first proposed an RNN [4] model based on

the Android apps downloaded from Google Play Store to

19

achieve a better domain-specific machine translation com-

pared with the official Google Translate for software lo-

calization. They extracted closed-source apps and only

focused on the translation process. Different from what

they do, we not only worked on the translation process

per se with a different more advanced translation model

(Transformer) producing a better translation result but

also first reveal the status quo and the evolution of in-

ternationalisation both for open-source and closed-source

Android projects.

Hau et al. [29] explored some issues of software transla-

tion and localization in web based ERP [38] and presented

an open source WebERP using in Portugal with local lan-

guage for the artefact. ERP is always referred to Enter-

prise Resource Planning and usually treated as a category

of business management software. What they realize is

that various aspects of accounting that are different from

the default setting in the WebERP are all needed to mod-

ify according to Portugal accounting.

Wang et al. [30] proposed an approach to automati-

cally locate need-to-translate constant strings and also an

Eclipse plug-in tool that locate need-to-translate constant

strings in Java source code. The authors first select a set

of API methods related to Graphical User Interface (GUI)

and then locate need-to-translate strings from these API

calls based on string-taint analysis. This approach is eval-

uated on four different real-world open source applications

and the experimental results show the approach is promis-

ing. In addition, they also studied internationalisation of

web applications [39] as their previous work cannot dif-

ferentiate constant strings represented at the browser side

(need-to-translate) from others not need. To tackle the

challenge, they proposed a novel approach for PHP appli-

cation. The approach first tries to locate constant strings

that may be propagate to the browser side for display-

ing. Secondly, they add location information and further

propagate the location flag to all the other terminals and

non-terminals to identify user-visible constant strings.

Xia et al. [31] presented their study in software

internationa-lization and localization. They studied a

large-scale commercial system, PAM of State Street Cor-

poration, which is written in C/C++ and contains more

than 5 million lines of source code, and also proposed sup-

porting tools IRanker and I18nLocator. IRanker is used to

extract convertible and suspicious patterns based on the

selected representative set of code in the most important

source files while I18nLocator is leveraged to locate and

convert source code.

Rey et al. [32] did an extensive study on the connec-

tion between localization and web accessibility, especially

the possibility of transferring accessibility throughout the

procedure of localization, that is to adapt a web product

to another language (web localization). They analysed

how does the current localization and internationalisation

data exchange standards impact the transferring accessi-

bility qualities and also explored the techniques proposed

by the W3C to help web developers to tackle the chal-

lenges of transferability. Their preliminary findings have

demonstrated that some accessibility features, especially

those relevant with textual content and inter-semiotic pur-

poses, can be captured, marked, transferred and annotated

through existing mechanisms.

7. Conclusion

In this work, we have first conducted an extensive study

on the internationalisation and localization of the popu-

lar mobile Android applications. Through this study, we

experimentally find that most closed-source Android apps

have been provided with internationalisation and each of

the apps often supports multiple languages. Furthermore,

the apps also tend to agree with each other when translat-

ing the same terms from one language to another, demon-

strating the possibility of learning from them to achieve

automated text translations. This evidence motivates us

to go one step deeper to actually implement such a transla-

tor that leverages the translations of existing Android apps

20

to train a Transformer-based neural network model called

Androi18n to achieve this objective. Ideally, Androi18n

can support automated translations for as many language

pairs as possible, i.e., based on the language supported

by real-world Android apps. Experimental results show

that Androi18n is both effective and useful in achieving

automated text translations for Android apps.

Acknowledgements

Grundy is supported by ARC Laureate Fellowship

FL190100035.

References

[1] Smartphone Market Share, 2020. [Online]. Available: https:

//www.idc.com/promo/smartphone-market-share/os

[2] Mobile App Internationalization, 2019. [Online]. Available:

https://medium.com/@infopulseglobal_9037/mobile-app-

internationalization-ways-and-methods-to-boost-revenue-by-

26-4f8985d3c4bd

[3] X. Wang, C. Chen, and Z. Xing, “Domain-specific machine

translation with recurrent neural network for software local-

ization,” Empirical Software Engineering, vol. 24, no. 6, pp.

3514–3545, 2019.

[4] Recurrent Neural Network, 2021. [Online]. Available: https:

//en.wikipedia.org/wiki/Recurrent_neural_network

[5] “Android internationalization exploratory study,” 2022, https:

//zenodo.org/record/6609238.

[6] T. V. Luong, J. S. Lok, D. J. Taylor, and K. Driscoll, Inter-

nationalization: Developing software for global markets. John

Wiley & Sons, Inc., 1995.

[7] Tutorial internationalization, 2021. [Online]. Available: https:

//docs.oracle.com/javase/tutorial/i18n/intro/quick.html

[8] Example project, 2022. [Online]. Available: https://github.

com/ccruz17/Launcher-Play/tree/master/app/src/main/res

[9] Android Alternative Resources, 2021. [Online]. Avail-

able: https://developer.android.com/guide/topics/resources/

providing-resources?authuser=1#AlternativeResources

[10] P. Liu, L. Li, Y. Zhao, X. Sun, and J. Grundy, “Androzooopen:

Collecting large-scale open source android apps for the research

community,” in Proceedings of the 17th International Confer-

ence on Mining Software Repositories, 2020, pp. 548–552.

[11] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:

Collecting millions of android apps for the research community,”

in 2016 IEEE/ACM 13th Working Conference on Mining Soft-

ware Repositories (MSR). IEEE, 2016, pp. 468–471.

[12] Android Asset Packaging Tool, 2021. [Online]. Available:

https://developer.android.com/studio/command-line/aapt2

[13] graph-database, 2021. [Online]. Available: https://pypi.org/

project/polyglot/

[14] Android Apps remove on Google Play Store, 2022. [Online].

Available: https://www.bgr.in/news/google-to-remove-nearly-

900k-abandoned-apps-from-play-store-report-1270875/

[15] J. Gao, P. Kong, L. Li, T. F. Bissyandé, and J. Klein, “Nega-

tive results on mining crypto-api usage rules in android apps,” in

The 16th International Conference on Mining Software Repos-

itories (MSR 2019), 2019.

[16] J. Gao, L. Li, P. Kong, T. F. Bissyandé, and J. Klein, “Under-

standing the evolution of android app vulnerabilities,” IEEE

Transactions on Reliability (TRel), 2019.

[17] Sample Andriod project, 2022. [Online]. Available: https:

//github.com/edipo2s/TESLegendsTracker

[18] A. Singhal, Knowledge Graph, 2021. [Online].

Available: https://blog.google/products/search/introducing-

knowledge-graph-things-not/

[19] L. Ehrlinger and W. Wöß, “Towards a definition of knowledge

graphs.” SEMANTiCS (Posters, Demos, SuCCESS), vol. 48,

no. 1-4, p. 2, 2016.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,

A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you

need,” in Advances in neural information processing systems,

2017, pp. 5998–6008.

[21] Union Nation Languages, 2021. [Online]. Available: https:

//www.un.org/en/our-work/official-languages

[22] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a

method for automatic evaluation of machine translation,” in

Proceedings of the 40th annual meeting of the Association for

Computational Linguistics, 2002, pp. 311–318.

[23] C.-Y. Lin, “Rouge: A package for automatic evaluation of sum-

maries,” in Text summarization branches out, 2004, pp. 74–81.

[24] Sample Size Calculator, 2022. [Online]. Available: https:

//www.surveysystem.com/sscalc.htm

[25] Sample Android App: moBILET, 2022. [Online]. Available:

https://play.google.com/store/apps/details?id=pl.mobilet.app

[26] Hard-coded string literals, 2021. [Online]. Available: https://

www.jetbrains.com/help/idea/hard-coded-string-literals.html

[27] A. Alameer, S. Mahajan, and W. G. Halfond, “Detecting and

localizing internationalization presentation failures in web ap-

plications,” in 2016 IEEE International Conference on Software

Testing, Verification and Validation (ICST). IEEE, 2016, pp.

202–212.

21

https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://medium.com/@infopulseglobal_9037/mobile-app-internationalization-ways-and-methods-to-boost-revenue-by-26-4f8985d3c4bd
https://medium.com/@infopulseglobal_9037/mobile-app-internationalization-ways-and-methods-to-boost-revenue-by-26-4f8985d3c4bd
https://medium.com/@infopulseglobal_9037/mobile-app-internationalization-ways-and-methods-to-boost-revenue-by-26-4f8985d3c4bd
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://zenodo.org/record/6609238
https://zenodo.org/record/6609238
https://docs.oracle.com/javase/tutorial/i18n/intro/quick.html
https://docs.oracle.com/javase/tutorial/i18n/intro/quick.html
https://github.com/ccruz17/Launcher-Play/tree/master/app/src/main/res
https://github.com/ccruz17/Launcher-Play/tree/master/app/src/main/res
https://developer.android.com/guide/topics/resources/providing-resources?authuser=1#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources?authuser=1#AlternativeResources
https://developer.android.com/studio/command-line/aapt2
https://pypi.org/project/polyglot/
https://pypi.org/project/polyglot/
https://www.bgr.in/news/google-to-remove-nearly-900k-abandoned-apps-from-play-store-report-1270875/
https://www.bgr.in/news/google-to-remove-nearly-900k-abandoned-apps-from-play-store-report-1270875/
https://github.com/edipo2s/TESLegendsTracker
https://github.com/edipo2s/TESLegendsTracker
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.un.org/en/our-work/official-languages
https://www.un.org/en/our-work/official-languages
https://www.surveysystem.com/sscalc.htm
https://www.surveysystem.com/sscalc.htm
https://play.google.com/store/apps/details?id=pl.mobilet.app
https://www.jetbrains.com/help/idea/hard-coded-string-literals.html
https://www.jetbrains.com/help/idea/hard-coded-string-literals.html

[28] P.-L. P. Rau and S.-F. M. Liang, “Internationalization and lo-

calization: evaluating and testing a website for asian users,”

Ergonomics, vol. 46, no. 1-3, pp. 255–270, 2003.

[29] E. Hau and M. Aparício, “Software internationalization and lo-

calization in web based erp,” in Proceedings of the 26th annual

ACM international conference on Design of communication,

2008, pp. 175–180.

[30] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun, “Transtrl: An

automatic need-to-translate string locator for software interna-

tionalization,” in 2009 IEEE 31st International Conference on

Software Engineering. IEEE, 2009, pp. 555–558.

[31] X. Xia, D. Lo, F. Zhu, X. Wang, and B. Zhou, “Software inter-

nationalization and localization: An industrial experience,” in

2013 18th International Conference on Engineering of Complex

Computer Systems. IEEE, 2013, pp. 222–231.

[32] J. T. del Rey and L. M. Vázquez, “Transferring web accessibility

through localization and internationalization standards,” The

Journal of Internationalization and Localization, vol. 6, no. 1,

pp. 1–24, 2019.

[33] D. P. Rich, “Method and system for improved software local-

ization,” Jul. 26 2011, uS Patent 7,987,087.

[34] A. Burukhin, M. A. Gadre, A. M. Aldahleh, T. Farrell, and

J. L. Larrinaga-Pardo, “Dynamically providing a localized user

interface language resource,” Apr. 9 2009, uS Patent App.

11/869,083.

[35] C. Fitzpatrick, J. P. Whelan, R. P. Doyle, J. G. Lane,

B. Mchugh, T. Farrell, P. Barnes, A. M. Mcquaid, and

D. Mowatt, “Dynamic screentip language translation,” Dec. 17

2013, uS Patent 8,612,893.

[36] C. Escobar-Velásquez, A. Donoso-Diaz, and M. Linares-

Vásquez, “Itdroid: A tool for automated detection of i18n is-

sues on android apps,” in 2021 IEEE/ACM 8th International

Conference on Mobile Software Engineering and Systems (Mo-

bileSoft). IEEE, 2021, pp. 52–55.

[37] L. A. Reina and G. Robles, “Mining for localization in android,”

in 2012 9th IEEE Working Conference on Mining Software

Repositories (MSR). IEEE, 2012, pp. 136–139.

[38] Enterprise Resource Planning, 2021. [Online]. Available:

https://www.oracle.com/au/erp/what-is-erp/

[39] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun, “Locating need-

to-translate constant strings in web applications,” in Proceed-

ings of the eighteenth ACM SIGSOFT international symposium

on Foundations of software engineering, 2010, pp. 87–96.

22

https://www.oracle.com/au/erp/what-is-erp/

	Introduction
	Background
	Exploratory Study
	Dataset
	Research Questions
	RQ1: Internationalisation Rate
	RQ2: Diversity of Supported Languages
	RQ3: Evolution of Internationalisation
	RQ4: Consistency

	Automated App Internationalisation
	Androi18n
	RQ5: Effectiveness Evaluation
	RQ6: Usefulness Evaluation

	Discussion
	Threats to Validity
	Implications

	Related work
	Conclusion

