
D
J
a

b

c

d

A

K
S
P
T
E

1

l
r
o
P
n
n
n
h
P
I
s
n
o
i
r

h
R

Information and Software Technology 178 (2025) 107592 

A
0

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

etecting and Explaining Python Name Errors
iawei Wang a,∗, Li Li b, Kui Liu c, Xiaoning Du d

Faculty of Information Technology, Monash University, Melbourne, 3168, Australia
School of Software, Beihang University, Beijing, 100191, China
Software Engineering Application Technology Lab, Huawei, Hangzhou, China
Faculty of Information Technology, Monash University, Melbourne, 3800, Australia

R T I C L E I N F O

eywords:
tatic analysis
ython code
ools
mpirical studies

A B S T R A C T

Python has become one of the most popular programming languages nowadays but has not received enough
attention from the software engineering community. Many errors, either fixed or not yet, have been scattered
in the lifetime of Python projects, including popular Python libraries that have already been reused. NameError
is among one of those errors that are widespread in the Python community, as confirmed in our empirical
study. Yet, our community has not put effort into helping developers mitigate its introductions. To fill this
gap, we propose in this work a static analysis-based approach called DENE (short for Detecting and Explaining
Name Errors) to automatically detect and explain name errors in Python projects. To this end, DENE builds
control-flow graphs for Python projects and leverages a scope-aware reaching definition analysis to locate
identifiers that may cause name errors at runtime and report their locations. Experimental results on carefully
crafted ground truth demonstrate that DENE is effective in detecting name errors in real-world Python projects.
The results also confirm that unknown name errors are still widely presented in popular Python projects and
libraries, and the outputs of DENE can indeed help developers understand why the name errors are flagged
as such.
. Introduction

Python is an interpreted high-level, general-purpose programming
anguage with design philosophies emphasizing features such as code
eadability, execution efficiency, etc. With the recent fast development
f data science (machine learning and deep learning in particular),
ython has become one of the most popular programming languages
owadays. However, the fast-increasing number of Python projects has
ot received enough attention from the research community. There are
ot many advanced approaches proposed to help developers implement
igh-quality Python code. Subsequently, a large number of low-quality
ython projects or libraries have been scattered in the ecosystem.
ndeed, as empirically revealed by Wang et al. [1], many of their
tudied Python code snippets (within a set of publicly released Jupyter
otebooks) contain poor quality code such as having unused variables
r accessing deprecated functions. The authors further argue that there
s a strong need to programmatically analyze Python code to ensure the
eliability of publicly released Python code.

∗ Corresponding author.
E-mail address: jiawei.wang1@monash.edu (J. Wang).

Among many of the issues impacting the reliability of Python
projects, NameError is one of the most popular issues that will be
thrown if a given name (e.g., of a variable or a method) cannot
be correctly interpreted by Python. The corresponding error message
will be ‘‘name is not defined’’. NameError is often considered not too
complicated to be fixed by developers, especially when they are able
to reproduce and debug the error. However, the fact that many Python
projects (even popular ones with hundreds of thousands of stars on
GitHub) have been reported as containing name errors shows that
name errors are non-trivial to mitigate. On the one hand, because
Python is an interpreted language that does not involve a compilation
process, certain name errors (even the naive ones) could persist in the
(inadequately tested) projects for a long time and will only be revealed
in practice (at the production stage) when their corresponding code is
reached. On the other hand, some name errors could be complex to
fix. They may involve multiple execution paths in numerous methods
across different modules and could even involve external libraries. For
example, as shown in the discussion history of issue #19340 [2] on
the GitHub repository of pandas, one of the most popular libraries in
Python, the ‘‘_converter is not defined’’ NameError has been widely
reported by users and confirmed by the pandas maintainers as an real
issue of pandas. The maintainers also mention when discussing the issue
ttps://doi.org/10.1016/j.infsof.2024.107592
eceived 18 May 2024; Received in revised form 29 September 2024; Accepted 30
vailable online 11 October 2024 
950-5849/© 2024 Published by Elsevier B.V. 
September 2024

https://www.elsevier.com/locate/infsof
https://www.elsevier.com/locate/infsof
mailto:jiawei.wang1@monash.edu
https://doi.org/10.1016/j.infsof.2024.107592
https://doi.org/10.1016/j.infsof.2024.107592


J. Wang et al.

r
a

t
n
c
a

p

Information and Software Technology 178 (2025) 107592 
Table 1
A summary of top 20 popular libraries and the number of issues queried using ‘‘NameError’’ as the keyworda.

Name # Commits # Stars # Forks # Dependents # Contributors # Files # Test Scripts # Issue
reports

requests 6.28k 45.8k 8.4k 1.01M 593 35 9 5
Flask 4.44k 56.3k 14.5 808k 627 75 29 2
sphinx 18.06k 4.1k 1.5k 144k 574 548 89 9
numpy 31.40k 17.9k 5.7k 756k 1,175 581 132 14
Pillow 12.24k 8.8k 1.7k 521k 328 275 119 2
pytest 14.17k 7.6k 1.8k 334k 632 240 994 7
Jinja 2.62k 7.9k 1.4k – 253 60 19 5
matplotlib 40.19k 14k 6k 398k 1,102 887 81 8
pandas 28.94k 30.7k 12.9k 486k 2,402 1,359 815 13
pyyaml 0.59k 1.6k 337k 338 35 82 0 0
coverage 5.07k 1.7k 229 152k 94 148 30 2
scikit-learn 29.46k 46.8 21.8 246k 2,068 880 212 2
dateutil 1.57k 1.6k 376 530k 113 38 19 1
six 0.53k 815 219 927k 56 4 3 1
urllib3 4.04k 2.7k 871 615k 249 74 32 1
clic k 1.98 11.2k 1.2k 563k 282 63 13 2
Werkzeug 4.80k 5.8k 1.6k 564k 382 133 24 3
aiohttp 8.17k 11.5k 1.6k 103k 557 130 60 1
tqdm 1.99k 19.1k 987 189k 104 67 2 3
sqlalchemy 18.24k 4.1k 657 290k 434 591 4 8

a We would like to remind the readers that NameErrors (threw at runtime) should not be confused with naming issues that aim at finding better
variable names (e.g., to follow a certain naming convention). For instance, He et al. [4] have offered our community a learning-based technique
called Namer to spot naming issues (e.g., variable num_or_processors should be named as num_of_processors). Although such changes could
(accidentally) fix NameErrors, it essentially targets a different problem compared with ours and most likely will introduce more NameErrors
at runtime.
O
p
p

2

s
t
P
t
s
t
V
h

eport that this issue is not easy to reproduce. Similar discussions can
lso be found on the popular StackOverflow website [3].

The aforementioned evidence strongly suggests that there is a need
o invent automated approaches for helping Python developers mitigate
ame errors in their projects. To handle the limitation of insuffi-
ient tests (also due to no compilation involved), we argue that those
utomated approaches need to (1) be able to detect name errors
statically without executing the code. To cope with complex name
errors, we argue that the automated approaches should also (2) be able
to help in explaining why the detected name errors are flagged
as such. Unfortunately, despite the fact that more and more Python-
focused research studies are presented in the community, none of
the existing approaches be leveraged to achieve the aforementioned
objectives, i.e., automatically detecting and explaining name errors
in Python projects. Type checking systems in theory should identify
all instances of the same variable including both usages and their
definitions. However, as shown in the experimental results, industry-
leading products such as pyre and pytype are still incapable of detecting
this execution error. 1 Though the error occurrence reason looks simple
that the identifier has not been defined at a program point. However,
as Python code can be executed without compilation, making the name
error can be potentially hidden behind the successful execution of insuf-
ficient test inputs. Moreover, Python def-use information extraction can
be challenging as it offers various syntax sugars to reduce development
efforts while increasing the difficulty of data flow information (such as
one-line for-loop statement in container comprehension). In addition, to
the best our knowledge, there is not existing work to explore the sound
def-use relations of Python programs except Wang et al.’s work [5] on
field-sensitive variable def-use relations across Python based Jupyter
notebooks, which ignores the nested structure of Python scopes.

In fact, it has been pointed out that existing static analysis tech-
niques for Java and C designed for the past decades are difficult to
transfer for due to unique languages features and lack of tools for
Python CFG IR extraction [6]. To this end, we propose to fill this
research gap by introducing to the research community a prototype
tool called DENE. Given a Python project, DENE first scans the code

1 The number of dependent projects for Jinja is unavailable from its GitHub
age.
2 
to simplify some complicated syntax that may introduce difficulties
to static analysis. It then builds scope-enhanced control-flow graphs
for the project to support subsequent reaching definition analysis for
identifying name errors. For the detected errors, DENE goes one step
further to also record the evidence demonstrating why they are flagged
as such. Experimental results show that DENE is effective in detecting
name errors in real-world Python projects, including popular Python
libraries, and the explanation module is also useful for helping devel-
opers understand the reason why there are name errors. To summarize,
this paper makes the following major contributions.

• We conduct a preliminary study about popular Python libraries
and experimentally demonstrate that the most popular Python
libraries, although contributed and maintained by hundreds of
contributors, have been reported to contain name errors.

• We design and implement a prototype tool called DENE, which
performs scope-aware reaching definition analysis to statically
detect name errors and further records how the errors can be
triggered to assist developers in understanding why the errors are
reported as such.

• We demonstrate the effectiveness and usefulness of DENE through
large-scale field experiments over carefully crafted ground-truth
datasets, as well as popular Python libraries and open-source
GitHub projects and a user study.

pen science. Source code and datasets are all available in our artifact
ackage (https://github.com/DENE-dev/dene-dev) and will be made
ublicly accessible on acceptance.

. Preliminary study

As experimentally disclosed by Pimentel et al. [7], their large-scale
tudy of over 1.1 million Jupyter notebooks empirically uncovered
hat NameError is the second most common exception thrown by the
ython scripts recorded in the notebooks. The most common exception
ype is ImportError, which occurs when an import statement fails to
uccessfully import the specified module. This exception is often linked
o the execution environment and is considered a significant issue.
arious automated approaches have been proposed by researchers to
elp Python developers address it [8–11]. However, another important

https://github.com/DENE-dev/dene-dev


J. Wang et al.

c

R

3

f
p
h
a

t

Information and Software Technology 178 (2025) 107592 
exception that warrants attention is NameError. This error has been
extensively studied in the context of computer science education. For
instance, NameError is reported as the primary error category encoun-
tered by high school students [12] and is a frequent syntactic error
among novice programmers [13]. Despite its prevalence and impact on
learning, to the best of our knowledge, NameError has not yet been
specifically targeted by automated approaches. Given its significance,
we believe that developing automated methods to mitigate NameError
is crucial for improving both educational outcomes and the overall
development experience. Nonetheless, to the best of our knowledge,
the issue has not been targeted yet, we believe it is also an important
error type that should be mitigated through automated approaches.

To better motivate the need to invent promising approaches for
automatically detecting and explaining name errors in Python projects,
we conduct a preliminary study aiming at understanding the prevalence
of NameError-related issues reported to open-source Python projects
as the NameError can propagate from the open-source tools to client
programs. For instance, the name error in the motivating example
(Fig. 1) will not be triggered until developers invoked the methods after
defining an object of the class in their own application. To this end,
we resort to the command line GitHub client tool named gh [14] to
crawl the source code repositories and their corresponding issue reports
of the top-20 Python libraries [15] on GitHub. Note that we end up
checking more than 20 libraries because some libraries in the original
top-20 list are excluded as they do not have their source code hosted
on GitHub or do not allow users to add issue reports (the feature is
explicitly disabled).

Table 1 illustrates the final 20 libraries considered in this prelim-
inary study. All of them generally come with a large number of files
(i.e., could be as many as 1359 Python files) and commits (i.e., could
be as many as 50 thousand), have been stared and forked by many
other developers (cf. columns 3–4). Those libraries are all developed
through collaborative efforts with at least 35 developers. The scikit-learn
project has involved over 2000 developers. All of the aforementioned
shreds of evidence confirm that the selected libraries are indeed popular
ones. As indicated in column 6, those libraries have also been used
by many other projects, ranging from 300+ to 1,000,000+ projects.
This evidence, while confirming the popularity of the selected libraries,
further suggests that the quality of these libraries is also important
(a single issue in a library could be propagated to thousands of its
dependents). Unfortunately, as indicated by column ‘‘# Test Scripts’’,
these libraries have only been equipped with a limited number of test
scripts (often much smaller than the number of Python files), resulting
in inadequate test coverage of the libraries and thereby leaving a lot
of quality issues hidden in the released library versions. Indeed, as
suggested by the last column, 19 out of the 20 selected libraries have
been reported containing NameError issues.2 The fact that even the
most popular Python projects (with many contributors and a large
number of commits, stars, and developer forks), which have already
been leveraged by thousands of other projects, are insufficiently tested
and contain quite a number of NameError issues suggests that there is a
strong need to invent automated approaches to help Python developers
detect and mitigate name errors in their Python projects.

We now present a concrete example identified during our prelimi-
nary study to help readers better understand this work. The example
is shown in Fig. 1, which is extracted from the tqdm library that is
frequently leveraged to implement extensible progress bars. This code
snippet has been reported as an issue (ID 5593) containing a potential
name error indicating that the name IntProgress is not defined (cf.
line 20). This issue will be triggered if the tqdm_notebook class is
initialized after the module is imported.

2 Given a repository, we go through each of its issue reports to check if it
ontains nameerror or ’.*’ is not defined keywords. If so, we will count it as a

NameError issue.
3 https://github.com/tqdm/tqdm/issues/559
3 
When importing the module, its body code will be executed to
bind the defined names in the local scope. In particular, the code in
lines 2–14 will be fully executed at this stage, while the definition of
class and methods in lines 16-24 will be recorded. In the motivating
example, the definition of IntProgress is done at this stage. After
that, when class tqdm_notebook is initialized by the client code, the
construction method (i.e., __init__ at line 23) will directly trigger
the execution of the status_printer method (cf. line 24), and
subsequently trigger the accesses of name IntProgress (cf. lines 19
and 21). Unfortunately, under certain conditions, the IntProgress
could not be defined (at line 14) during the module importing phase.
Subsequently, the aforementioned reference of IntProgress (cf.
lines 19 and 21) will result in a name error, i.e., IntProgress is
not defined.

Conventionally, this sort of code defect can be discovered by type-
checking tools. However, existing tools such as pyre by Meta and
pytype by Google, are still incapable of detecting this execution error.
According to the documentation and code implementation, pyre lacks
support for nested scopes and pytype does not analyze path conditions.
Moreover, both tools encounter issues when dealing with complex
syntax sugars such as call chains or container access. The root cause of
this type of bug is the late name-binding strategy in Python language
design. In static-typed Java or C++, the strategy of name binding is
called early binding. When variable types are determined at compile-
time, and the compiler checks for type correctness and existence of
variables before generating the executable code. If a variable or a
method name does not exist, the compile-time error is reported, pre-
venting the program from running. In contrast, Python is a dynamically
typed language, and its name resolutions are determined at runtime.

Summary

NameError is one of the most common exceptions happening in
Python projects. As empirically disclosed in this work, even the most
popular Python libraries have propagated various such exceptions to
their client dependents, as explicitly reported by the developers. This
evidence further suggests that the current regression tests applied to
those projects are not yet adequate, which is also known to be non-
trivial to achieve full coverage through dynamic testing. Therefore,
we argue that there is a need to complement such tests through
static analysis approaches, allowing continuous analyses towards
detecting and mitigating potential name errors.

3. Methodology

In this section, we first present the challenges in the code analysis
for detecting name errors in Python. We then provide our proposed ap-
proach DENE to detect and explain Python name errors, which consists
of three processes as shown in Fig. 2: ❶ Syntax Simplification, ❷ Scope-
enhanced Control Flow Graphs (CFGs) Construction, ❸ Scope-aware

eaching Definition Analysis.

.1. Syntax simplification

Python language is easy to use and convenient to build prototypes
or new blooming ideas as it offers a wide range of unique features for
ractitioners. However, these features (e.g., the syntactic sugar4) may
inder the control flow analysis for Python code in a traditional way
nd hence may lead to unsound static analysis results.

Fig. 3 summarizes four of such cases. Case (1) concerns the con-
ainer comprehensions feature [16] in Python, for-loop and

conditional statements are wrapped into one-line code (cf., line 2),
which makes it difficult to straightforwardly extract the included con-
trol flows. Case (2) and Case (3) respectively concern the nested

4 https://thereaderwiki.com/en/Syntactic_sugar

https://github.com/tqdm/tqdm/issues/559
https://thereaderwiki.com/en/Syntactic_sugar


J. Wang et al.

f
t
s
t
n
e
c
h
a

t
f
w
f
e
(
h

Information and Software Technology 178 (2025) 107592 
Fig. 1. An example of Python code containing a name error. The code snippets are extracted (and simplified) from the Python library tqdm.
t
k
c
s
s
F
1
t
c

u
v
f
w

t
F
s
b
t

Fig. 2. The overview of DENE.

unction calls (cf., line 11) and subscription assignment (cf. line 16)
hat will also make it complicated to extract data dependencies, when
tatically interpreting the code. Finally, the last case (Case (4)) concerns
he famous lambda expression assignment (cf. line 27), which should
ot be treated as a regular variable assignment as it is semantically
quivalent to a standalone function definition. These wrapped code
onventions, while simplifying the code-writing tasks for developers, do
inder static analysis approaches to examine the code’s control flows
nd data dependencies.

To mitigate the impact of such complicated Python features and
owards achieving more complete and effective control flow analysis
or Python code, we propose, as the first step of DENE, to simplify the
rapped code fragments by expending the syntactic sugar into flat code

ragments with traditional constructs, which should be semantically
quivalent to the original code fragments. Fig. 3 further illustrates
e.g., marked -> Unfolded Code) the de-sugared results, demonstrating
ow the complicated syntax is simplified.
4 
3.2. Scope-enhanced control flow graphs construction

Detecting Python name errors relies on checking name usages and
their impacted scope in terms of the corresponding control flows, which
plays a critical role in DENE ’s data flow analysis. To this end, the
second module of DENE aims at constructing control-flow graphs for
he Python code simplified by the first module. To the best of our
nowledge, our community has not yet achieved a sound and robust
ontrol flow graph generation approach. The lack of tools converting
ource code to CFGs leaves the analysis techniques and algorithms de-
igned over the past decades inapplicable to Python code analysis [6].
or instance, the CFG module introduced by FuzzyBook [17] handles
3 of all statements and 5 control statements. Control statements need
o be specifically represented on CFGs because they may change the
ode’s execution flows. For example, the if control flow statement

will yield two branches representing two independent execution flows.
As stated by the official Python documentation, there are eight control
flow statements [18] (i.e., for, if, while, break, continue, try,
ExceptHandler and with). In addition, the Python library python-
graphs by Google Research [19] deals with 13 of all statements and 7
control statements. We believe these existing tools are not competent
for program analysis for large Python real-world projects. Therefore,
we decide to implement the control-flow graph generation module from
scratch with the aim of dealing with all the statements.

Considering the complexity of CFGs, DENE builds the basic CFG
nit at the function level. The detailed construction process recursively
isits all the statement nodes in the abstract syntax trees (ASTs) of given
unctions. Each of the code blocks represents the sequence of statements
ithout any branch.

Once a control statement is met, we will create additional nodes
o place the target code blocks that this control statement jumps to.
or those statements that direct the program to the exit (e.g. raise
tatement), the block will be linked to a special exit node. The links
etween these code blocks are based on the control flow semantics. In
his work, we extend beyond FuzzyBook and python-graphs by carefully

taking into account all possible types of control flow statements as



J. Wang et al. Information and Software Technology 178 (2025) 107592 
Fig. 3. Examples of unfolding wrapped code fragments at the syntax level.
b
r
b
r
𝑔

a
u
(

a

well as all the remaining statements to obtain the precise identifier
usage analysis. For instance, in both Fuzzy’s work and python-graph’s
implementation, the with statement is not considered, whereas the
statement is frequently used by Python programs.

Furthermore, in addition to building CFGs for traditionally defined
functions (e.g., directly under modules or within classes), there are
three types of specific functions that also need to be considered. The
first type is related to module’s static code, which is directly written
in Python modules. Technically speaking, this code is not within any
function. However, they will be executed before any of the other
functions or classes are defined in the same module. The corresponding
names declared in this code block will also be visible to the functions
or classes declared in the module. The second type is related to class’s
static code, which is directly written in Python classes. Similar to that
of module’s static code, class’s static code will also be executed before
(and the defined names will also be visible to) the class’s other func-
tions. The third type is function’s enclosing functions, which are actual
Python functions defined within another function. The names involved
in the outer functions are visible to the enclosing functions, but not
the other way around. Because these special functions will introduce
visibility changes of names, they have to be handled in order to support
sound name error detection. In this work, we have carefully taken into
account all three types of special functions when constructing CFGs.

After modeling the aforementioned special functions, DENE goes
one step deeper to further record the visibilities among different CFGs
within the same module, with respect to the so-called LEGB (short for
Local, Enclosing, Global, Built-in) rule [20]. The LEGB rule essentially
helps in resolving names in given Python programs. In this work, we
enhance the existing CFGs by connecting them through the following
rules: (1) the names defined in the module’s static code is visible to
all the classes/functions defined in the module, (2) the names defined
in the class’s static code is visible to all the functions defined in the
class, and (3) the names defined in a function is visible to all its
enclosed functions. Taking Fig. 1 again as an example, after parsing the
code, DENE will build four CFGs (i.e., _tqdm_notebook module static code,
 r

5 
tqdm_notebook class static code,5 __init__, and status_printer), as shown in
Fig. 4. The CFGs are further connected through dotted single arrow
lines (in blue) based on their scope visibilities. The generated scope-
enhanced CFGs indicates that all the names declared in _tqdm_notebook
module static code will be visible (and hence accessible) to both __init__
and status_printer functions. However, the names declared in function
__init__ will not be visible to function status_printer, and vice versa.

3.3. Scope-aware reaching definition analysis

Based on the constructed scope-enhanced CFGs, the last module
aims at traversing them to pinpoint name errors, i.e., name identifiers
are used but not defined. Specifically, for each name identifier involved
in a CFG, the idea of the last module is to backtrace all the possible
execution paths (with Python scope considered) that can reach the
identifier to check if it is defined in all the involved paths. We define
the NameError in Python as follows.

Definition 1 (NameError). Given a name 𝑛 referenced in the basic
block6 𝐵𝑗 of a control-flow graph (CFG) 𝑔, there exists an execution
path 𝑃 = 𝐵0...𝐵𝑗 in 𝑔, such that ∀𝐵𝑖 ∈ 𝑃 , 𝑛 ∉ 𝑔𝑒𝑛(𝐵𝑖), or ∃𝐵𝑘, 𝑛 ∈ 𝑑𝑒𝑙(𝐵𝑘)
ut ∀𝑘 ≤ 𝑚 < 𝑗, 𝑛 ∉ 𝑔𝑒𝑛(𝐵𝑚), where 𝑔𝑒𝑛(𝐵𝑖) and 𝑢𝑠𝑒(𝐵𝑖) and 𝑑𝑒𝑙(𝐵𝑖)
epresents the set of names that are generated, used and deleted by
lock 𝐵𝑖, respectively. The path 𝑃 records a sequence of blocks that
epresent an execution path starting from the entry block (i.e., 𝐵0) in
to the current block 𝐵𝑗 .

In the next, we present a flow-sensitive and path-sensitive analysis
pproach to achieve this purpose, which includes three steps: (1) Gen,
se and del set construction, (2) backward path-sensitive tracking, and
3) scope analysis.

5 tqdm_notebook class static code is kept as empty as there is no code defined
s such.

6 Also known as a node in the control flow graph. Often, a code block
epresents a sequence of statements without any branch.



J. Wang et al.

c
e
n
t
s
t
d
a
s
(
a
a
a
s
s
b

t
p
d
c
b
t
t
p
i
∃
e
t

b
s
P
v
t

f
d
d

Information and Software Technology 178 (2025) 107592 
Fig. 4. The scope-enhanced CFGs constructed for the motivating example (Fig. 1). The dotted single arrow lines record the scope visibility of the constructed graphs (Names in
targeted graphs are visible to the source graph and its succeeding graphs).
t

Step 1: Gen, Use and Del Set Construction. For all the previously
onstructed CFGs, this step goes through each of their blocks to gen-
rate the set of produced name identifiers and the set of consumed
ame identifiers. When identifying the produced identifiers, in addition
o considering the traditional assignment statements (i.e. variable is
tored), we also consider the following three cases to form the iden-
ifier generation set. The three cases are (1) function or class names
eclared in the block (Python allows to define functions or classes in
given function), (2) names introduced in import statements (import

tatements can also happen in the middle of a given function’s code),
3) names introduced in as expressions. For example, 𝑓 is considered as
generated name for the following statement ‘‘with open(‘‘input.txt’’)
s f’’. All the other name identifiers that are appeared in the block but
re not considered as generated ones will be added to the consumed
et (except for the formal parameters involved in function definition
tatements). Moreover, all the names processed by delete statement will
e added to the 𝑑𝑒𝑙 set.
Step 2: Backward Path-Sensitive Tracking. After generating the

hree sets required for all the blocks in all the constructed CFGs, DENE
erforms backward path-sensitive tracking for each block to check if the
efinitions of its consumed identifiers can be reached backwardly in the
orresponding CFG. More specifically, for a given name identifier 𝑛 in
lock 𝐵𝑖’s consumed set 𝑛 ∈ 𝑈𝑠𝑒(𝐵𝑖), DENE first needs to identify all
he paths that can reach backwardly from block 𝐵𝑖 to the entry block in
he CFG. Subsequently, DENE checks if 𝑛 is defined in all the identified
aths. If there is a path 𝑃 showing 𝑛 is not defined, we consider there
s a potential name error happening in 𝐵𝑖 due to path 𝑃 , i.e., ∃𝑛 and
𝑃 = {𝐵0,… , 𝐵𝑚,… , 𝐵𝑖}, 𝑛 ∈ 𝑢𝑠𝑒(𝐵𝑖) ∧ 𝑛 ∉ 𝑔𝑒𝑛(𝐵𝑚), 𝐵𝑚 ∈ 𝑃 or there
xists 𝐵𝑚 such that 𝑛 ∈ 𝑑𝑒𝑙(𝐵𝑚) and 𝑛 is contained in a del set along
his path before it is included in a gen set.

In this step, DENE repeats the aforementioned process for all the
locks of all the constructed CFGs to recognize undefined names (de-
cribed in algorithm 1). The number of visited blocks for a given
ython project could be huge and hence time-consuming to be fully
isited. Yet, each block may involve a large number of execution paths
hat may further explode the backward tracking space.

To mitigate this, so as to achieve a realistic time performance
or analyzing Python projects, we propose to utilize the concept of
ominance properties [21] to reduce the search space. Notationally, we
efine there is a dominant relationship between two blocks (𝐵𝑥, 𝐵𝑦)

in a given CFG as 𝐵𝑥 ≫ 𝐵𝑦 (reading as 𝐵𝑥 dominates 𝐵𝑦), meaning
every path from entry node to 𝐵𝑦 must go through 𝐵𝑥. In practice, when
conducting the backward path-sensitive tracking for a given block,
DENE will first generate the block’s dominators and directly check
if the block’s used name identifiers are defined (or used7) in its any

7 The problem will be propagated to the dominator block.
 o

6 
dominator (in backward order as well). If so, the name identifiers will
be ignored from further analysis as they will not introduce name errors
(c.f. line 18–19 of algorithm 1). Since the majority of name identifiers
should be defined, this process will significantly reduce the number
of visited blocks and paths. In this work, the dominant relationships
are iteratively computed [21,22] by satisfying the following data flow
equation [22],

𝐷𝑜𝑚(𝐵𝑛) =

{

{𝐵𝑛} 𝐵𝑛 = 𝐵𝑒𝑛𝑡𝑟𝑦

{𝐵𝑛} ∪ (∩𝐵𝑝∈𝑝𝑟𝑒𝑑𝑠(𝐵𝑛)𝐷𝑜𝑚(𝐵𝑝)) 𝐵𝑛 ≠ 𝐵𝑒𝑛𝑡𝑟𝑦
(1)

where 𝐵𝑒𝑛𝑡𝑟𝑦 is the entry node in the given CFG and 𝐵𝑝 is one of the
predecessors of given node 𝐵𝑛. In practice, since there is no need to visit
the block itself, we will remove it from its dominators as by definition
every node dominates itself.

Step 3: Scope Analysis. Now that we have detailed our methodol-
ogy of identifying undefined names in one control flow graph using
path constraints based backward tracking, which should have con-
firmed that the majority of name identifiers will not cause name errors.
For the remaining name identifiers, for which DENE cannot locate their
definitions within the CFG (i.e., in the local scope), we need to go
one step further to check if the identifiers are defined the enclosing
scopes. Recall that Python relies on the so-called LEGB rule to resolve
undefined identifiers, for which the scope visibility has been recorded
when constructing the scope-enhanced CFGs (cf. Section 3.2).

In this work, when finishing the visit of a CFG, DENE steps into
its enclosed CFGs to further search for definitions of the unresolved
identifiers. In other words, the name error candidates from the enclosed
scope are taken to the current scope for further analysis (cf. line 17 in
algorithm 1).

For example, when jumping out from the CFG of function sta-
us_printer in Fig. 4, DENE will highlight that the IntProgress identifier

is not yet defined. Following the scope-enhanced CFGs, DENE will then
visit the function’s class scope (i.e., the tqdm_notebook class static code,
which is empty in this example) and then the module scope (i.e., the
_tqdm_notebook module static code). Unfortunately, at this stage, the
IntProgress identifier still cannot be fully resolved because it is not
defined in the following path {#1, #3, #9, #4}.

After that, DENE further checks whether IntProgress is one of Python’s
reserved keywords (i.e., the Built-in scope). If still not matched, DENE
will consider it as a name error and will flag it as such. To help
developers better understand the name error, DENE will further output
the location where the name error happens (i.e., block #2 in function
status_printer) and the full path showing the identifier is not defined
from the block per se to the module entry in backward order.

Feasibility of Path Exploration in DENE. It is worthwhile to note

ur approach tries to enumerate all the possible execution paths to



J. Wang et al.

1
1
1
1
1
1

1

1
1
1
2
2
2
2

2
2

2
2
2
2

3
3
3
3
3
3
3
3
3

4

D
e
i

c
i
l
o
t
5
2
P
a
l
t
b
t
t
F
a
e
n

i
2
m
r
o
d
l
n
t
b

t
i
s
w

Information and Software Technology 178 (2025) 107592 
Algorithm 1 Path-sensitive backward tracking.
1: Input: Current Block 𝐵𝑗 , entry block 𝐵𝑒𝑛𝑡𝑟𝑦 and variable name 𝑛𝑎𝑚𝑒.
2: Output: name error candidates
3: procedure dfs_for_name(𝐵𝑗 , 𝐵𝑒𝑛𝑡𝑟𝑦, 𝑛𝑎𝑚𝑒)
4: if 𝑛𝑎𝑚𝑒 ∈ 𝑔𝑒𝑛(𝐵𝑗 ) then
5: return False ⊳ Error-free with this path
6: else if 𝑛𝑎𝑚𝑒 ∈ 𝑑𝑒𝑙(𝐵𝑗 ) then
7: return True ⊳ Name used after deleting
8: else if 𝐵_𝑗 == 𝐵𝑒𝑛𝑡𝑟𝑦 then
9: return True ⊳ Path ends
0: else
1: for 𝐵_𝑘 in 𝐵_𝑗.predecessors do:
2: return dfs_for_name(𝐵𝑘, 𝐵𝑒𝑛𝑡𝑟𝑦, name)
3: end for
4: end if
5: end procedure

6: Input: A control flow graph 𝑐𝑓𝑔 for a scope (function/class
definition.)

7: Output: name error candidates
8: procedure Backward_Tracking(cfg)
9: 𝑛𝑎𝑚𝑒_𝑒𝑟𝑟𝑜𝑟_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝜙
0: 𝐵_𝑒𝑛𝑡𝑟𝑦 ← cfg.entry_block
1: for 𝐵𝑖 ∈ 𝑐𝑓𝑔.𝑏𝑙𝑜𝑐𝑘𝑠 do
2: 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑_𝑠𝑐𝑜𝑝𝑒_𝑛𝑎𝑚𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝜙
3: if has_inner_cfg(𝐵𝑖) then ⊳ If this block contains

function/class definition.
4: es_cfg ← get_enclosed_scoped_cfg(𝐵𝑖)
5: 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑_𝑠𝑐𝑜𝑝𝑒_𝑛𝑎𝑚𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ←

backward_tracking(es_cfg)
6: end if
7: name_candidates ← 𝑢𝑠𝑒(𝐵𝑖) ∪ 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑_𝑠𝑐𝑜𝑝𝑒_𝑛𝑎𝑚𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠
8: for 𝑛𝑎𝑚𝑒 ∈ 𝑛𝑎𝑚𝑒_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 do
9: 𝐵𝑑𝑓 ← get_dominator_blocks(𝐵𝑖) ⊳ visiting dominator

blocks
0: if 𝑛𝑎𝑚𝑒 ∈ 𝑔𝑒𝑛(𝐵𝑑𝑓 ) then
1: continue
2: end if
3: if dfs_for_name(𝐵𝑖, 𝐵𝑒𝑛𝑡𝑟𝑦, name) then
4: 𝑛𝑎𝑚𝑒_𝑒𝑟𝑟𝑜𝑟_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.𝑎𝑑𝑑(𝑛𝑎𝑚𝑒)
5: end if
6: end for
7: end for
8: end procedure

flag name errors. However, this will not cause scalability problem due
to : (1) Our algorithm terminates if any single path that can trigger
name error; (2) Most of names are defined within the current block
or its dominator blocks, which largely reduces the search space. The
experimental results for the evaluation of execution efficiency can be
found in Section 4.3.

4. Experiments

To evaluate the effectiveness of our approach and provide insights
for NameError in real-world open-source Python projects, we propose
to answer the following research questions.

• RQ1: How effective is DENE in detecting name errors in
Python programs? This first RQ aims at checking to what extent
the DENE is capable of statically pinpointing name errors in
Python projects. Based on a carefully crafted ground truth dataset,
we experimentally demonstrate that DENE is quite effective in
uncovering name errors in Python programs, with precision and
recall at 94.0% and 97.6%, respectively.
7 
• RQ2: To what extent are name errors hidden in popular
Python projects? After demonstrating the effectiveness of DENE,
the second RQ attempts to apply it to detect name errors in
popular Python projects in the wild, and understand to what
extent is name errors (still) scattered in the Python community.
Our experimental results confirm that majority of top-100 Python
libraries still contain a number of unknown name errors .

• RQ3: Can DENE help in understanding why are name errors
presented in Python programs? By answering the previous RQs,
we experimentally find that name errors are a severe issue in
the Python community, for which even publicly released popular
libraries contain various such issues. Towards helping Python
developers mitigate name errors , in addition to detecting name
errors , we have further introduced a module in DENE to generate
hints for explaining why the errors are flagged as such. With this
RQ, we intends to check its usefulness. Our experimental results,
via a user study, demonstrate that DENE can not only effectively
detect name errors but also provide useful information for helping
developers understand why the errors are identified, reducing
their time spent on debugging.

.1. RQ1: Effectiveness of dene

In this first research question, we evaluate the effectiveness of
ENE by examining if DENE is capable of statically pinpointing name
rrors in Python projects. We resort to fulfill this objective through two
ndependent experiments.
Experiment #1. We apply DENE to a ground-truth dataset that is

arefully prepared to satisfy the purpose. The Python scripts included
n this dataset all contain a name error, which has been confirmed and
abeled at the place where it happens. The dataset is dervied from a set
f Python Jupyter notebooks recently released by Wang et al. [10]. All
he notebooks will encounter various execution issues at runtime, and
48 among them are demonstrated to contain name errors (i.e., with
08 labeled name errors in total). For each notebook, we extract its
ython source code snippets using nbformat [23] and rewrite them into
Python file following the sequential execution order. When manually

abeling the generated Python files, we find that a small number of
hem are written based on Python 2 while the majority of them are
ased on Python 3. To keep the consistency of the dataset, we decide
o stick to Python 3 syntax. Hence, for Python 2 syntax code, we use the
ool named 2to3 [24] to convert them automatically to Python 3 syntax.
ortunately, 2to3 successfully transformed all the cases. As a result, we
re able to form the ground-truth dataset with 54 test samples with
ach sample containing a Python file and a label indicating how the
ame error will be triggered.

After preparing the ground truth, we apply DENE to analyze all the
ncluded test samples. In total, DENE reports 216 name errors, covering
03 of the labeled ones (hence missing to report five labeled errors
eanwhile yielding 13 false-positive results), giving a precision and

ecall rate at 94.0% and 97.6%, respectively. Moreover, our manual
bservation over the five failed cases reveals that two are related to
ependencies of external Python code (i.e., one depends on a Python
ibrary while another depends on an independent Python script that is
ot included in the test sample). After adding the dependent snippets
o the test samples, DENE can successfully identify the name errors in
oth of them.

The remaining three failed cases are mainly due to limitations of
he scope analysis of DENE. At the moment, DENE ’s scope analysis
s restricted by complex Python interpretation mechanisms, e.g., some
tore and load contexts are not reflected directly by the syntax features,
hich may lead to inaccurate results. Let us take Fig. 5 as an example,

8 One notebook is excluded as it contains R code



J. Wang et al.

f
m
n
r
d
r
s
t
t
U
c

d
s
f
s
‘
c
l
u
m
b
w
t
t
i
i
s

m
t
t

h
a
A
5
t
f
i
f
c
e
c
a
(
D
v
f

c
c
e
o

f
s

Information and Software Technology 178 (2025) 107592 
Fig. 5. A simplified code example containing a name error that cannot be successfully detected by DENE.
or which the code snippet is extracted from one of the three afore-
entioned failed cases. Its runtime execution indicates that there is a
ame error at line 4, as the variable ‘‘root’’ is not defined. Observant
eaders may find this issue is strange as the variable ‘‘root’’ is actually
efined in the for loop statement in line 1. Syntactically speaking, the
eaders’ observation is correct, which is also why DENE regard it as
uch. However, at runtime, when function os.walk() returns empty,
he assignment to variable ‘‘root’’ (in line 1) will not be triggered,
hus leading to a name error when ‘‘root’’ is referenced at line 4.
nfortunately, DENE, at the moment, cannot handle such a complicated
ase.
Experiment #2. To further validate the correctness of DENE in

etecting name errors, we go one step further to check if DENE can
uccessfully identify the historical name errors that have already been
ixed by developers. We achieve this by leveraging Github API to
earch for the top-1000 commits in Python projects based on keywords
‘fix’’ and ‘‘NameError’’. After the data collection from the open source
ommunity, we filter these commits to form a dataset with the fol-
owing criteria: (1) Removing duplicated commits in the search results
sing the commits’ hash values; (2) Removing commits that contain
ore than one parent commit (mainly due to merges of different

ranches) as we want to ensure that the parent commit is the one
itnessing name errors; (3) Removing commits that update source files

hat contain ‘‘import *’’ statements as it introduces additional iden-
ifiers at execution that cannot be determined statically. For example,
f ‘‘from numpy.random import *’’ is used in the client program,
t can import all the available functions and variables defined in the
ub-module ‘‘numpy.random’’ of the Numpy library.

Eventually, we are able to harvest 626 valid name error fix com-
its9 from 356 Python projects. For each fix commit, we apply DENE

o analyze the library’s source files at versions both before and after
he fix commit is applied.

We then check if DENE can successfully identify the name error that
as subsequently been fixed by Python developers (i.e., the name error
ppearing in the parent commit but not in the subject commit version).
mong the retained 626 subject commits, DENE is able to highlight
04 of them relevant to name error fixes (i.e., name error does exist in
heir parent commit versions). For the remaining 122 commits, DENE
ails to detect the name error in their parent commits. Our manual
nvestigation from randomly chosen 20 failure cases reveals that these
alse negatives are mainly caused by the following reasons: (1) the
ommit is not relevant to NameError, (2) the error is propagated from
xternal libraries and cannot be analyzed alone from the client source
ode (see example in Fig. 6), (3) it involves dynamical features such
s built-in names that are unavailable in some specific versions, and
4) there are some complex syntax feature that cannot be handle by
ENE. We then launch DENE on the updated files at the subject commit
ersion to test to what extent DENE can detect the fix resulted from the
ix commit.

To confirm whether the flagged 504 cases are related to the fix
ommit, we further scan the project source code patched with the fix
ommit. If any of the flags falls down, it means the identified name
rror is associated with the fix commit. Among the 504 cases, 418
f them have name errors disappeared (i.e., fixed) after the subject

9 There are 716 commits retained at this stage, among which 90 of them are
urther ignored because DENE encounters syntax errors on their corresponding
ource codes.
8 
Fig. 6. The subject commit handles a NameError thrown by an external function call
response.close() that is not implemented in this program.

commits are incorporated. For remaining cases that still have name
errors retained, our further investigation (on sampled cases) reveals
that developers have often attempted to resolve the issues but cannot
fully resolve them, demonstrating again the complicity of resolving
name errors in Python projects. This experimental result also confirms
the high effectiveness of DENE in detecting name errors in real-world
Python programs.

To better understand the false alarms in this study, we randomly
selected 50 (10%) for closer examination. Our analysis revealed that 6
were false positives and 44 were true positives. When multiple name
errors were detected for a single file by DENE, we investigated all
reported errors. Consequently, we estimate a true positive rate of 88%
and a false positive rate of 12%. :

Comparison with State-of-the-art. We also take the opportunity
to compare DENE with the industry products. The most closely re-
lated works to ours could be pyre and pytype, proposed by Meta (also
known as Facebook) and Google, for type checking and type inference
respectively. These two tools, nevertheless, can report unbound names
and so-called name-error, which could be counted as runtime name
errors. We therefore compare our approach with these two tools by
launching them all on the 626 test cases leveraged in Experiment #2.
pyre and pytype can only report 123 and 353 name errors, which are
much smaller than that reported by DENE, showing that our approach is
capable of outperforming state-of-the-art tools to precisely detect more
name errors in real-world Python programs.

✍ Answers to RQ1

DENE is effective in statically pinpointing name errors in our well-
crafted ground-truth dataset, giving a precision and recall rate at
94.0% and 97.6%. Experimental results over a large set of popular
Python projects further demonstrate the effectiveness of DENE when
applied to deal with real-world Python programs. Our design also
shown to outperform existing state-of-the-art products.

4.2. RQ2: NameErrors in the wild

The Section 4.1 experimentally shows that DENE is highly effective
in detecting name errors in Python programs. In the second research
question, we are interested in leveraging DENE to check if name errors
do appear in released popular Python libraries, and if so, to what extent
do they exist? We focus on popular Python libraries because those
libraries, on the one hand, have been well developed and continuously
maintained, while on the other hand, should have been leveraged
(i.e., tested) by many client projects, for which many name errors could



J. Wang et al.

m

N

Information and Software Technology 178 (2025) 107592 
Fig. 7. The distribution of number of NameErrors per libraries where the median and
ean values are 4 and 15.3 respectively.

Fig. 8. The correlation between the number of total files and those containing
ameErrors.

Fig. 9. The distribution of NameError occurrence by scope level.

have already been extensively spotted and fixed. Therefore, if those
libraries still contain a number of name errors, we could conclude that
(1) name errors are hard to address and (2) our community should pay
more attention to mitigate these name errors.

To fulfill the aforementioned study, we resort to the libraries.io
website to identify the top-100 popular Python libraries by SourceR-
ank [25]. We then leverage the PyPI repository to download the source
code of those libraries. To ensure 100 libraries to be collected, we
have ended up queried slightly more than 100 libraries (in the list
maintained on libraries.io) because a small number of libraries are not
equipped with Python wheel files on PyPI and hence are ignored.

Among the selected 100 libraries, 77 of them have been identified to
include name errors. Of the total selected 9452 source files, 6.2%(583)
of them include at least one name error. Fig. 7 shows the distribution
of the number of files including name errors in every libraries. This
indicates these popular Python libraries may potential propagates the
code defects to downstream developers, harming the re-usability of

Python open source software.

9 
We further compute the Pearson coefficient to understand the cor-
relation between the number of total files and the number of files
containing name errors. As shown in Fig. 8, the correlation coefficient
𝑟 = 0.62 suggests that there is a moderate positive correlation between
the two variables. That is, the more Python files involved in a library,
the more files will contain name errors. This evidence further demon-
strates the importance of having automated approaches to help the
community mitigate (unknown) name errors in Python projects.

✍ Answers to RQ2

Over 70% of popular python libraries, which have already been
used by many Python projects, still contain a number of unknown
name errors that could break the execution of their client projects,
resulting in unfriendly developer experiences including increased
debugging efforts to understand why such name errors are triggered
at runtime.

4.3. RQ3: NameErrors explanation

By answering the previous two research questions, we have exper-
imentally demonstrated that DENE is effective in detecting unknown
name errors in Python projects. In the last research question, we
evaluate the explainability of DENE, i.e., to what extent can DENE help
developers understand the name errors reported by DENE. Recall that
DENE has been designed to not only pinpoint potential name errors
but also recorded the location where name errors will arise and the
execution path triggering the errors.

To fulfill this purpose, we resort to the 356 real-world Python
projects used in Experiment #2 of Section 4.1 again and relaunch
DENE to analyze their latest code versions (after the latest commit). The
latest versions of the 356 projects contain in total 54,957 Python source
files, among which 8304 (15.1%) of them are flagged as containing
name errors. In total, DENE reports 22,497 name errors.

Understanding NameError Location. Based on the detected name
errors, we first look at the location where they will be thrown. Spe-
cially, we report the location based on the errors’ scope level, which
is defined as the number of scopes enclosed from the module level.
For example, the statements in the module’s static code are at scope
level 1. The static code in a class defined in a module is considered at
scope level 2, while the code in the class’s functions will be regarded
as at level 3. Fig. 9 illustrates the distribution of scope levels associated
with the reported name errors. Clearly, most errors happened at level
1 and level 3, where most module static code and member function
of class definitions (i.e., the module’s statements and the class’s inner
functions, respectively) reside. There are also a significant number of
errors that happened at the second level, although these errors do not
involve complicated scope changes. They should be relatively easier
to notice and fix than those in other levels. This result suggests that
Python developers have not yet taken effective approaches to mitigate
name errors, not even mention that there are also many errors located
in scope level 4 and beyond that may require substantially more efforts
to identify and fix.

In addition, we further look at the reasons behind the name errors’
occurrences. Specifically, we check if the name error occurs (1) due
to unresolved names for which the name is not defined in the entire
program or (2) because of uncovered paths for which the name has in-
deed been defined in the project, but the definition could be bypassed,
resulting in names used but not defined. In our experiments, among
the 22,497 name errors, we find that the majority of them (i.e., 84.5%)
are related to the first case. Our further investigation reveals that such
errors are mainly introduced by forgetting to import other modules,
external libraries, and name typos. Fig. 10 illustrates such an example.
The variable named ‘‘BallInImage’’ defined in line 2 is misspelled as
‘‘BallsInImage’’ at line 7. The fact that such a naive mistake still exists
in Python projects, for which their developers have actively fixed name



J. Wang et al.

o

e
t
a
r

Information and Software Technology 178 (2025) 107592 
Fig. 10. Typo mistake causes NameError. ‘‘BallInImage’’ (line 2) is misspelled as ‘‘BallsInImage’’ (line 7).
Fig. 11. Time spent (in seconds) on each of ten test cases by two group of participants
n locating name error execution path.

rrors, shows that name errors are common in Python and yet hard
o fix. This result hence demonstrates the necessity to have automated
pproaches such as DENE to mitigate name errors so as to improve the
eliability of Python projects.
User study on DENE ’s explainability. In addition to reporting

the location where a name error may arise, DENE also endeavors to
generate the execution path indicating how an error is triggered from
the module entry. In this work, we resort to a user study to check if
such a path is helpful for developers to understand the corresponding
name error. To this end, we randomly choose ten name errors hap-
pening respectively in ten Python source files. And then, we recruit
four graduate students who use Python as their primary language for
their daily work. All students are divided into groups of two and all
students are given the source code and the location (line number) of
a potential name error. Additionally, one group of them is provided
with the execution path (produced by DENE). Before the experiment is
conducted, all participants are given one introductory toy example with
a name error to get familiar with the topic. During the experiments,
all the participants are allowed to use any IDE/editors that they are
familiar with. Participants are also given breaks when they finish one
test case to avoid burnouts.

Fig. 11 illustrates the experimental results in terms of the average
time spent by each group of participants to understand the error.
Clearly, with the help of DENE, the participants can achieve the purpose
much faster than her counterpart. Indeed, DENE can largely reduce
developers’ efforts of locating name errors by lowering the average time
spent on 10 test cases from 57 s to 14 s. The maximum and minimum
time for two group of participants are (98.5, 19) and (31, 9.5) seconds,
respectively. All participants also positively confirmed the usefulness
of the generated execution paths and the subject participant agrees
that given path is valid to trigger the NameError in our following-up
meetings after the controlled experiments.

Execution Time We also take the opportunity of this experiment to
evaluate the execution efficiency of DENE. We count the total execution

time for processing the 54,957 from 356 projects containing more than

10 
12 million lines of code. We use the Linux command line tool ‘‘time’’
to obtain the wall execution time. The experimental result shows that
it takes on average 0.05 s to process a single source file, showing our
tool is feasible to be applied in a real development context.

✍ Answers to RQ3

DENE can not only effectively detect name errors in real-world
open-source, popular and well-maintained Python projects but also
provide useful explanations for helping developers understand why
the flagged name errors are reported as such.

5. Threats to validity

The main threat to validity of this work is related to the datasets
selected for experiments, which may not be representative of the whole
Python community. However, we have attempted to mitigate this by
only selecting the most popular ones. The validity of this work may also
be impacted by the manual work involved in verifying the experimental
results, as this can be error-prone. To mitigate this threat, the first two
authors of this paper have cross-validated the results. Furthermore, the
performance of DENE may be impacted by the known limitations of
static analysis techniques. For example, there is no guarantee that the
statically inferred execution paths, which are deemed to yield name er-
rors, can actually be triggered at runtime, although statically speaking,
the paths are valid. Moreover, DENE cannot handle dynamically de-
clared functions such as the one defined via exec i.e., exec(‘‘def(a):...’’),
which may impact DENE ’s accuracy. In addition, the results in RQ2 may
not reflect the how name errors are scattered in real world because our
approach, like all static analysis tools, cannot achieve both soundness
and completeness. That is to say, there are both false alarms and
false negatives in our results. However, as demonstrated in RQ1, our
approach is effective in spotting real-world name errors. Nevertheless,
we especially find that this type of code is uncommon in Python, and
hence the corresponding impact should be limited.

6. Related work

The fast-growing popularity of Python language raises an increasing
interests in Python programs by our software engineering researchers.
In this section, we present the existing studies in Python code analysis,
Python projects, and libraries.

Python Code Analysis Our work is closely related to the def-
use relation of Python code analysis. To the best of our knowledge,
Wang et al. [1] firstly presents an approach of utilizing contextual
variable usage information to detect unused variables from Python
code embedded in computational notebooks. Furthermore, the authors
also propose approaches to model the cell dependencies among Python
code cells in Jupyter notebooks [5,26]. However, the approach is field
sensitive as it does not take into account the scope of functions. In
addition, our fellow researchers also provide the fundamental analysis



J. Wang et al.

o
o
i
w
s
i
d

f
a
l
a
I
a
t
p
b
i
R
d

v
c
e
s
A
F
t
f
P

p
a
k
H
o
e
s
d
W
t
r
w

g
t
i
b

7

a
i

V
c
W

D

c
i

D

R

Information and Software Technology 178 (2025) 107592 
tool pycg, a static Python call graph generator [27]. The implementation
f pycg is based on computing the assignment relation among identifiers
f functions, classes via inter-procedural analysis. Moreover, the nam-
ng mistakes among in Python programs are also targeted by existing
ork [28]. He et al.’s work designed a machine learning algorithm to

pot naming issues in Python and Java source code. However, this work
s not applicable to detecting Python NameErrors as NameErrors occur
ue to incomplete testing coverage rather than naming issues alone.

Furthermore, the studies on Python programs also involve type in-
erence for Python variables with the interests in probabilistic methods,
nd learning-based approaches [29–32]. Xu et al. leverage the natural
anguage information as well as dataflow constraints such as attribute
ccess to build a probabilistic inference model for type inference [29].
n addition, Hellendoor et al. [33] have applied a deep learning based
pproach by feeding recurrent neural network models with program
okens. Following the learning-based paradigm, Michael et al. [31] pro-
ose to use both commentary text and source code tokens to combine
oth the natural language properties as well as programming language
nformation from source files. Our fellow researchers also present non-
NN based approaches such as using graph neural networks [34] and
eep similarity learning to reduce the type vocabulary issue [30].
Python library study Moreover, our software engineering also

alues Python API and ecosystem studies. Recent years have seen an in-
reasing interests in Python API studies [35,35–39]. For instance, Wang
t al.’s work reported the fragmentation of Python API deprecation
ystem [36]. Zhang et al. [37] presents empirical discoveries of Python
PI evolution patterns and compare them with it in Java libraries.
ollowing these findings, Aparna et al. invented an tool, APIScanner,
o automatically locate deprecated APIs in Python libraries [39]. Apart
rom empirical studies on APIs, He et al. [35] invented a tool named
yART for real-time Python library API recommendation.

Furthermore, our community also contributes to the runtime de-
endency issues of Python libraries to automatic dependency gener-
tion [8–10,40]. For instance, Horton et al. [8]leverage a pre-built
nowledge base to detect dependencies for a given Python gist file.
owever, the approach is limited by the lack of version information
f the dependency entries as the client API may be removed over the
volution. Therefore, the authors further propose dynamical testing
upport to improve by collecting crash log information of runtime
ependency issues to regenerate more reliable results [9]. Moreover,
ang et al. [10] have built an API database named API bank to record

he API change profiles and by querying the database using API analysis
esults from the given Python file to generate final dependency entries
ith version constraints.

To summarize, our community has a large body of research to
ive insights into the surging number of Python applications. Most of
he existing work focuses on eco-system, empirical findings, and type
nference issues. There is a gap in control flow analysis and automatic
ug detection, which our work aims to fill in.

. Conclusion

In this paper, we have presented to the community the first static
nalysis approach called DENE for automatically detecting and explain-
ng NameErrors in Python programs. DENE achieves this objective by

performing scope-aware reaching definition analysis over well-crafted
control-flow graphs statically built for Python programs. The large-scale
experiments show that DENE is effective in pinpoint unknown name
errors in both popular Python libraries and popular open-source Python
projects. The explanation module provided by DENE is also useful for
assisting developers in understanding why the name errors are reported
as such. To help others to replicate our study and reuse our tool, DENE
is available at https://github.com/DENE-dev/dene-dev.
11 
CRediT authorship contribution statement

Jiawei Wang: Writing – review & editing, Writing – original draft,
alidation, Methodology, Conceptualization. Li Li: Supervision, Con-
eptualization. Kui Liu: Writing – review & editing. Xiaoning Du:
riting – review & editing, Supervision, Conceptualization.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

eferences

[1] J. Wang, L. Li, A. Zeller, Better code, better sharing: on the need of analyzing
jupyter notebooks, in: Proceedings of the ACM/IEEE 42nd International Con-
ference on Software Engineering: New Ideas and Emerging Results, 2020, pp.
53–56.

[2] Pandas-Dev, dataframe plot method throws an error ⋅ Issue #19340
⋅ pandas-dev/pandas, GitHub, URL: https://github.com/pandas-dev/pandas/
issues/19340.

[3] ts.plot() and dataFrame.plot() throwing error: " NameError: name ’_converter’
is not defined", Stack Overflow (2018) URL: https://stackoverflow.com/
questions/48341233/ts-plot-and-dataframe-plot-throwing-error-nameerror-
name-converter-is.

[4] J. He, C.-C. Lee, V. Raychev, M. Vechev, Learning to find naming issues with
big code and small supervision, in: Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
2021, pp. 296–311.

[5] J. Wang, K. Tzu-Yang, L. Li, A. Zeller, Assessing and restoring reproducibility
of jupyter notebooks, in: 2020 35th IEEE/ACM International Conference on
Automated Software Engineering, ASE, IEEE, 2020, pp. 138–149.

[6] Y. Yang, A. Milanova, M. Hirzel, Complex python features in the wild, in: 2022
IEEE/ACM 19th International Conference on Mining Software Repositories, MSR,
IEEE.

[7] J.F. Pimentel, L. Murta, V. Braganholo, J. Freire, A large-scale study about quality
and reproducibility of jupyter notebooks, in: 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories, MSR, IEEE, 2019, pp. 507–517.

[8] E. Horton, C. Parnin, Dockerizeme: Automatic inference of environment de-
pendencies for python code snippets, in: 2019 IEEE/ACM 41st International
Conference on Software Engineering, ICSE, IEEE, 2019, pp. 328–338.

[9] E. Horton, C. Parnin, V2: Fast detection of configuration drift in python, in: 2019
34th IEEE/ACM International Conference on Automated Software Engineering,
ASE, IEEE, 2019, pp. 477–488.

[10] J. Wang, L. Li, A. Zeller, Restoring execution environments of jupyter notebooks,
in: 2021 IEEE/ACM 43rd International Conference on Software Engineering,
ICSE, IEEE, 2021, pp. 1622–1633.

[11] S. Mukherjee, A. Almanza, C. Rubio-González, Fixing dependency errors for
python build reproducibility, in: Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2021, pp. 439–451.

[12] T. Kohn, The error behind the message: Finding the cause of error messages
in python, in: Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, SIGCSE ’19, Association for Computing Machinery, New York,
NY, USA, ISBN: 9781450358903, 2019, pp. 524–530, http://dx.doi.org/10.1145/
3287324.3287381.

[13] T. Kohn, B. Manaris, Tell me what’s wrong: A python IDE with error messages,
in: Proceedings of the 51st ACM Technical Symposium on Computer Science
Education, 2020, pp. 1054–1060.

[14] Manual, GitHub CLI, URL: https://cli.github.com/manual/.
[15] Libraries - The Open Source Discovery Service, Libraries.io, URL: https://

libraries.io/pypi.
[16] Comprehensions, Comprehensions - Python 3 Patterns, Recipes and Idioms, URL:

https://python-3-patterns-idioms-test.readthedocs.io/en/latest/Comprehensions.
html.

[17] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, C. Holler, Control flow
graph, in: The Fuzzing Book, CISPA Helmholtz Center for Information Secu-
rity, 2020, URL: https://www.fuzzingbook.org/html/ControlFlow.html, Retrieved
2020-10-13 15:12:26+02:00.

[18] ast - Abstract Syntax Trees - Python 3.9.7 documentation, URL: https://docs.
python.org/3/library/ast.html.

https://github.com/DENE-dev/dene-dev
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb1
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb1
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb1
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb1
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb1
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb1
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb1
https://github.com/pandas-dev/pandas/issues/19340
https://github.com/pandas-dev/pandas/issues/19340
https://github.com/pandas-dev/pandas/issues/19340
https://stackoverflow.com/questions/48341233/ts-plot-and-dataframe-plot-throwing-error-nameerror-name-converter-is
https://stackoverflow.com/questions/48341233/ts-plot-and-dataframe-plot-throwing-error-nameerror-name-converter-is
https://stackoverflow.com/questions/48341233/ts-plot-and-dataframe-plot-throwing-error-nameerror-name-converter-is
https://stackoverflow.com/questions/48341233/ts-plot-and-dataframe-plot-throwing-error-nameerror-name-converter-is
https://stackoverflow.com/questions/48341233/ts-plot-and-dataframe-plot-throwing-error-nameerror-name-converter-is
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb4
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb4
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb4
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb4
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb4
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb4
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb4
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb5
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb5
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb5
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb5
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb5
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb6
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb6
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb6
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb6
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb6
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb7
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb7
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb7
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb7
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb7
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb8
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb8
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb8
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb8
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb8
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb9
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb9
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb9
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb9
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb9
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb10
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb10
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb10
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb10
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb10
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb11
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb11
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb11
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb11
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb11
http://dx.doi.org/10.1145/3287324.3287381
http://dx.doi.org/10.1145/3287324.3287381
http://dx.doi.org/10.1145/3287324.3287381
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb13
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb13
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb13
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb13
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb13
https://cli.github.com/manual/
https://libraries.io/pypi
https://libraries.io/pypi
https://libraries.io/pypi
https://python-3-patterns-idioms-test.readthedocs.io/en/latest/Comprehensions.html
https://python-3-patterns-idioms-test.readthedocs.io/en/latest/Comprehensions.html
https://python-3-patterns-idioms-test.readthedocs.io/en/latest/Comprehensions.html
https://www.fuzzingbook.org/html/ControlFlow.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html


J. Wang et al. Information and Software Technology 178 (2025) 107592 
[19] A library for generating graph representations of Python programs, python-
graphs 1.0.1, URL: https://pypi.org/project/python-graphs/.

[20] M. Lutz, Learning Python: Powerful Object-Oriented Programming, O’Reilly
Media, Inc. 2013.

[21] R.T. Prosser, Applications of boolean matrices to the analysis of flow diagrams,
in: Papers Presented At the December 1-3, 1959, Eastern Joint IRE-AIEE-ACM
Computer Conference, 1959, pp. 133–138.

[22] K.D. Cooper, T.J. Harvey, K. Kennedy, A simple, fast dominance algorithm, Softw.
Pract. Exp. 4 (1–10) (2001) 1–8.

[23] The Jupyter Notebook Format - nbformat 5.1 documentation, URL: https://
nbformat.readthedocs.io/en/latest/.

[24] 2to3 - Automated Python 2 to 3 code translation - Python 3.9.7 documentation,
URL: https://docs.python.org/3/library/2to3.html.

[25] Libraries.io Documentation, Overview, URL: https://docs.libraries.io/overview.
html#sourcerank.

[26] J. Wang, T.-y. Kuo, L. Li, A. Zeller, Restoring reproducibility of jupyter
notebooks, in: Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: Companion Proceedings, 2020, pp. 288–289.

[27] V. Salis, T. Sotiropoulos, P. Louridas, D. Spinellis, D. Mitropoulos, PyCG:
Practical call graph generation in python, in: 2021 IEEE/ACM 43rd International
Conference on Software Engineering, ICSE, IEEE, 2021, pp. 1646–1657.

[28] J. He, C.-C. Lee, V. Raychev, M. Vechev, Learning to find naming issues
with big code and small supervision, in: Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Im-
plementation, Association for Computing Machinery, New York, NY, USA,
ISBN: 9781450383912, 2021, pp. 296–311, http://dx.doi.org/10.1145/3453483.
3454045.

[29] Z. Xu, X. Zhang, L. Chen, K. Pei, B. Xu, Python probabilistic type inference
with natural language support, in: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2016, pp.
607–618.

[30] A.M. Mir, E. Latoskinas, S. Proksch, G. Gousios, Type4py: Deep similarity
learning-based type inference for python, 2021, arXiv preprint arXiv:2101.04470.
12 
[31] M. Pradel, G. Gousios, J. Liu, S. Chandra, Typewriter: Neural type prediction
with search-based validation, in: Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 209–220.

[32] S. Cui, G. Zhao, Z. Dai, L. Wang, R. Huang, J. Huang, PYInfer: Deep learning
semantic type inference for python variables, 2021, arXiv preprint arXiv:2106.
14316.

[33] V.J. Hellendoorn, C. Bird, E.T. Barr, M. Allamanis, Deep learning type inference,
in: Proceedings of the 2018 26th Acm Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
2018, pp. 152–162.

[34] J. Wei, M. Goyal, G. Durrett, I. Dillig, Lambdanet: Probabilistic type inference
using graph neural networks, 2020, arXiv preprint arXiv:2005.02161.

[35] X. He, L. Xu, X. Zhang, R. Hao, Y. Feng, B. Xu, PyART: Python API recommenda-
tion in real-time, in: 2021 IEEE/ACM 43rd International Conference on Software
Engineering, ICSE, IEEE, 2021, pp. 1634–1645.

[36] J. Wang, L. Li, K. Liu, H. Cai, Exploring how deprecated python library apis
are (not) handled, in: Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 2020, pp. 233–244.

[37] Z. Zhang, H. Zhu, M. Wen, Y. Tao, Y. Liu, Y. Xiong, How do python framework
APIs evolve? an exploratory study, in: 2020 IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering, SANER, IEEE, 2020, pp.
81–92.

[38] S.A. Haryono, F. Thung, D. Lo, J. Lawall, L. Jiang, Characterization and auto-
matic update of deprecated machine-learning API usages, 2020, arXiv preprint
arXiv:2011.04962.

[39] A. Vadlamani, R. Kalicheti, S. Chimalakonda, APIScanner-Towards automated
detection of deprecated APIs in python libraries, in: 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Companion Proceedings,
ICSE-Companion, IEEE, 2021, pp. 5–8.

[40] Y. Wang, M. Wen, Y. Liu, Y. Wang, Z. Li, C. Wang, H. Yu, S.-C. Cheung, C. Xu, Z.
Zhu, Watchman: Monitoring dependency conflicts for python library ecosystem,
in: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, 2020, pp. 125–135.

https://pypi.org/project/python-graphs/
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb20
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb20
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb20
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb21
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb21
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb21
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb21
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb21
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb22
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb22
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb22
https://nbformat.readthedocs.io/en/latest/
https://nbformat.readthedocs.io/en/latest/
https://nbformat.readthedocs.io/en/latest/
https://docs.python.org/3/library/2to3.html
https://docs.libraries.io/overview.html#sourcerank
https://docs.libraries.io/overview.html#sourcerank
https://docs.libraries.io/overview.html#sourcerank
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb26
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb26
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb26
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb26
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb26
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb27
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb27
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb27
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb27
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb27
http://dx.doi.org/10.1145/3453483.3454045
http://dx.doi.org/10.1145/3453483.3454045
http://dx.doi.org/10.1145/3453483.3454045
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb29
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb29
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb29
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb29
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb29
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb29
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb29
http://arxiv.org/abs/2101.04470
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb31
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb31
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb31
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb31
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb31
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb31
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb31
http://arxiv.org/abs/2106.14316
http://arxiv.org/abs/2106.14316
http://arxiv.org/abs/2106.14316
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb33
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb33
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb33
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb33
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb33
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb33
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb33
http://arxiv.org/abs/2005.02161
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb35
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb35
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb35
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb35
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb35
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb36
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb36
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb36
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb36
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb36
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb36
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb36
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb37
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb37
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb37
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb37
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb37
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb37
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb37
http://arxiv.org/abs/2011.04962
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb39
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb39
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb39
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb39
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb39
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb39
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb39
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb40
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb40
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb40
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb40
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb40
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb40
http://refhub.elsevier.com/S0950-5849(24)00197-6/sb40

	Detecting and Explaining Python Name Errors
	Introduction
	Preliminary study
	Methodology
	Syntax Simplification
	Scope-enhanced Control Flow Graphs Construction
	Scope-aware Reaching Definition Analysis

	Experiments
	RQ1: Effectiveness of DENE 
	RQ2: NameErrors in the wild
	RQ3: NameErrors Explanation

	Threats to Validity
	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


