
Received: 23 February 2023 Revised: 5 October 2023 Accepted: 11 November 2023

DOI: 10.1002/spe.3291

R E S E A R C H A R T I C L E

PyScribe–Learning to describe python code

Juncai Guo1 Jin Liu1,2 Xiao Liu3 Yao Wan4 Yanjie Zhao5 Li Li6

Kui Liu7 Jacques Klein8 Tegawendé F. Bissyandé8

1School of Computer Science, Wuhan
University, Wuhan, China
2Key Laboratory of Network
Assessment Technology, Institute of
Information Engineering, Chinese
Academy of Sciences, Beijing, China
3School of Information Technology,
Deakin University, Burwood,
Melbourne, Australia
4School of Computer Science and
Technology, Huazhong University of
Science and Technology, Wuhan, China
5Faculty of Information Technology,
Monash University, Clayton, Victoria,
Australia
6School of Software, Beihang University,
Beijing, China
7Huawei Software Engineering
Application Technology LabHangzhou,
China
8SnT Centre, University of Luxembourg,
Esch-sur-Alzette, Luxembourg

Correspondence
Jin Liu, School of Computer Science,
Wuhan University, Wuhan, China.
Email: jinliu@whu.edu.cn
Xiao Liu, School of Information
Technology, Deakin University,
Melbourne, Australia.
Email: xiao.liu@deakin.edu.au

Funding information
China Scholarship Council; National
Natural Science Foundation of China,
Grant/Award Number: 61972290; Open
Fund of Key Laboratory of Network
Assessment Technology from Chinese
Academy of Sciences, Grant/Award
Number: 201906270158

Abstract
Code comment generation, which attempts to summarize the functionality
of source code in textual descriptions, plays an important role in automatic
software development research. Currently, several structural neural networks
have been exploited to preserve the syntax structure of source code based on
abstract syntax trees (ASTs). However, they can not well capture both the
long-distance and local relations between nodes while retaining the overall
structural information of AST. To mitigate this problem, we present a pro-
totype tool titled PyScribe, which extends the Transformer model to a new
encoder-decoder-based framework. Particularly, the triplet position is designed
and integrated into the node-level and edge-level structural features of AST for
producing Python code comments automatically. This paper, to the best of our
knowledge, makes the first effort to model the edges of AST as an explicit com-
ponent for improved code representation. By specifying triplet positions for each
node and edge, the overall structural information can be well preserved in the
learning process. Moreover, the captured node and edge features go through a
two-stage decoding process to yield higher qualified comments. To evaluate the
effectiveness of PyScribe, we resort to a large dataset of code-comment pairs
by mining Jupyter Notebooks from GitHub, for which we have made it pub-
licly available to support further studies. The experimental results reveal that
PyScribe is indeed effective, outperforming the state-ofthe-art by achieving an
average BLEU score (i.e., av-BLEU) of ≈0.28.

K E Y W O R D S

code comprehension, code documentation, code embedding, code summarization, deep learning,
representation learning

Abbreviations: AST, Abstract syntax tree; API, Application programming interface; BLEU, Bilingual evaluation understudy; CNN, Convolutional
neural network; FFN, Feed-forward network; GNN, Graph neural network; GRU, Gated recurrent unit; GCN, Graph convolutional network;
LSTM, Long short-term memo; METEOR, Metric for evaluation of translation with explicit ordering; NTLK, Natural language toolkit; NLP, Natural
language processing; ROUGE, Recall-oriented understudy for gisting evaluation; RNN, Recurrent neural network; SBT, Structure-based traversal.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2023 The Authors. Software: Practice and Experience published by John Wiley & Sons Ltd.

Softw: Pract Exper. 2024;54:501–527. wileyonlinelibrary.com/journal/spe 501

https://orcid.org/0009-0002-0048-6517
https://orcid.org/0000-0003-4052-475X
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/SPE
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fspe.3291&domain=pdf&date_stamp=2023-12-09

502 GUO et al.

1 INTRODUCTION

Program comprehension is a challenging, and yet critical, activity of software development. It is generally facilitated
by the availability of documentation. Unfortunately, code comments are often either missing or outdated in practice.
The literature has thus invested effort into various research directions for mitigating the problem. Some researchers
have investigated self documenting code* as a way to ensure that program comprehension can still be achieved.1 Nev-
ertheless, the commonly accepted perception within the practice community is that code comments are important,2
justifying the development of techniques to generate such comments. The literature refers to this endeavour in vari-
ous terms: code summarization,3 comment generation,4 description generation.5 In this article, the terms description
and comment will be used interchangeably since they both refer to natural-language text that describes the functionality
of source code.

Early techniques of code comment generation are built on formal specifications to infer pseudo-code,6 which is not
applicable for legacy code. Then some efforts were made to automatically detect topic-relevant words and phrases from
source code as descriptions.7,8 Sirdhara et al.4 then proposed an approach that summarizes each statement in a method
into sentences that must be composed. This approach heavily depends on the developer’s use of meaningful naming.
Follow-up work considered manually designed templates,3,5 or leveraged information retrieval methods to find similar
code snippets with descriptions from which to extract the needed comments.9 Extending the latter idea, Wong et al.10,11

utilized the code clone detection technique to identify similar code fragments with the relevant comments. All these
approaches mostly focus on the lexical and syntactic details, however, ignoring deep semantics in the code.

Recent advances in code representation learning and natural language processing provide an opportunity to deeply
learn hidden semantic relationships between code and comments. Many works have considered source code as nat-
ural language sequence and adopted sequence-to-sequence networks such as RNNs and transformer12 with attention
mechanism for comment generation.13–15 Nevertheless, the structural features of source code, which are crucial for code
understanding, are ignored in these studies. To mitigate the issue, there are more and more approaches exploiting the
structural information in the abstract syntax trees (ASTs) of source code. Some of these approaches convert the AST to
node sequences and use RNNs to model the sequences.16–18 The other works introduce graph neural networks (GNNs)19,20

or tree-based RNNs21,22 to learn on the AST directly.
Despite much progress having been made on automatic code comment generation, there still exists much space for

further improvement. From our investigation, current approaches that model AST node sequences based on RNNs can
not capture the structural information well. First, it damages the local relations between connected nodes and loses posi-
tional information converting ASTs to node sequences. Moreover, RNNs are incapable of well handling the long-term
dependency issue when representing long sequences. Although GNN models are designed to capture the relations among
connected nodes, they are sensitive to local features and limited to extracting the long-distance relations among AST
nodes. Additionally, GNNs are also insensitive to the positions of neighboring nodes in AST, which are important to indi-
cate the functionality of source code. Figure 1 shows an example to better illustrate the importance of positions in ASTs.
Given two code snippets “b=g/m” and “b=m/g”, Figure 1 shows their corresponding ASTs. It is clear to see that these two
ASTs are very similar except on the positions of variables “g” and “m”. We argue that current GNNs can not well capture
the subtle positional information of those two variables.

Based on the aforementioned limitations, this paper first explains the AST as its nodes and edges with their triplet
positions. In AST, an edge indicates the local relations between connected nodes, which conveys semantic features at a
higher level for AST compared to the node. A triplet position for each node comprises the depth, sequential position of its
parent node in the layer, and sequential position among its sibling nodes, which can precisely locate a node/edge in the
AST. To integrate AST nodes and edges with their positional information, this paper expands the Transformer model12

and investigates a novel neural architecture for code comment generation. Specifically, a Transformer encoder is used to
represent the AST nodes. Then we learn the local relations between connected nodes by explicitly embedding the edges of
AST through another Transformer encoder. Inspired by the positional encoding used in sequence modeling,12,23 we design
a triplet position for each AST node to preserve the hierarchical structure of ASTs. Due to the fully-connected structure of
Transformer and triplet positions specified for nodes/edges, the overall structural information of AST can be well learned,
mitigating the issues of local sensitivity and long-term dependency. To generate the comments with higher quality, our
approach applies a two-stage decoding process that contains two multi-head attention modules over the learned node
and edge features sequentially.

*Self-documenting code is written following naming conventions that makes it easy for humans to read and understand code as sentences.

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GUO et al. 503

F I G U R E 1 The ASTs of the two Python code snippets “b=g/m” (left) and “b=m/g” (right). The two ASTs are very similar except on
the positions of variables “g” and “m”. The GNN-like models are not able to distinguish between the two code snippets as they can not well
capture the subtle positional information of those two variables.

T A B L E 1 Examples of <code, comment> pairs collected from Jupyter Notebooks and from the dataset in Reference 24.

We instantiate the approach on Python code, which is known as a fast-growing programming language. As data source
for evaluation, we explore a large number of Jupyter Notebooks available in open source repositories. Jupyter Notebooks
provide a unique channel, via a web-based interface, for capturing the diversity of information in the computation pro-
cess, including the developed code, the documentation and the results. In such an interactive development environment,
users have great freedom to edit their code and descriptions, which is very different from that in the formal software
development. Hence, the data in Jupyter Notebooks are much more diverse compared with the existing datasets13,24,25

consisting of <method,comment> samples obtained from real-world software projects. On the one hand, the code snip-
pets are not limited to methods with clear functional purposes. Instead, the code may be just a line to plot a figure, for
example in Table 1. On the other hand, the textual descriptions are written more flexibly (e.g., the word “maybe” in the
comment in Table 1). As a result, our dataset based on Jupyter Notebooks can provide a new space for code comment
generation task.

Note that, this research aims to develop a novel encoder-decoder neural architecture that employs the triplet positional
AST nodes and edges to represent the comprehensive structure of source code, thereby boosting the generation of code
comments. Thus, our work is orthogonal to large pre-trained language models, such as Codex,26 CodeT5,27 and the most
recent ChatGPT,28 which depend on massive corpora and model source code only as textual sequence. Despite that, the
pre-trained paradigm can further improve our proposed PyScribe approach, which is left to future work.

In short, this paper makes the contributions as below:

1© We introduce PyScribe, a novel neural architecture for Python code comment generation. The approach expands
the power of Transformer to exploit more detailed AST features while maintaining the structural information by
encoding both edges and nodes with triplet positions. To our knowledge, it is the first time in this area to (1) explicitly
embed the edges for AST learning, and (2) define triplet positions for both the AST nodes and edges to maintain the
overall AST structure. In addition, a two-stage decoding process is applied over the learned edge and node features
sequentially for yielding the comment texts.

2© We build and share a large dataset of Python code+description pairs with high quality to support the community
effort in advancing the state-ofthe-art in code comment generation. The dataset includes 47k pairs of code-description
samples.

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

504 GUO et al.

3© We extensively assess the performance of PyScribe, and conduct an ablation study to highlight the effectiveness
of the major components and design choices of our model. We also compare PyScribe against the traditional
sequence-to-sequence models, and more recent approaches that propose different code abstraction models or that
leverage the Transformer. Quantitative results indicate that PyScribe can generate better code comments than the
state-ofthe-art baselines.

2 RELATED WORK

Automated code-to-text translation has been a topic of intense interest in the scientific community for many years.16,29 It
has been applied to resolve software engineering tasks, for example, automated code comment generation and code anno-
tation generation. With the rapid advancement of machine learning and deep learning in recent years, most state-ofthe-art
works, nowadays achieve code-to-text translations through learning-based approaches.30 In these approaches, code
snippets are either regarded as natural language sequences or structural trees (i.e., ASTs of the code).

Code as natural language. Numerous essential solutions of neural source code summarization approaches are
proposed to transform the problem into a sequence generation task.13,14,29 For example, Iyer et al.29 proposed a
sequence-to-sequence neural network based on LSTMs and attention mechanism, namely GODE-NN, to produce code
descriptions. Wei et al.14 built a dual learning framework to jointly model the tasks of code generation and code sum-
marization. More recently, Ahmad et al.15 presented a method called NeuralCodeSum for automatically annotating code
snippets with natural language. While taking source code as natural language, their approach attempts to further learn
information from the code by maintaining the pairwise relationships between source code tokens. Nevertheless, since
the initial architecture of the Transformer is proposed for handling natural language rather than programming language,
the Transformer-based approach can only achieve limited performance for code comment generation, as shown in the
evaluation section.

Code as AST. By considering code as natural language, the structural information of source code is ignored. Con-
sequently, the power of the corresponding code-to-text models may be affected. To this end, more and more researchers
have started to train the learning models with code’s structural information, which can be obtained from the code’s
AST16,17,19–22,25,31–35 and the Application Programming Interface (API) sequence.13,36,37 For example, Wan et al.21 put
forward a framework based on reinforcement learning to automatically summarize code snippets. Their framework
respectively encodes the AST structure as well as the plain code sequence via AST-based LSTM and LSTM, which
are integrated together by a hybrid attention layer. Hu et al.16,17 converted the AST to linear node sequence through
structure-based traversal (SBT) for code comment generation. Zhou et al.33 performed CNN38 with N-Ary Tree-LSTM39

for better AST representation, and proposed a switch network to dynamically decode the syntactical and lexical repre-
sentations of source code for comment generation. LeClair et al.19 utilized a single GRU layer40 to encode the source
code sequence and graph convolutional network (GCNs)41 to model the AST of Java method. Choi et al.34 performed
GCNs41 before transformer framework to learn AST representation for code comment generation. In addition to AST
structural information, Wang et al.42 recently proposed another approach that utilizes a hierarchical attention model by
consolidating different features, including not only AST but also code sequence and control flow.

Our Approach. Unfortunately, despite the fact that AST structures have been recurrently leveraged to learn program-
ming code, their capabilities could have been under-estimated. For instance, converting AST to node sequence may lead
to loss of structural information. GNN-based methods are oversensitive to local features and are limited to capture the
long-distance relations in the tree structure. Indeed, state-ofthe-art works either ignore the edge information or consider
the edges only as the local relations hidden between nodes, but not explicit components as nodes that can be embedded.
Therefore, we propose a novel approach titled PyScribe in this work, which attempts to learn the AST representation from
the node-level and edge-level perspectives separately while retaining the overall structural information by incorporating
the triplet positions.

3 APPROACH

We now overview the details of our approach, namely PyScribe, for generating Python code descriptions based on learn-
ing with neural networks. The overview of its phases is presented in Figure 2: data is first (1) pre-processed to prepare the
required input for (2) model training. Given a code snippet, PyScribe first parses it to produce its AST nodes and edges

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GUO et al. 505

F I G U R E 2 Overview of PyScribe code-to-description generation process.

with their triplet positions in their AST context. The natural language description of Python code is also tokenized for the
training purpose.† In the training process, the AST nodes, edges and description tokens with positions flow as input into
the proposed PyScribe model. After multiple epochs of offline training on the whole training dataset, the model will be
further used to generate the text description corresponding to the given new Python code. We now detail both phases.

3.1 Data preprocessing

3.1.1 Code to AST with triplet positions

Program code is written with tokens forming textual representations that can be processed as natural language text. Struc-
tural details of code however carry semantic information that is not expressed in textual representations. In practice, code
analysis is performed by building its AST. Recent studies in the literature have reached promising results by using AST
context as input to code-related learning models.17,18,39,44–47 This work also relies on AST information, however, goes fur-
ther. On the one hand, we consider the edges as an explicit component of AST that can be embedded (i.e., not just hidden
relations between connected nodes). On the other hand, we present triplet positions for the nodes/edges to maintain the
overall structural information of AST.

As a basic component of AST, the nodes in this work are divided into two categories: (1) function nodes that are
crucial to AST structure and function realization, such as Assign and Module in Figure 1, and (2) attribute nodes that
denote the values or names of their parent nodes, which also exist in the source code and are visualized as dotted boxes
in Figure 1, e.g., “a” and “g”. Formally, we define a triplet positional AST node n in this study as below:

n = (nt, {x, y, z}), (1)

where nt is the label associated to an AST node. {x, y, z} represents the triplet position of node n, which consists of: (1) the
node’s depth x in the AST, (2) the left-to-right sequential position y of its parent node in the layer, and (3) the left-to-right
sequential position z among its sibling nodes. Both x and y start with 0. To differentiate attribute node from function node,
the position value z of an attribute node is a negative integer starting from −1. In contrast, a function node’s position z is
a non-negative integer beginning with 0.

We take for example the left side of Figure 1 that depicts the AST of code fragment b=g/m. By traversing the AST
layer by layer and left to right, the nodes with triplet positions are listed in the left side of Figure 3. For instance, the
triplet position of function node (BinOp,{2,0,1}) includes: the depth position 2 that represents the third level from
top to bottom, the sequential position 0 indicating that the parent node Assign is the first left-to-right function node in
Assign’s layer, and the position 1 which means BinOp is the second among its siblings. For node (“g”,{4,1,-1}) as
another example, the third position -1 indicates that it is an attribute node and is the first node among its siblings. Since

†In this paper, we utilize the ast package in Python for converting code to AST and NTLK package43 for tokenization.

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

506 GUO et al.

F I G U R E 3 AST nodes and edges extracted from the left AST in Figure 1.

the root node Module has no parent node, we set its triplet position to {0,0,0} in particular. In an AST, all the triplet
positions are specified uniquely and precisely, which allows for the tracking and differentiation of nodes with identical
labels. (e.g., (Name,{3,1,0}) and (Name,{3,1,2})).

Since an edge reflects the relationship between a node and its child node that is essential to AST structure, we consider
the edges as another component for AST that can be embedded and encoded directly. Thus, we combine a node and its
child node as an explicit edge and record the triplet position of its child node as the position of edge. Such an edge with a
triplet position can be formulated as below:

e = ({nt,nc
t}, {x, y, z}), (2)

where nt is the parent node of the node nc
t , and {x, y, z} represents the triplet position of nc

t that has been mentioned above.
For example, according to the left AST of Figure 1, all edges with triplet positions shown in Figure 3 can be extracted.

The edge ({BinOp,Name},{3,1,0}) starts from the node (BinOp,{2,0,1}) and ends with its first child node
(Name,{3,1,0}). 3 denotes the depth position of the edge, of which the child node is in the fourth layer from top to
bottom in the AST. Its sequential position 1 indicates that the edge is the second that starts with function node in this
layer from the left to right. And 0 illustrates that the edge is for the first child function node Name of BinOp. Its triplet
position can thus be used to discriminate it from its sibling edge ({BinOp,Name},{3,1,2}).

It should be noted that such a three-tuple index can mark the position of a node/edge uniquely in a given AST. It
indicates that the nodes/edges with triplet positions can represent the whole AST structure.

3.1.2 Comment to tokens

Code description/comment is a document provided in natural language. We thus build on text pre-processing strategies
widely used in the NLP community and employ NTLK package43 to tokenize Python code description and lemmatize
each word in description. Furthermore, some special texts such as URLs (e.g., “http://www.timeout.com/”) and spe-
cific delimiters (e.g., “******”) are replaced with pre-defined tokens (respectively “<url>” and “–”). Besides the token
sequences, the index of each token in the related sequence (as shown in Figure 2) is also forwarded as input to the
PyScribe neural networks.

Like the most natural language processing tasks, code comment generation approaches based on neural networks are
generally challenged by the out-of-vocabulary issue as well. Considering the vocabulary size and that rare words in the
training data offer little possibility to learn their embeddings, any token that occurs less than three times in the training
dataset will be regarded as an out-of-vocabulary token. To deal with these out-of-vocabulary tokens, we marked them as
a special symbol “<unk>”.

3.2 PyScribe model

Figure 4 depicts the framework of our proposed PyScribe model. It is made up of three modules: two encoders and
one decoder that are connected with attention neural networks, inspired by the Transformer12 language-to-language

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.timeout.com/

GUO et al. 507

F I G U R E 4 The PyScribe model. R&N represents residual connection and normalization.

translation architecture. The encoders and decoder implement multi-head attention and position-wise feed-forward net-
works with a stack of N identical layers. Each layer is fed with embedded AST nodes, edges, and comment tokens. The
two encoders are dedicated to extracting the AST features of source code, layer by layer. In the decoding process, the com-
ment features are first captured by the masked multi-head attention neural networks, and further fused with the extracted
AST node and edge features continuously. Finally, through a stack of decoder blocks and the output layer, the model can
predict the probabilities of descriptive text tokens for the given Python code. The details of this process are further laid
out in the following sub-sections, with the notations listed in Table 2.

3.2.1 Embeddings

When passing the AST nodes, edges, and comment tokens with their positions to PyScribe, it is necessary to embed
them into numerical vectors40,46,48 in the first place. For example, given the AST with ln nodes Sn = [n1,n2, … ,nln] with
the triplet positions Pn = ({x1, y1, z1}, {x2, y2, z2}, … , {xln , yln , zln}), the nodes will be mapped into Es

n = [e1, e2, … , eln]

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

508 GUO et al.

T A B L E 2 Summary of notations.

ln Number of AST nodes

le Number of AST edges

lt Number of summary tokens

Sn Set of AST nodes

d Embedding size

Es
n Embeddings of AST nodes

Es
e Embeddings of AST edges

Es
t Embeddings of summary tokens

Ep
n Triplet positional embeddings of AST nodes

Ep
e Triplet positional embeddings of AST edges

Ep
t Sequential positional embeddings of summary tokens

En Initialized representation of AST nodes

Ee Initialized representation of AST edges

Et Initialized representation of summary tokens

N Number of encoding/decoding layers

Ek Vectors output by the kth Transformer encoding layer

Hk+1 Self-attention vectors in the (k + 1)th Transformer encoding layer

h Number of attention heads

Q Query input of multi-head attention operation

K Key input of multi-head attention operation

V Value input of multi-head attention operation

Ai Scores of the ith attention head

EN
n Encoded AST nodes

EN
e Encoded AST edges

Ek
t Vectors output by the kth summary decoding layer

Hk+1
t Self-attention vectors in the (k + 1)th summary decoding layer

Hk+1
t,n Decoded vectors in the (k + 1)th summary decoding layer performed over the encoded AST nodes

Hk+1
t,e Decoded vectors in the (k + 1)th summary decoding layer performed over the encoded AST edges

EN
t Decoded summary tokens

P Probability distribution for predicted summary tokens

where ei ∈ Rd and d is the embedding size. Inspired by the learned positional embeddings for sequence,12,23 we consider
each triplet position {xi, yi, zi} as an individual token that can be embedded as e′i ∈ Rd. Consequently, the triplet positions
Pn can be mapped into Ep

n = [e′1, e
′
2, … , e′ln

]. Particularly, the embedding operation of edges is similar to that of triplet
positions by treating each edge consisting of node pair as an individual.

After getting the embedding vectors of AST nodes, edges, comment tokens (i.e., Es
n ∈ Rln×d, Es

e ∈ Rle×d
, Es

t ∈ Rlt×d),
and their related positional embeddings (i.e., Ep

n ∈ Rln×d, Ep
e ∈ Rle×d, Ep

t ∈ Rlt×d), we follow Vaswani et al.12 to initialize
the representations of nodes, edges, description tokens as below:

En = Es
n ∗

√
d + Ep

n,

Ee = Es
e ∗

√
d + Ep

e ,

Et = Es
t ∗

√
d + Ep

t ,

(3)

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GUO et al. 509

where d is the embedding size; ln, le, and lt are the numbers of AST nodes, edges, and description tokens. In this way, the
triplet positional information can be integrated into node/edge embeddings to maintain the AST structure.

After that, the vector representations of AST nodes, edges, and textual descriptions flow into the encoders and decoder
of the PyScribe model for further processing.

3.2.2 Encoders

To encode the two-level AST information, i.e., nodes and edges, with their triplet positions, PyScribe expands the Trans-
former encoder to two independent encoders with the same architecture. They differ, however in the targeted inputs: for
one, it is the embedded representations of AST nodes, and for the other, it is the embedded AST edges. As depicted in
Figure 4, the encoder comprises N identical Transformer encoding layers. Each layer is made up of a multi-head attention
mechanism as well as a feed-forward network. Besides, residual connection49 and layer normalization50 are employed
with the two modules to alleviate the problems of vanishing gradients in multilayer computing and excessive vector offset
in residual connecting.

Multi-head attention is a self-attention technique that accepts query, key, and value vectors as input. Since it mines the
semantic relevance among all the tokens, there exist no local sensitivity or long-term dependency issues. The multi-head
attention mechanism is formulated as below:

Hk+1 = LayerNorm(Ek + Att(Ek
,Ek

,Ek)),
Att(Q,K,V) = [A1,A2, … ,Ah]WO

,

Ai = Softmax

(
QiKT

i√
d

)

Vi,

Qi = QWQ
i , Ki = KWK

i , Vi = VWV
i ,

(4)

where Ek ∈ Rl×d denotes the vectors output by last layer. Att means the multi-head attention operation that needs query,
key, and value as input. The vector Ek and Att’s output are residually connected as the input of the layer normalization
LayerNorm. In Att, Q,K,V ∈ Rl×d represent the query, key, and value vectors, respectively. h is the number of attention
heads. WQ

i ,W
K
i ,W

V
i ∈ Rd×(d∕h)

, and WO ∈ Rd×d are learnable parameters.
In order to effectively extract the semantics hidden in the input nodes/edges, the feed-forward network attached

with residual connection and layer normalization is then applied to each position separately to achieve non-linear
transformation, which is defined as follows:

Ek+1 = LayerNorm(Hk+1 + FFN(Hk+1)),
FFN(v) = Linear(ReLU(Linear(v))),

(5)

where FFN denotes the process implemented by the feed-forward network, which is composed of two Linear transfor-
mations separated by a ReLU activation as non-linear transformation. Note that the output of FFN has the same shape
as its input.

3.2.3 Decoder

The decoder of PyScribe is also composed of N (same as that of the encoders) decoding blocks. Different from
the encoders, each block in the decoder comprises four sub-layers: one masked multi-head attention sub-layer for
self-attention encoding, two multi-head attention sub-layers for two-stage decoding, and one Linear sub-layer, which are
all followed by residual connection and layer normalization.

In the decoding block, the existing tokens of textual description are first encoded based on the masked multi-head
attention mechanism, which can be formalized as:

Hk+1
t = LayerNorm(Ek

t +MaskAtt(Ek
t ,E

k
t ,E

k
t)), (6)

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

510 GUO et al.

where Ek
t ∈ Rl×d is the vectors output by last decoding layer. MaskAtt denotes the masked multi-head attention12

utilized in the decoder. It also takes query, key, and value vectors as input and attempts to extract the rela-
tions among the description tokens. The only difference between MaskAtt and Att is the calculation of Ai, which
is as follows:

Ai = Softmax

(

Mask

(
QiKT

i√
d

))

Vi. (7)

The mask operation is applied to achieve fast output generation (e.g., in parallel) while avoiding recurrent generation of
output tokens in the training process (e.g., like RNNs). In detail, Mask is responsible for setting up the matrix (e.g., by
assigning −∞ to all the cells above the principal diagonal), which can prevent the information in rightward positions
from attending to the current position.

After that, two multi-head attention modules are applied to continuously fuse token features of descriptions with the
extracted features of AST nodes and edges for proceeding with the decoding. Then, the FFN sublayer takes the decoded
token vectors for non-linear transformation. The whole procedure can be formulized as follows:

Hk+1
t,n = LayerNorm(Hk+1

t + Att(Hk+1
t ,EN

n ,EN
n)),

Hk+1
t,e = LayerNorm(Hk+1

t,n + Att(Hk+1
t,n ,EN

e ,EN
e)),

Ek+1
t = LayerNorm(Hk+1

t,e + FFN(Hk+1
t,e)) .

(8)

The Att and FFN sub-layers in this formula have the same architectures as that of the encoders, respectively. The
differences between them lie in the input data.

After the stacked two-stage decoding processes, an Output Layer is attached to the decoder to generate the final prob-
abilities of the next predicted token for a given Python code snippet. The probability P is calculated with the following
formula:

P = Softmax(Linear(EN
t)). (9)

The linear function Linear projects the decoder output to the vectors of which the dimensionality is the same
with the token vocabulary size of description corpus, and the softmax function Softmax coverts the vectors into
the probabilities. In this paper, the token with the highest probability will be chosen as the next token in
the description.

4 EXPERIMENTAL SETUP

The performance of PyScribe is assessed via a variety of experiments. Before presenting the results, this section provides
the research questions, data collection process, and experimental configurations. Our aim is to facilitate experimental
replication.

4.1 Research questions

We design the experiments to answer the following research questions:

• RQ-1. How effective is PyScribe in automatically generating descriptions for Python code?
• RQ-2. How sensitive is the performance of PyScribe w.r.t. the size of training datasets, the size of code and the length

of descriptions?
• RQ-3. How does the model size influence the performance of PyScribe?
• RQ-4. How does our method perform compared with other advanced code summarization techniques?
• RQ-5. How scalable is PyScribe on other datasets?

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GUO et al. 511

F I G U R E 5 The working steps of our data collection process.

4.2 Data collection

Large-scale and high-quality datasets are necessary to evaluate neural network-based approaches. Since the literature
does not propose relevant datasets associated with Python code fragments and their description texts based on Jupyter
Notebooks, we propose to build such a dataset by ourselves through mining from GitHub. Jupyter Notebooks have
indeed gained momentum in the Python developer community. They are leveraged as a single channel (in the form of a
document) to share code, along with its explanatory text, multimedia resources, and even computation outputs. Figure 5
illustrates the steps that we followed in our data collection process, namely (1) to select candidate code/description
pairs (2) filter relevant pairs based on lexical information, and (3) filter based on semantic details. As experimentally
demonstrated by Sun et al.,51 it is essential to filter out irrelevant samples from the dataset when performing neural
code learning.

Step 1: Code-to-description candidates selection. A simplified view of an example Jupyter Notebook is provided
in Figure 6. Jupyter Notebooks enable interactive programming by first describing the functionality of the code (in a
Markdown cell) before writing the source code while reading the Notebook. The execution outputs (not visible in the
illustrated example) will then be presented right after the code snippets. As the first step, given a Jupyter Notebook, we
simply group two adjacent cells (Markdown cell followed by a Code cell) together to form a possible code-to-description
candidate. Other combinations (such as two continuous code cells) will be ignored. In the example of Figure 6, we will
retain only two code-to-description candidates, namely cells 1-2, and cells 3-4.

We crawled GitHub and collected 1,630,818 code-to-description candidates. Unfortunately, not all the
code-to-description candidates collected in the first step are suitable (e.g., language is not English, code syntax is
incorrect). We add filtering steps and curate the dataset.

Step 2: Lexical-level Filtering. In the second step, we specifically target irrelevant or malformed samples. We set
rules to reduce noise in the dataset:

• Non-English text descriptions are excluded (by a Python tool named langid).
• The code snippet should be parsable (i.e., with a correct syntax): we consider the syntax to be correct if an AST can be

successfully generated for the code snippet.

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

512 GUO et al.

F I G U R E 6 A simplified example of Jupyter notebook.

• Small-size descriptions are discarded: the text description (after tokenization, such as removing stop words and
punctuations) should have at least five words.

• Small-size code is discarded: the generated AST of the code snippet should contain at least five nodes.

After applying those rules, our collected dataset is reduced and now contains 956,728 code-to-description pairs.
Step 3: Semantic-level filtering. We now go one step further to perform semantic-level filtering since we have

observed that some descriptions are not actually related to their associated code snippets. We, therefore, propose to cal-
culate the semantic relevance between the description and the code snippet for each pair, so as to only select such pairs
that have their descriptions or code snippets closely correlated.

The rationale behind our semantic relevance calculation method is presented as follows. Given two independent
code-to-description pairs, say (c1, d1) and (c2, d2), if c1 is similar to c2 meanwhile d1 is also similar to d2, we will consider
both of these two pairs are semantically relevant and hence will be selected to fulfill our training dataset. In this work,
we introduce two techniques to calculate the similarity of descriptions and code snippets: TF-IDF52 and Doc2Vec.48 The
code-to-description pairs (i.e., descriptions and the code) are first tokenized and converted into lower cases. The Python
code snippets are further converted into AST edge sequences. Then, the tokenized descriptions and the edge sequences
are respectively leveraged to learn embeddings through both TF-IDF and Doc2Vec models. This process eventually leads
to four models: (1) TF-IDF model built on descriptions, (2) Doc2Vec model trained on descriptions, (3) TF-IDF model
built on code, and (4) Doc2Vec model trained on code. After that, the four models are respectively leveraged to calculate
cosine similarities between descriptions and code snippets (cf. Fig.5). With a pre-defined similarity threshold at 80% (for
both descriptions and code), we then perform a quadruple analysis to filter out such code-to-description pairs that have
no neighbor pairs fulfilling our aforementioned criteria: two descriptions (or code snippets) have a similarity less than 0.8,
concerning either TF-IDF model or Doc2Vec model. In other words, if the cosine similarities of two code-to-description
pairs (w.r.t. the aforementioned four models) are all higher than 0.8, the descriptions are considered to be correct for the
corresponding code snippets. Consequently, both code-to-description pairs will be regarded as valid ones and hence will
be considered for fulfilling the training dataset.

Eventually, after passing the three steps of data selection, 86,788 code-to-description pairs are retained. The distribu-
tions of the code AST size and the description length are illustrated in Figure 7. Based on the distribution quartile values,
we focus on selecting the code-to-description pairs whose code AST size is less than 220 and whose description text length
is less than 70. Finally, 47,689 code-to-description sample pairs are retained. For the assessment experiments in this
paper, we randomly select 47,000 pairs and divide the dataset into training/validation/testing sets with 45,000/1,000/1,000
sample pairs, respectively.

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GUO et al. 513

F I G U R E 7 Distributions of the AST size (top) and description length (bottom) per candidate pair. Outliers are excluded for better
visualization.

T A B L E 3 Parameter settings.
Batch
size

Learning
rate Decay

Minimum
learning rate Drop Layers

Hidden dimensions
of attention

Hidden dimensions
of FFN Heads Epochs

160 5 e−4 0.95 2.5e−5 0.2 4 512 2048 8 20

Note: Decay and Drop indicate the decay of the learning rate and the dropout ratio; Heads and Epochs are the number of attention heads and training epochs
over the whole dataset.

4.3 Experiment configurations

Our implementation of PyScribe leverages PyTorch 1.2.0. We choose Python 3.7 as the development environment, CUDA
10.0 as the parallel computing interface, and Ubuntu 16.04 as the backend operating system, running on a machine with 4
NVIDIA 2080 Ti GPUs. Our experiments adopt Adam53 as the optimizer. The main hyper-parameters we set for evaluation
are also provided in Table 3.

4.4 Evaluation metrics

In this work, we resort to seven metrics (which are actually variants of three main metrics) that have been frequently
relied upon in similar studies to evaluate the state-ofthe-art:

• BLEU .54 Bilingual evaluation understudy (BLEU) is among the earliest metrics proposed for calculating the similarity
of two textual sequences. It is the geometric mean of n-gram precision values multiplied by a brevity penalty for short
sentences. Currently, BLEU is widely employed for assessing machine translation tasks. In our experiments, we use
BLEU-1, BLEU-2, BLEU-3, and BLEU-4 as BLEU scores (measured on 1-gram, 2-gram, 3-gram, and 4-gram) that are
commonly used in other related works.21,42 Additionally, av-BLEU that is smoothly averaged over the four BLEU scores
is introduced as the overall BLEU for performance evaluation.

• METEOR.55 Metric for evaluation of translation with explicit ordering (METEOR) is an important metric utilized
in translation-like tasks. It is defined as the harmonic mean of recall and precision of uni-gram matching between
texts. METEOR mitigates some issues in BLEU, e.g., the lack of explicit word matching and recall calculation. As a
recall-oriented metric, it measures how effectively a neural translation technique grabs the reference content in the
generated sequence.

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

514 GUO et al.

• ROUGE.56 Recall-oriented understudy for gisting evaluation (ROUGE) was initially presented for evaluating summa-
rization systems. It does so by comparing the overlaps between word pairs, word sequences, and n-gram data. This
study introduces the ROUGE-L variant, which measures the longest co-occurring subsequences between sentences
and takes sentence-level structural similarity into consideration naturally.

It is noted that we report all the result scores in percentage.

5 EXPERIMENTAL RESULTS

5.1 Performance assessment

This section evaluates PyScribe by comparing its performance against the performance that can be achieved with three
baselines and six variants. These comparisons aim to assess the impact of the major components and design choices in the
PyScribe architecture: The three baselines are implemented by replacing PyScribe’s Transformer-based encoder and
decoder algorithms with the Gated Recurrent Unit (GRU) algorithm.40 We select GRU since it is one of the most advanced
recurrent neural networks (RNN) and has been demonstrated effective in sequence-to-sequence modeling tasks.

• Baseline-1. The two encoders and the decoder of PyScribe are replaced by two two-layer bidirectional GRUs (one for
each encoder) and a one-layer unidirectional GRU, respectively.

• Baseline-2. Only the decoder of PyScribe is replaced (i.e., by one-layer unidirectional GRUs).
• Baseline-3. Only the two encoders of PyScribe are replaced (by two two-layer bidirectional GRUs).

It should be noted that the numbers of the GRU layers are determined according to their performance.
Recall that, when embedding code snippets, our approach takes both AST nodes and edges into consideration. We

proposed two variants to assess the contribution of the design choices in an ablation study.

• Variant-1. Edge information is not considered in the model training (i.e., -Edge). Everything else remains the same.
• Variant-2. Node information is not considered in the model training (i.e., -Node). Everything else remains the same.

In addition, our proposed three-dimension positions are used in the embeddings to provide position information for
nodes and edges. Then, two variants are designed to evaluate their effect on our model.

• Variant-3. Triplet position information (for both nodes and edges) is not considered in the model training (i.e.,
-Position). Everything else remains the same.

• Variant-4. The nodes and edges are regarded as sequences. Triplet positions for nodes and edges are both replaced
by traditional sequential positions (i.e., Sequential Position), like that in code descriptions. Everything else remains
the same.

Finally, as shown in Figure 4, PyScribe, by default, considers edge information before node information when per-
forming multi-head attentions in the decoding blocks. We propose to assess whether this ordering may have an impact
on the performance of PyScribe. To this end, we implement two more variants.

• Variant-5. The two attentions are calculated in parallel and then added together. There will be no order between them.
• Variant-6. The order of the two-stage decoding is reversed. PyScribe sequentially takes edge information into

consideration before node information.

Table 4 summarizes the experimental results with all metrics for all implementations. All of the experiments are
launched at the same dataset (cf. Section 4.2: 4,5000 code-to-description pairs for training set, 1,000 pairs for validation
set, and 1,000 pairs for testing set). Overall, PyScribe outperforms the eight baselines and variants on all performance
metrics and shows comparable performance with one variant.

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GUO et al. 515

T A B L E 4 Performance of PyScribe and its baselines.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 av-BLEU METEOR ROUGE-L

Baseline-1 (GRU-GRU) 16.00 6.39 4.32 3.57 6.30 15.62 18.80

Baseline-2 (Trans.-GRU) 15.17 5.31 3.47 2.83 5.30 14.42 17.34

Baseline-3 (GRU-Trans.) 29.98 17.13 13.84 12.26 17.18 14.51 27.68

Variant-1 (Edge) 36.36 25.01 22.05 20.53 25.33 18.70 33.35

Variant-2 (Node) 37.38 25.73 22.52 20.88 25.93 18.94 33.49

Variant-3 (Position) 37.85 26.67 23.65 22.10 26.95 20.13 35.48

Variant-4 (Sequential position) 37.89 25.56 22.10 20.30 25.68 18.77 34.38

Variant-5 (Parallel) 36.99 25.50 22.22 20.43 25.58 19.04 34.13

Variant-6 (Edge first) 40.73 27.97 24.49 22.65 28.19 20.26 35.52

PyScribe 40.17 28.29 24.51 22.47 28.12 20.35 35.65

Comparing PyScribe with Baseline-3 demonstrates that replacing the Transformer-based encoder with GRUs
has a substantial impact on PyScribe’s performance. What’s more, the performance suffers much more when the
Transformer-based decoder or both the encoders and the decoder are replaced with GRUs (i.e., comparing PyScribe with
Baseline-2 and Baseline-1).

With respect to the AST encoder design that takes both nodes and edges into account, it can be seen that the lack
of either will hinder the performance of PyScribe by comparing PyScribe with Variant-1 and Variant-2. And the out-
performance of Variant-2 to Variant-1 indicates that the edges play a greater role than nodes in the architecture. Even
so, the result of PyScribe shows that the combination of nodes and edges contributes greatly to the whole Python code
description generation process. In terms of the triplet positions for nodes and edges that are used in their embeddings, the
comparison of PyScribe to Variant-3 indicates that excluding triplet position will impact PyScribe’s performance. Fur-
thermore, the performance of Variant-4 shows that it won’t help if the AST nodes and edges are considered as sequences
like code descriptions with sequence position information added. Overall, these experimental results suggest that the
positions of AST nodes and edges are indeed useful information for embedding code snippets towards learning semantic
features for code comment generation.

Compared to PyScribe with Variant-5 and Variant-6, PyScribe achieves higher and comparable performance scores,
respectively. It indicates the effectiveness of the designed two-stage decoding process. And the order of the two stages
does not affect the performance.

RQ-1: PyScribe yields performance metrics that are consistently high across all metrics. The ablation study further
revealed that all components and design choices have contributed to some extent to its performance. In particular, relying on
Transformer for implementing a decoder and including AST node position information have been shown effective.

5.2 Sensitivity to training dataset and testing sample sizes

With the second research question, we investigate the sensitivity of PyScribe to the experimental training and testing
sets. First, we consider the dataset size property. We thus prepare nine training datasets (all samples being randomly
selected from the original dataset) having sizes ranging between 5000 and 45,000 code-description pair samples, with a
step of 5000. The testing dataset, however, remains the same, i.e., 1000 initial samples. Figure 8 illustrates the experimental
results. Clearly, the larger the training dataset, the better the performance of PyScribe on all evaluation metrics. We
further observe that the performance increases rapidly when the sizes of training datasets are relatively small and tends
to stabilize towards larger datasets.

We then look at the impact of testing sample properties in terms of size (different AST sizes and description lengths)
on the performance of PyScribe. To this end, we randomly split the testing dataset into ten size-related groups before
computing the performance metric scores for each group. Figure 9 illustrates the experimental results. From the results, it
can be shown that PyScribe is getting better and better performance when the AST sizes and description lengths increase
at first. In the fifth group (i.e., (88,110] for AST size and (28, 35] for description length), PyScribe achieves the best

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

516 GUO et al.

F I G U R E 8 Performance w.r.t. training dataset size.

F I G U R E 9 Performance w.r.t. AST sizes (left) and description lengths (right) of testing samples.

result. Then with the growth of the AST sizes and description lengths, the performance of PyScribe becomes worse from
the overall trend. Nevertheless, PyScribe shows certain stability on the whole: PyScribe is thus reliable in generating
descriptions for Python code, even for large code snippets.

RQ-2: Understandably, PyScribe will perform poorly with small training datasets. It also yields relatively low scores for
predicting very-short and very-long descriptions. Nevertheless, PyScribe is globally effective for large code snippets and is
robust overall.

5.3 Investigation on the model size

This section analyzes PyScribe’s performances with modified model sizes to answer the third question. To achieve this,
we first change the number of encoding and decoding layers from 2 to 6 for observation. Then we make the embedding
size increase from 256 to 768 for performance comparison.

Table 5 displays the outcomes of PyScribe on our dataset when the number of encoding and decoding layers ranges
from 2 to 6. The results indicate that the performance improves as the number of layers increases. For example, the

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GUO et al. 517

T A B L E 5 Performances of PyScribe with varying numbers of encoding and decoding layers.

Layers Model size BLEU-1 BLEU-2 BLEU-3 BLEU-4 av-BLEU METEOR ROUGE-L

2 57.04 × 106 37.01 24.83 20.84 18.61 24.48 18.27 33.27

3 68.60 × 106 39.64 27.68 23.71 21.55 27.35 19.91 34.92

4 80.16 ×106 40.17 28.29 24.51 22.47 28.12 20.35 35.65

5 91.72 × 106 40.64 28.56 24.87 22.92 28.48 20.30 35.69

6 103.28 × 106 41.24 29.07 25.27 23.17 28.94 20.75 35.94

Note: The model size means the number of training parameters.

T A B L E 6 Performances of PyScribe with different embedding sizes.

Emb. size Model size BLEU-1 BLEU-2 BLEU-3 BLEU-4 av-BLEU METEOR ROUGE-L

256 28.55 × 106 36.91 23.50 19.08 16.71 23.10 17.33 31.02

384 51.47 × 106 37.21 26.20 22.40 20.38 25.85 19.25 33.43

512 80.16 ×106 40.17 28.29 24.51 22.47 28.12 20.35 35.65

640 114.62 × 106 39.61 28.45 25.00 23.28 28.43 20.76 35.99

768 154.84 × 106 38.55 27.97 24.40 22.46 27.67 20.25 35.45

Note: The model size means the number of training parameters.

av-BLEU/METEOR/ROUGE-L scores improve by 2.87/1.64/1.65% and 0.77/0.44/0.73% when the number of layers turns
into 3 from 2 and 4 from 3, respectively. As the number of layers grows from 4 to 6, although there is still potential
for improvement, the performance does not improve too much. In fact, the av-BLEU improves only by 0.36% when the
number of layers turns into 5 from 4, with little change in the METEOR/ROUGE-L values. While the number of layers
grows to 6, the av-BLEU/METEOR/ROUGE-L improves only by 0.46/0.35/0.25%, compared with the model with 5 layers.

Table 6 illustrates PyScribe’s performances with the change of its embedding size. We observe that
PyScribe’s performance is improved significantly as the embedding size increases from 256 to 512. Intuitively, the
av-BLEU/METEOR/ROUGE-L improve by 5.02/3.02/4.63%. When the embedding size becomes 640, the performance
still improves a little. For instance, the av-BLEU/METEOR/ROUGE-L scores improve by 0.31/0.41/0.34%. However, when
the embedding size grows to 768, PyScribe performs worse than that with the embedding size of 640 and 512. In fact,
the av-BLEU/METEOR/ROUGE-L results decrease by 0.76/0.51/0.54% and 0.45/0.10/0.20%, respectively.

RQ-3: With the increase of the model size in a certain range, PyScribe’s performance will be influenced and improved
greatly. Nevertheless, when the model becomes too large, it may not be much stronger or even be impacted.

5.4 Comparison to the state-of the-art

The literature includes various approaches targeting code-to-text generation tasks for different programming languages.
We propose to compare PyScribe against the most recent advanced approaches and two baselines in these works. In
total, we consider six approaches presented in major venues:

• DeepCom.16 DeepCom introduces the LSTM and attention-based neural machine translation model to solve code
comment generation. To provide the AST of source code as input of the sequence-to-sequence model, it converts the
AST into a specifically formatted node sequence, which largely increases the sequence lengths.

• CSCGDual.14 CSCGDual builds a dual learning-based model that trains code summarization (CS) and code generation
(CG) jointly. It tries to use CG to improve the CS task. To enhance the relationship between CG and CS, it applies a
constraint on probability and a constraint exploiting the nature of attention. This approach does not use the ASTs of
code snippets.

• NeuralCodeSum.15 NeuralCodeSum introduces Transformer architecture and incorporates the copying attention
mechanism57 to model the source code summarization. It uses source code as input for code learning.

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

518 GUO et al.

T A B L E 7 Comparison results between PyScribe and its recent closely related state-ofthe-art tools.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 av-BLEU METEOR ROUGE-L

DeepCom16 28.15 14.47 12.34 11.50 15.50 12.15 23.42

CSCGDual14 19.85 14.05 12.71 12.27 14.44 13.95 28.59

RNN-based15 30.78 16.66 13.81 12.69 17.31 14.35 28.40

NeuralCodeSum15 33.53 24.05 21.63 20.51 24.46 19.04 33.56

NMT-only58 30.98 16.29 12.87 11.26 16.44 13.90 27.19

Rencos58 38.34 24.34 20.66 18.61 24.47 18.38 33.91

PyScribe 40.17 28.29 24.51 22.47 28.12 20.35 35.65

• RNN-based.15 In the implementation of NeuralCodeSum, there is a variant that replaces the Transformer with RNNs.
We consider it as a comparative baseline.

• Rencos.58 Rencos is a retrieval-based neural framework proposed for code comment generation. It combines the
retrieval-based strategies and the strengths of the NMT model for producing better comments.

• NMT-only.58 In the work,58 NMT-only excludes the retrieval-based module and considers only the NMT-
based module.

We run all the approaches on the same code-to-description Jupyter Notebook-based dataset that we have constructed.
The testing and validating are performed under the same settings as in our performance assessment. Among these
approaches, DeepCom, CSCGDdual, RNN-based, and MNT-only adopt encoder-decoder frameworks that are based on
RNNs. Through the comparison of NeuralCodeSum and PyScribe that utilize Transformer to these RNN-based methods,
it indicates that Transformer does better in learning-based code description generation.

As shown in Table 7, although CSCGDual tries to use code generation to enhance code summarization, it shows poor
performance compared to all other approaches and PyScribe. For example, the av-BLEU/METEOR/ROUGE-L scores of
CSCGDual are 10.03/4.43/5.32% and 13.68/6.4/7.06% lower than Rencos and PyScribe, respectively. In contrast, Deep-
Com adopts LSTMs to encode the AST nodes, which is still inferior to our PyScribe. The results show that PyScribe
outperforms DeepCom by 12.62/8.2/12.23% in terms of av-BLEU/METEOR/ROUGE-L metrics. It can be inferred that
converting an AST to its node sequence in DeepCom may lead to structural information loss during AST encoding,
thus impacting the generated code comments. It is also worth mentioning that, like ours, NeuralCodeSum is also a
Transformer-based approach. By replacing the Transformer module with RNNs, the performance reduction of the base-
line RNN-based (e.g., 7.15/4.69/5.16% for the av-BLEU/METEOR/ROUGE-L scores) illustrates the power of Transformer
for code comment generation. However, NeuralCodeSum only regards code snippets as natural language and therefore
has ignored their structural information. Although it introduces the copying attention mechanism and outperforms other
RNN-based approaches, PyScribe performs still better from the result shown in Table 7. Intuitively, the improvement of
PyScribe over NeuralCodeSum is 3.66/1.31/2.09% in terms of av-BLEU/METEOR/ROUGE-L metrics. This result further
confirms our initial hypothesis that code structural information is useful for embedding code so as to achieve code-to-text
translation. Since Rencos combines the retrieval method and RNN-based neural model, it has the best result among all the
baselines using RNNs. Even so, our approach PyScribe shows much better than Rencos. Particularly, it can be observed
that PyScribe improves the BLEU-2/BLEU-3/BLEU-4 scores by 3.95/3.85/3.86% in contrast to Rencos, demonstrating
PyScribe’s superiority for longer sequence generation.

Example generated descriptions. Table 8 illustrates two examples to qualitatively compare the output of PyScribe,
and the baseline methods. Since all the words are lemmatized with no stemming applied, it can be seen that all the
descriptions generated are still well understandable.‡ In the first case, the code length is small, while the description
length is large. The result shows that only PyScribe yields a very similar description to the gold truth. Among the base-
line methods, CSCGDual understands half part of the core information in the code snippet, and the text generated is not

‡It should be noticed that the word “a” in the phrase “a we ve” in the second example is actually “as”. Since “as” is recognized as the plural word of “a”
when being lemmatized by NLTK, it will become “a” after that. In fact, such minor grammatical issues are inevitable in the common pre-processing
operations by NLTK, which, however, does not affect the human understanding of natural language comments too much.

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GUO et al. 519

T A B L E 8 Two examples of code descriptions generated by our approach and its state-ofthe-art counterparts.

so smooth. The rest others output the wrong descriptions, although some of them (i.e., RNN-based, NeuralCodeSum,
and NMT-only) can predict several key words in the descriptions. In the second case, the code is relatively more com-
plex than that in the first case and the description is shorter. The code in this case intends to divide the dataset into a
training set and a testing set by the sklearn toolkit. All the methods predict that the code is concerned with “dataset”.
Among them, PyScribe, CSCGDual, RNN-based, and NeuralCodeSum generate the core information, while the others
do not. More detailedly, the description generated by PyScribe is just slightly different from ground truth in form. CSCG-
Dual, RNN-based, and NeuralCodeSum predict the data splitting. However, they can not infer the “sklearn” package.
And RNN-based and NeuralCodeSum generate some redundant information, which makes the output descriptions read
unsmoothly.

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

520 GUO et al.

More examples can be found in Table A1 in Appendix A.
RQ-4: PyScribe outperforms recent state-ofthe-art code to text generation approaches. Qualitative analysis of sam-

ple cases illustrates how our approach can produce relevant pieces of description for long and potentially complex
code snippets.

5.5 Performance on other datasets

To further study the scalability of PyScribe, we introduce two benchmarks for evaluating PyScribe’s performance,
including: (1) a Python dataset21,24 and (2) a Java dataset.13 Both of the two datasets are obtained from GitHub and widely
used in code comment generation.13–15,34 Each item of data consists of a Python/Java method and its description extracted
from the docstring that follows the method declaration. The two datasets are divided into training/validation/testing
sets with 55,538/18,505/18,502 and 69,708/8,714/8,714 samples, respectively. For the result fairness, we adhere to these
divisions in the experiment.

For the comparison, we introduce eleven sate-ofthe-art approaches as baselines. Apart from the three
methods (DeepCom,16 CSCGDual,14 and NeuralCodeSum15) used in Section 5.4, the other eight are presented
as follows:

• CODE-NN.29 CODE-NN uses LSTM to model the plain source code and generate the code comment combined with
attention mechanism.

• Tree2Seq.59 Tree2Seq extends the sequence-to-sequence model to the tree-to-sequence model by introducing
tree-based LSTM as its encoder.

• RL+Hybrid2Seq.21 To enhance the correctness of generated code comments, RL+Hybrid2Seq incorporates AST and
source code with LSTM and AST-based LSTM into a deep reinforcement framework.

• API+CODE.13 API+CODE generates code comments with the aid of API information transferred from an API
sequence summarization task.

• mAST+GCN.34 mAST+GCN performs graph convolutional networks (GCNs) on AST to obtain node representa-
tions with structural information. Then the learned node sequence is fed into the Transformer framework for further
encoding and decoding.

• SiT.60 SiT presents a multi-view neighbouring matrix defining the relations between source code tokens based on
AST. The relations are then employed to compute self-attention in the introduced structure-induced Transformer for
generating code comments. The model is further fine-tuned by the pre-trained RoBERTa.62

• CodeT5.27 As a pre-trained encoder-decoder Transformer model, CodeT5 is designed on the T5 architecture63 for
various code-related tasks, such as code generation and summarization, etc.

• CodeBERT.61 CodeBERT is a pre-trained Transformer framework based on RoBERTa.62 Although the objective of
CodeBERT does not include generation tasks, it can be modified by introducing a Transformer decoder for code
comment generation.64

Table 9 presents the results of PyScribe and the baselines. We refer to the baseline performances reported
by Choi et al.34 The overall results show that the recent Transformer-based approaches NeuralCodeSum15 and
mAST+GCN34 outperform the previous works based on RNNs.13,14,16,21,29,59 For instance, the performance (i.e., the
av-BLEU/METEOR/ROUGE-L scores) of NeuralCodeSum is 10.72/8.63/7.28% and 2.19/0.66/1.15% higher than the best
RNN-based method CSCGDual on the Python and Java datasets, respectively. Compared to CSCGDual, the perfor-
mance improvements of mAST+GCN correspond to 11.02/8.98/7.36% and 3.1/1.4/1.21% on the two datasets. Besides,
mAST+GCN outperforms NeuralCodeSum by 0.3/0.35% and 0.91/0.74% in terms of av-BLEU/METEOR metrics on
the two datasets, respectively, indicating that the AST structure is superior to the plain code for comment generation.
Despite that RL+Hybrid2Seq and DeepCom introduce AST, their inferior performances in contrast to mAST+GCN
and PyScribe reveal the LSTM’s limitation in AST encoding for code summarization. Intuitively, PyScribe outper-
forms RL+Hybrid2Seq by 14.34/12.58/9.11% and 9.96/8.58/6.11% in terms of av-BLEU/METEOR/ROUGE-L metrics on
the Python and Java datasets. In sipte of the findings above, PyScribe performs much better than NeuralCodeSum
and mAST+GCN on both datasets. For example, PyScribe improves the av-BLEU/METEOR/ROUGE-L scores by

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GUO et al. 521

T A B L E 9 Comparison with the baselines on the Python and Java datasets.

Model

Python Java

av-BLEU METEOR ROUGE-L av-BLEU METEOR ROUGE-L

CODE-NN29 17.36 09.29 37.81 27.60 12.61 41.10

Tree2Seq59 20.07 08.96 35.64 37.88 22.55 51.50

RL+Hybrid2Seq21 19.28 09.75 39.34 38.22 22.75 51.91

DeepCom16 20.78 09.98 37.35 39.75 23.06 52.67

API+CODE13 15.36 08.57 33.65 41.31 23.73 52.25

CSCGDual14 21.80 11.14 39.45 42.39 25.77 53.61

NeuralCodeSum15 32.52 19.77 46.73 44.58 26.43 54.76

mAST+GCN34 32.82 20.12 46.81 45.49 27.17 54.82

SiT60 33.46 20.28 47.50 45.19 27.52 55.87

CodeT5∗27 33.92 21.16 49.03 46.32 29.11 56.76

CodeBERT∗61 34.01 21.53 49.78 46.90 29.18 56.88

PyScribe 33.62 22.33 48.45 48.18 31.33 58.02

*Means we rerun the model on the two datasets.

1.10/2.56/1.72% on the Python dataset and 3.60/4.90/3.26% on the Java dataset when compared to NeuralCodeSum.
Compared with mAST+GCN, PyScribe’s performance is enhanced by 0.80/2.21/1.64% on the Python dataset and
2.69/4.16/3.20% on the Java dataset. Evidently, the usage of triplet position for AST nodes and edges contributes
significantly to PyScribe’s superiority over the baselines.

As shown in Table 9, the three pre-training-based baselines (i.e., SiT, CodeT5, and CodeBERT), which benefit from
the knowledge supported by large corpora, achieve excellent code summarization performance on the two datasets.
For example, the ROUGE-L scores of SiT are 0.69% and 1.05% higher than mAST+GCN on the Python and Java
datasets, respectively. On the Python dataset, the performance gains of CodeT5 and CodeBERT over mAST+GCN
are 1.1/1.04/2.22% and 1.19/1.41/2.97%, respectively, as measured by av-BLEU/METEOR/ROUGE-L metrics. Never-
theless, our PyScribe performs even better than SiT, CodeT5, and CodeBERT based on the overall results. The
table shows that PyScribe outperforms SiT by 0.16/2.05/0.95% and 2.99/3.81/2.15% on the Python and Java datasets,
respectively. Besides, PyScribe’s av-BLEU/METEOR/ROUGE-L scores on the Java dataset are 1.86/2.22/1.26% higher
than CodeT5, despite that they have comparable performances on the Python dataset. In contrast to CodeBERT on
the Python dataset, the av-BLEU/ROUGE-L scores of PyScribe decrease by 0.39/1.33% while the METEOR score
improves by 0.8%. Moreover, PyScribe enhances the overall performance (i.e., av-BLEU/METEOR/ROUGE-L scores)
by 1.28/2.15/1.14% when compared with CodeBERT on the Java dataset. These outcomes may be due to the fact that
the pre-trained knowledge is only derived from the sequential source code tokens, without any structural informa-
tion incorporated. In general, the findings above further demonstrate the importance of structural features to code
comment generation.

The result analysis above illustrates the scalability and outperformance of PyScribe. It also turns out that: (1) The
models using Transformer are quite more powerful than the methods based on RNNs in automatic code comment
generation; (2) the AST contains more structural features than the source code, enabling models to learn better code repre-
sentations for comment generation; (3) by integrating triplet positions and edge information into the Transformer-based
structure, PyScribe has more comprehensive learning capacity for ASTs to generate code comments with higher quality.

RQ-5: PyScribe improves the code comment generation performance on two other popular benchmarks. As a result, it
indicates that PyScribe is scalable enough in such a task.

6 DISCUSSION

This section discusses the implications of our work and threats to validity.

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

522 GUO et al.

6.1 Implication

Considering more programming languages for code summarization. Through the preliminary literature review
we have conducted in this paper, we find that most state-ofthe-art studies, at the moment, focus on summarizing
Java code.16–19 Python has not been a popular target, although the language has become more and more popular in
recent years. Other programming languages are even more rarely targetted. Therefore, we argue that our community
should make more efforts to consider more programming languages when targeting code summarization approaches.
One possible approach would be to make the code summarization approach more generic, i.e., suitable for explain-
ing all types of languages (with minimal modifications, if any). In future work, we intend to enhance our method
by integrating additional pre-trained models (e.g., BERT65) to implement the summarization of other programming
languages.

Building more diverse and realistic datasets for learning code summarization. Traditionally, code summa-
rization studies mainly leverage code comments to learn for summarization, which makes the learning dataset quite
monotonous. Indeed, comments are mainly applied to explain well-written APIs and will often include special consid-
erations for accessing the methods. However, this style of explanation may not be perfectly suitable for describing a
more loosely written code (such as code snippets written in Jupyter Notebooks). To this end, we build and present to
the research community a novel dataset leveraging code explanations presented in popular Python-based Notebooks.
Due to its interactive design, programmers have much more freedom to take notes on what they code. And it leads to
varieties of styles of code and descriptions. As a result, the data with this diversity will be much closer to real-world
programming activities. As shown in Figure 9, the larger the size of the dataset, the better the model performs on it.
This evidence suggests that it is necessary to build an even larger, more realistic, and more diverse dataset for learning
code summaries.

Considering more structural information from code to learn code representation. In this study, we have put
forward a Transformer-based network PyScribe and demonstrated its effectiveness on our dataset. PyScribe achieves
its purpose by modeling a code AST with structural information by jointly incorporating three types of features (i.e.,
node, edge, and triplet position). The experimental results (as displayed in Table 4) confirm our hypothesis that more
structural information should be learned from code to deliver better code representation. This promising result fur-
ther suggests that our community should explore more rich code representations for performing code-based neural
network learning.

6.2 Threats to validity

One of the validity threats relates to the experimental process, including the bugs in our code and bias in the base-
line replication. As for the implementation of our approach, the code is double-checked to reduce the bugs that
harm the experiment. And to mitigate the impact concerned with bugs, the source code with the dataset will be pub-
lished online for further study. While implementing the methods of which the code is unavailable would lead to
severe bias to validity, we select the existing state-of-art methods with all the code open-sourced by their authors.
However, the parameters should be modified in replication because our dataset has differences from the datasets
used in these baseline works, such as the size of datasets, maximum length of code and descriptions, etc. In order
to eliminate this threat, we have tried our best to tune the parameters to make these baseline methods generate
better results.

The dataset proposed in this work is also a potential threat to validity, including the quality and generalization. We
crawled a huge number of Jupyter Notebook projects from GitHub for building the dataset needed. To improve the
dataset’s quality as much as possible, several steps concerning layouts of cells, lexical rules, and semantic calculations are
concatenated for data extraction. Despite our best efforts to remove noisy samples, such as repeated samples,66 the dataset
size may limit its generalizability in applications. In future work, we hope to enlarge our dataset from GitHub and other
online platforms.

The third potential threat is the scalability of our model in the code comment generation task. We have veri-
fied the superiority of PyScribe compared to the state-ofthe-art on our proposed dataset in Section 5.4. However,
one may argue that it is uncertain on other datasets. To validate PyScribe’s scalability, we have extended the
experiment on two other popular datasets and refer to the baseline results from Reference 34. The comparison

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

GUO et al. 523

still demonstrates the outperformance of PyScribe. Furthermore, recent studies67–69 have started to investigate the
impact on the code-to-text translation models by leveraging cross-project datasets. So, in the future, we plan to
assess PyScribe on more datasets concerning other programming languages (e.g., Javascript and C) and cross-
project tasks.

One other threat to the validity of this study is the evaluation metrics. For the natural language generated, contra-
dictions could happen between these metrics and human judgment. To mitigate the potential pitfalls, we have applied
several metrics to comprehensively validate how PyScribe and other methods perform. These metrics are all widely
used in such scenarios. The results in terms of all metrics successfully demonstrate PyScribe’s outstanding perfor-
mance. Besides, we do an in-depth study of two examples based on human judgment and provide four examples in
Appendix. It further helps interpret what PyScribe can learn compared to the baseline methods. Overall, it is convinced
that the threat to the evaluation metrics’ validity is minimal. In spite of this, a human evaluation can be performed
in future work.

7 CONCLUSION

Code comment generation via structural AST feature learning has garnered significant interest in recent years. Nonethe-
less, there are still unresolved issues, such as the positional information loss in AST representation. Therefore, this paper
improved the Transformer model into a novel encoder-decoder neural architecture PyScribe for producing Python code
descriptions. Given a snippet of Python code, PyScribe first attaches a triplet position to each AST edge and node to
comprehensively preserve structural information in source code. The positional edges and nodes then flow into two
separate Transformer encoders for AST encoding. Afterward, PyScribe implements two-stage decoding processes over
the extracted node-level and edge-level features to generate textual code comments. To assess PyScribe’s effectiveness,
we have built a large Python dataset with 47,000 code-description sample pairs that are carefully filtered and collected
from the real-world Jupyter Notebook repository. Finally, based on standard performance metrics, we ran comprehensive
experiments to demonstrate that PyScribe’s design choices contribute to making it superior over the baselines. Even fur-
ther investigation on other widely used datasets turns out that PyScribe outperforms the state-ofthe-art approaches in
comment generation.

To promote reproducibility studies, we have made available online our tool implementation and our carefully
constructed code-to-description dataset at the following link: https://github.com/SMAT-Lab/PyScribe.

AUTHOR CONTRIBUTIONS
Juncai Guo: Conceptualization, Methodology, Software, Investigation, Visualization, Writing-Original Draft, Data Cura-
tion, Funding acquisition. Jin Liu: Supervision, Resources, Project administration, Funding acquisition. Xiao Liu: Super-
vision, Conceptualization, Formal analysis, Validation, Writing-Review & Editing. Wan Yao: Conceptualization, Formal
analysis, Validation, Writing-Review & Editing. Yanjie Zhao: Investigation, Writing-Original Draft, Writing-Review &
Editing. Li Li: Supervision, Conceptualization, Data Curation, Formal analysis, Writing-Review & Editing. Kui Liu:
Conceptualization, Writing-Original Draft, Writing-Review & Editing. Jacques Klein: Visualization, Formal analysis,
Writing-Review & Editing. Tegawendé F. Bissyandé: Visualization, Formal analysis, Validation, Writing-Review &
Editing.

ACKNOWLEDGMENT
This research is supported by the National Natural Science Foundation of China (Grant No.61972290), the Open Fund
of Key Laboratory of Network Assessment Technology from Chinese Academy of Sciences, and the China Scholarship
Council (Grant No.201906270158). Open access publishing facilitated by Deakin University, as part of the Wiley - Deakin
University agreement via the Council of Australian University Librarians.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in https://github.com/SMAT-Lab/PyScribe.

ORCID
Juncai Guo https://orcid.org/0009-0002-0048-6517

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/SMAT-Lab/PyScribe
https://github.com/SMAT-Lab/PyScribe
https://orcid.org/0009-0002-0048-6517
https://orcid.org/0009-0002-0048-6517

524 GUO et al.

Jacques Klein https://orcid.org/0000-0003-4052-475X

REFERENCES
1. Stueben M. Self-DOCUMENTING CODE: 67–90. Apress; 2018.
2. Raskin J. Comments Are More Important Than Code. ACM Queue. 2005;3:64. doi:10.1145/1053331.1053354
3. McBurney PW, McMillan C. Automatic documentation generation via source code summarization of method context. In: Roy CK,

Begel A, Moonen L, eds. 22nd International Conference on Program Comprehension, ICPC 2014, Hyderabad, India, June 2-3, 2014. ACM;
2014:279-290.

4. Sridhara G, Hill E, Muppaneni D, Pollock L, Vijay-Shanker K. Towards automatically generating summary com-
ments for Java methods. Proceedings of the IEEE/ACM international conference on Automated software engineering.
ACM; 2010:43-52.

5. Sridhara G, Pollock L, Vijay-Shanker K. Automatically detecting and describing high level actions within methods. 2011 33rd International
Conference on Software Engineering (ICSE). ACM; 2011:101-110.

6. Robillard P. Schematic pseudocode for program constructs and its computer automation by SCHEMACODE. Commun ACM.
1986;29:1072-1089. doi:10.1145/7538.7541

7. Ohba M, Gondow K. Toward mining “concept keywords” from identifiers in large software projects. ACM SIGSOFT Softw Eng Notes.
2005;30(4):1-5. doi:10.1145/1082983.1083151

8. Maskeri G, Sarkar S, Heafield K. Mining business topics in source code using latent dirichlet allocation. Proceedings of the 2008 1st India
Software Engineering Conference, ISEC’08. ACM; 2008:113-120.

9. Haiduc S, Aponte J, Marcus A. Supporting program comprehension with source code summarization. Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering. ACM; 2010:223-226.

10. Wong E, Yang J, Tan L. AutoComment: Mining question and answer sites for automatic comment generation. 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE; 2013:562-567.

11. Wong E, Liu T, Tan L. CloCom: Mining existing source code for automatic comment generation. 2015 IEEE 22nd International Conference
on Software Analysis, Evolution, and Reengineering (SANER). IEEE Computer Society; 2015:380-389.

12. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems. Curran Associates, Inc; 2017:5998-6008 http://papers.nips.cc/paper/7181-attention-is-all-you
-need.pdf

13. Hu X, Li G, Xia X, Lo D, Lu S, Jin Z. Summarizing source code with transferred API knowledge. Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018. ijcai.org; 2018:2269-2275.

14. Wei B, Li G, Xia X, Fu Z, Jin Z. Code generation as a dual task of code summarization. Advances in Neural Information Processing Systems.
Curran Associates, Inc; 2019:6563-6573 http://arxiv.org/abs/1910.05923

15. Ahmad W, Chakraborty S, Ray B, Chang KW. A Transformer-based approach for source code summarization. Proceed-
ings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics;
2020:4998-5007.

16. Hu X, Li G, Xia X, Lo D, Jin Z. Deep code comment generation. ICPC ’18: Proceedings of the 26th Conference on Program Comprehension.
ACM; 2018:200-210.

17. Hu X, Li G, Xia X, Lo D, Jin Z. Deep code comment generation with hybrid lexical and syntactical information. Empir Softw Eng.
2020;25:2179-2217. doi:10.1007/s10664-019-09730-9

18. Alon U, Brody S, Levy O, Yahav E. code2seq: Generating sequences from structured representations of code. 7th International Conference
on Learning Representations (ICLR). OpenReview.net; 2019.

19. LeClair A, Haque S, Wu L, McMillan C. Improved code summarization via a graph neural network. 2020 IEEE/ACM International
Conference on Program Comprehension (ICPC). ACM; 2020:184-195.

20. Liu S, Chen Y, Xie X, Siow J, Liu Y. Automatic code summarization via multi-dimensional semantic fusing in GNN. CoRR. 2020;
abs/2006.05405; https://arxiv.org/abs/2006.05405

21. Wan Y, Zhao Z, Yang M, et al. Improving automatic source code summarization via deep reinforcement learning. Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering. ACM; 2018:397-407.

22. Liang Y, Zhu KQ. Automatic generation of text descriptive comments for code blocks. Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18). AAAI Press; 2018:5229-5236.

23. Gehring J, Auli M, Grangier D, Yarats D, Dauphin YN. Convolutional sequence to sequence learning. Proceedings of the 34th International
Conference on Machine Learning. Vol 70. PMLR; 2017:1243-1252.

24. Barone AVM, Sennrich R. A parallel corpus of python functions and documentation strings for automated code documentation and code
generation. Proceedings of the Eighth International Joint Conference on Natural Language Processing, IJCNLP 2017. Asian Federation of
Natural Language Processing; 2017:314-319.

25. LeClair A, Jiang S, McMillan C. A neural model for generating natural language summaries of program subroutines. 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE / ACM; 2019:795-806.

26. Chen M, Tworek J, Jun H, et al. Evaluating large language models trained on code. CoRR. 2021; abs/2107.03374.

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-4052-475X
https://orcid.org/0000-0003-4052-475X
http://info:doi/10.1145/1053331.1053354
http://info:doi/10.1145/7538.7541
http://info:doi/10.1145/1082983.1083151
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/1910.05923
http://info:doi/10.1007/s10664-019-09730-9
https://arxiv.org/abs/2006.05405

GUO et al. 525

27. Wang Y, Wang W, Joty SR, Hoi SCH. CodeT5: Identifier-aware unified pre-trained encoder-decoder models for code understanding
and generation. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021. Association for
Computational Linguistics; 2021:8696-8708.

28. OpenAI. ChatGPT. Computer Software; 2023.
29. Iyer S, Konstas I, Cheung A, Zettlemoyer L. Summarizing source code using a neural attention model. Proceedings of the 54th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). The Association for Computer Linguistics;
2016:2073-2083.

30. Tian H, Liu K, Kaboré AK, et al. Evaluating representation learning of code changes for predicting patch correctness in program repair.
35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020. IEEE; 2020:981-992.

31. Wan Y, Shu J, Sui Y, et al. Multi-modal attention network learning for semantic source code retrieval. 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2019. IEEE; 2019:13-25.

32. Shido Y, Kobayashi Y, Yamamoto A, Miyamoto A, Matsumura T. Automatic source code summarization with extended tree-LSTM. 2019
International Joint Conference on Neural Networks (IJCNN). IEEE; 2019:1-8.

33. Zhou Z, Yu H, Fan G. Effective approaches to combining lexical and syntactical information for code summarization. Softw Pract Exp.
2020;50(12):2313-2336. doi:10.1002/spe.2893

34. Choi Y, Bak J, Na C, Lee J. Learning sequential and structural information for source code summarization. Findings of the Association for
Computational Linguistics: ACL/IJCNLP 2021. Association for Computational Linguistics; 2021:2842-2851.

35. Wang X, Wang Y, Mi F, et al. SynCoBERT: Syntax-guided multi-modal contrastive pre-training for code representation. arXiv preprint,
arXiv:2108.04556 2021.

36. Zhao Y, Li L, Wang H, He Q, Grundy J. APIMatchmaker: Matching the right APIs for supporting the development of android apps. IEEE
Trans Softw Eng. 2022;49:113-130.

37. Zhao Y, Li L, Sun X, Liu P, Grundy JC. Icon2Code: Recommending code implementations for Android GUI components. Inf Softw Technol.
2021;138:106619. doi:10.1016/j.infsof.2021.106619

38. Allamanis M, Peng H, Sutton C. A convolutional attention network for extreme summarization of source code. In: Balcan M, Weinberger
KQ, eds. Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016. Vol
48. JMLR.org; 2016:2091-2100.

39. Wei H, Li M. Supervised deep features for software functional clone detection by exploiting lexical and syntactical information in source
code. Proceedings of the 26th International Joint Conference on Artificial Intelligence. ijcai.org; 2017:3034-3040.

40. Cho K, Merrienboer vB, Gülçehre Ç, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation.
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. ACL; 2014:1724-1734.

41. Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. Proceedings of the 5th International Conference on
Learning Representations. OpenReview.net; 2017.

42. Wang W, Zhang Y, Sui Y, et al. Reinforcement-learning-guided source code summarization via hierarchical attention. IEEE Trans Softw
Eng. 2020;48:102-119. doi:10.1109/TSE.2020.2979701

43. Bird S. NLTK: The natural language toolkit. ACL 2006, 21st International Conference on Computational Linguistics and 44th Annual
Meeting of the Association for Computational Linguistics, Proceedings of the Conference. The Association for Computer Linguistics;
2006:69-72.

44. Liu K, Kim D, Bissyandé TF, Yoo S, Le Traon Y. Mining fix patterns for FindBugs violations. IEEE Trans Softw Eng. 2018;47(1):165-188.
doi:10.1109/TSE.2018.2884955

45. Liu K, Kim D, Bissyandé TF, et al. Learning to spot and refactor inconsistent method names. Proceedings of the 41st International Conference
on Software Engineering. IEEE; 2019:1-12.

46. Mou L, Li G, Zhang L, Wang T, Jin Z. Convolutional neural networks over tree structures for programming language processing.
Proceedings of the 30th AAAI Conference on Artificial Intelligence. AAAI Press; 2016:1287-1293.

47. Zhang J, Wang X, Zhang H, Sun H, Wang K, Liu X. A novel neural source code representation based on abstract syntax tree. Proceedings
of the IEEE/ACM 41st International Conference on Software Engineering. IEEE / ACM; 2019:783-794.

48. Le QV, Mikolov T. Distributed representations of sentences and documents. Proceedings of the 31st International Conference on Machine
Learning. JMLR.org; 2014:1188-1196.

49. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. IEEE Computer Society; 2016:770-778.

50. Ba LJ, Kiros JR, Hinton GE. Layer normalization. CoRR. 2016; abs/1607.06450; http://arxiv.org/abs/1607.06450
51. Sun Z, Li L, Liu Y, Du X, Li L. On the importance of building high-quality training datasets for neural code search. The 44th International

Conference on Software Engineering (ICSE 2022). ACM: 2022.
52. Repplinger J, Chowdhury GG. Introduction to Modern Information Retrieval. 3rd ed.; 2019 Coll Res Libr, Facet publishing:

2011;72(2):194-195. http://crl.acrl.org/content/72/2/194.full.pdf
53. Kingma DP, Ba J. Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations. OpenReview.net;

arXiv:2015.
54. Papineni K, Roukos S, Ward T, Zhu W. Bleu: A method for automatic evaluation of machine translation. Proceedings of the 40th Annual

Meeting of the Association for Computational Linguistics. ACL; 2002:311-318.

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://info:doi/10.1002/spe.2893
http://info:doi/10.1016/j.infsof.2021.106619
http://info:doi/10.1109/TSE.2020.2979701
http://info:doi/10.1109/TSE.2018.2884955
http://arxiv.org/abs/1607.06450
http://crl.acrl.org/content/72/2/194.full.pdf

526 GUO et al.

55. Banerjee S, Lavie A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. Proceed-
ings of the Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization. Association for
Computational Linguistics; 2005:65-72.

56. Lin CY. ROUGE: A Package for Automatic Evaluation of Summaries. Proceedings of the ACL Workshop: Text Summarization Braches Out
2004. Association for Computational Linguistics; 2004:74-81.

57. See A, Liu PJ, Manning CD. Get to the point: summarization with pointer-generator networks. Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics;
2017:1073-1083.

58. Zhang J, Wang X, Zhang H, Sun H, Liu X. Retrieval-based neural source code summarization. ICSE ’20: 42nd International Conference on
Software Engineering. ACM; 2020:1385-1397.

59. Eriguchi A, Hashimoto K, Tsuruoka Y. Tree-to-sequence attentional neural machine translation. Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics. The Association for Computer Linguistics;
2016:823-833.

60. Wu H, Zhao H, Zhang M. Code Summarization with Structure-induced Transformer. ACL/IJCNLP 2021 of Findings of ACL. Association
for Computational Linguistics; 2021:1078-1090.

61. Feng Z, Guo D, Tang D, et al. CodeBERT: A pre-trained model for programming and natural languages. Findings of the Association for
Computational Linguistics: EMNLP 2020. Association for Computational Linguistics; 2020:1536-1547.

62. Liu Y, Ott M, Goyal N, et al. RoBERTa: A robustly optimized BERT pretraining approach. CoRR. 2019; abs/1907.11692.
63. Raffel C, Shazeer N, Roberts A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer. J Mach Learn Res.

2020;21(140):1-67.
64. Wang Y, Dong Y, Lu X, Zhou A. GypSum: Learning hybrid representations for code summarization. In Rastogi A, Tufano R, Bavota G,

Arnaoudova V, Haiduc S. eds. Proceedings of the 30th IEEE/ACM International Conference on Program Comprehension. ICPC 2022, Virtual
Event, May 16-17. ACM; 2022:abs/2204.12916. doi:10.48550/arXiv.2204.12916

65. Devlin J, Chang M, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional transformers for language
understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, NAACL-HLT 2019. Association for Computational Linguistics;
2019:4171-4186.

66. Zhao Y, Li L, Wang H, et al. On the impact of sample duplication in machine-learning-based android malware detection. ACM Trans Softw
Eng Methodol. 2021;30(3):40:1-40:38. doi:10.1145/3446905

67. Tao W, Wang Y, Shi E, et al. On the evaluation of commit message generation models: An experimental study. IEEE International
Conference on Software Maintenance and Evolution, ICSME 2021. IEEE; 2021:126-136.

68. LeClair A, McMillan C. Recommendations for datasets for source code summarization. Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019. Association for
Computational Linguistics; 2019:3931-3937.

69. Allamanis M. The adverse effects of code duplication in machine learning models of code. In: Masuhara H, Petricek T, eds. Proceedings of
the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software, Onward!
2019, Athens, Greece, October 23-24, 2019. ACM; 2019:143-153.

How to cite this article: Guo J, Liu J, Liu X, et al. PyScribe–Learning to describe python code. Softw: Pract
Exper. 2024;54(3):501-527. doi: 10.1002/spe.3291

APPENDIX . QUALITATIVE EXAMPLES

Table A1 provide four qualitative examples of PyScribe and the baselines. The overall results show that PyScribe gen-
erates better comments for the given Python code snippets. For example in the first case in Table A1, only PyScribe
produces the comment that is closest to the ground truth. The comments generated by RNN-based and NeuralCodeSum
are not complete. CSCGDual and NMT-only do not predict readable texts. DeepCom and Rencos output irrelevant
information for the code.

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://info:doi/10.48550/arXiv.2204.12916
http://info:doi/10.1145/3446905

GUO et al. 527

T A B L E A1 Qualitative examples on the Python dataset.

 1097024x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3291, W

iley O
nline L

ibrary on [12/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

	P<0:sc>yScribe</0:sc>--Learning to describe python code
	1 INTRODUCTION
	2 RELATED WORK
	3 APPROACH
	3.1 Data preprocessing
	3.1.1 Code to AST with triplet positions
	3.1.2 Comment to tokens

	3.2 P<0:sc>yScribe</0:sc> model
	3.2.1 Embeddings
	3.2.2 Encoders
	3.2.3 Decoder

	4 EXPERIMENTAL SETUP
	4.1 Research questions
	4.2 Data collection
	4.3 Experiment configurations
	4.4 Evaluation metrics

	5 EXPERIMENTAL RESULTS
	5.1 Performance assessment
	5.2 Sensitivity to training dataset and testing sample sizes
	5.3 Investigation on the model size
	5.4 Comparison to the state-of the-art
	5.5 Performance on other datasets

	6 DISCUSSION
	6.1 Implication
	6.2 Threats to validity

	7 CONCLUSION

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	APPENDIX . QUALITATIVE EXAMPLES

