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ABSTRACT
Detecting and refactoring code smells is challenging, laborious, and
sustaining. Although large language models have demonstrated
potential in identifying various types of code smells, they also have
limitations such as input-output token restrictions, difficulty in
accessing repository-level knowledge, and performing dynamic
source code analysis. Existing learning-based methods or commer-
cial expert toolsets have advantages in handling complex smells.
They can analyze project structures and contextual information
in-depth, access global code repositories, and utilize advanced code
analysis techniques. However, these toolsets are often designed for
specific types and patterns of code smells and can only address fixed
smells, lacking flexibility and scalability. To resolve that problem,
we propose iSMELL, an ensemble approach that employs various
code smell detection toolsets via Mixture of Experts (MoE) archi-
tecture for comprehensive code smell detection, and enhances the
LLMs with the detection results from expert toolsets for refactoring
those identified code smells. First, we train a MoE model that, based
on input code vectors, outputs the most suitable expert tool for
identifying each type of smell. Then, we select the recommended
toolsets for code smell detection and obtain their results. Finally,
we equip the prompts with the detection results from the expert
toolsets, thereby enhancing the refactoring capability of LLMs for
code with existing smells, enabling them to provide different so-
lutions based on the type of smell. We evaluate our approach on
detecting and refactoring three classical and complex code smells,
i.e., Refused Bequest, God Class, and Feature Envy. The results
show that, by adopting seven expert code smell toolsets, iSMELL
achieved an average F1 score of 75.17% on code smell detection,
outperforming LLMs baselines by an increase of 35.05% in F1 score.
We further evaluate the code refactored by the enhanced LLM. The
quantitative and human evaluation results show that iSMELL could
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improve code quality metrics and conduct satisfactory refactoring
toward the identified code smells. We believe that our proposed
solution could provide new insights into better leveraging LLMs
and existing approaches to resolving complex software tasks.
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1 INTRODUCTION
The concept of "code smell" was first introduced by Fowler et al.
in 1999 [1], used to denote the segments of software code that are
of low quality and in urgent need of refactoring. Throughout the
development and evolution of software, code smells often sneak in
due to factors such as pressing delivery deadlines and developer
negligence, thereby undermining the readability and maintainabil-
ity of the code. However, manually identifying code smells is not
easy, partly due to the subjectivity of the definition of smells and the
high dependency of refactoring decisions on individual intuition
and experience [2].

Recently, Large Language Models (LLMs) [3–5] have been in-
creasingly recognized for their potential as powerful aids in various
software engineering tasks [6–9]. LLMs, trained on extensive vol-
umes of source code, have the ability to deeply comprehend code
and discern a myriad of underlying issues within it. In addition,
LLMs have demonstrated the ability to effectively detect and ana-
lyze various types of code smells. They also face several limitations,
including constraints on input-output token counts, difficulty in
directly leveraging repository-level contextual knowledge, and lim-
itations in performing dynamic source code analysis tasks [10, 11].

Existing learning-based [12, 13] or rule-based [14–16] expert
toolsets for code smell detection have advantages in handling com-
plex smells. They can analyze project structures and contextual
information in-depth, access global code repositories, and utilize
advanced analysis techniques. Unfortunately, these methods have
several limitations, particularly low consistency among detection
toolsets [17]. This leads to divergent outcomes when distinct expert
toolsets inspect identical code segments. Moreover, these toolsets
are often designed for specific types and patterns of code smells
and can only address fixed smells, lacking flexibility and scalability.
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To address this challenge, we propose an ensemble approach
iSMELL. It leverages a Mixture of Experts (MoE) [18] architecture
to comprehensively detect code smells using expert toolsets for
code smell detection, and enhances LLMs with the detection results
from expert toolsets for refactoring identified code smells. First, we
train a MoE model where the input vector consists of concatenated
embeddings from code metrics and code representations. Based on
this input, the model outputs the most suitable detection tool for
each type of code smell. Then, we select the recommended expert
toolsets for code smell detection and obtain their results. Finally, we
construct the prompts using the detection results from the expert
toolsets, thereby enhancing the LLMs’ ability to refactor code with
existing smells, enabling them to provide different solutions based
on the type of smell. Evaluation results demonstrate that iSMELL
performs effectively in detecting three popular and complex code
smells (Refused Bequest, God Class, Feature Envy). The iSMELL
approach achieves a significant improvement in F1 score compared
to state-of-the-art large language models, with an average increase
of 35.05%. Compared to the most advanced expert toolsets, the
average improvement is 9.74%. We adopt a comprehensive eval-
uation method, including both quantitative analysis and human
evaluation. The experimental findings demonstrate the efficiency
and effectiveness of iSMELL in identifying and refactoring scenar-
ios containing the aforementioned code smells, highlighting its
contribution to improving code quality. iSMELL offers scalability,
comprehensiveness, and flexibility by integrating diverse detection
tools, with the potential for further performance enhancements
through advancements in specific smell detection tools. We believe
that the proposed solution can offer new insights for better utilizing
LLMs and existing methods to tackle complex software tasks. Our
main contributions are:

• Technique: Designed and implemented the first ensemble
approach iSMELL that combines multi-smell detection with
large-scale model refactoring, leveraging a MoE model to
integrate multiple smell detection toolsets, demonstrating
strong scalability.

• Evaluation: Results indicate that iSMELL outperforms the
best-performing LLMs and expert toolsets in code smell de-
tection. Furthermore, experiments and manual evaluations
confirm the outstanding performance of iSMELL in the field
of code refactoring, providing powerful tool support for soft-
ware engineering practices.

• Data: We provide publicly accessible datasets and source
code [19] to enable others to replicate our research and apply
it in broader contexts.

2 BACKGROUND
Current code smell detection and refactoring practices mainly suffer
from two challenges: the diversity and deviation of a large number
of expert tools and the difficulty in making good use of LLMs.

2.1 The Diversity and Deviation of Expert tools
There are currently numerous code smell detection toolsets avail-
able, with Lacerda’s [20] review reporting as many as 162 different
toolsets, each focusing on detecting various types of smells. For
instance, CCFinder [21] specializes in identifying code clones, while

PMD [22] covers detection of various smells such as Long Method
and God Class. Due to the specialized nature of each tool, rely-
ing solely on one tool makes it difficult to achieve comprehensive
coverage of code smell types, leading to blind spots and potential
omissions of certain smells. Furthermore, the lack of standardization
in smell identification criteria among these toolsets is particularly
prominent when dealing with more complex code smells. For ex-
ample, Feature Envy, defined as a function excessively relying on
external class data and methods rather than focusing on its own
class members, poses challenges in standardized detection. In our
research, we observed discrepancies in detection results among
several mainstream toolsets even for the same code segment [23]
labeled with "feature envy" in the dataset. Moreover, while a tool
may accurately identify a smell in one case, it may erroneously re-
port the presence of a smell in another segment of code [24] where
none exists, indicating the instability of its results.

2.2 Limitations of LLMs in Smell Detection
LLMs, trained on massive code repositories containing billions of
methods authored by real developers, are believed to have the poten-
tial to understand code deeply and thus effectively identify various
underlying issues [25–27]. However, when facing complex smells,
the performance of LLMs in these smells often diminishes. God
Class refers to a class that does too much, encompassing numerous
properties and methods. For God Class, the class code involved
often spans thousands of lines, and the input token constraints of
LLMs limit the performance of detecting this type of smell. For
example, in the case of GPT-3.5, the input context token limit is 4k,
which means we cannot input the entire class code to the LLMs. On
the other hand, the Feature Envy smell involves methods highly
interactingwithmultiple classes, requiring themodel to comprehen-
sively consider a wide range of method call chains and associated
class information. Incorporating complete information about all
related classes into the model’s input range poses significant chal-
lenges. Refused Bequest occurs when a subclass is unwilling or
unable to fully adhere to the behavior of its parent class, rendering
the inheritance relationship awkward and superfluous. Similarly,
the Refused Bequest smell also exhibits cross-class characteristics,
requiring the model to possess the ability to understand and utilize
repository-level contextual information, further testing the detec-
tion capabilities of LLMs. Furthermore, conventional code smell
detection toolsets, by compiling and executing source code, are ca-
pable of extracting more exhaustive program structures and global
project information. In contrast, LLMs in their present applica-
tions are unable to directly perform dynamic source code analysis,
thereby encountering limitations in handling real-time interactive
data. Therefore, while LLMs demonstrate the ability to effectively
detect and analyze various code smells, they also face several limita-
tions, including constraints on input-output token counts, difficulty
in directly leveraging repository-level contextual knowledge, and
limitations in performing dynamic source code analysis tasks.

Based on the above two observations, we argue that there is a
need for a comprehensive multi-smell detection system that inte-
grates the detection results of various expert toolsets and provides
unified and reliable refactoring guidance through intelligent analy-
sis to improve the accuracy and efficiency of refactoring decisions.
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Figure 1: The overall architecture of iSMELL
3 APPROACH
In this section, we introduce our iSMELL, a comprehensive ap-
proach that integrates multi-smell detection with LLMs refactoring.
Figure 1 provides an overview of iSMELL, which consists of four
main stages: (1) Data Preparation, where we first obtain detection
results from the expert toolsets for the dataset, then concatenate the
metrics extracted from the input code with CodeBERT [3] embed-
dings. We employ representation-level data augmentation aimed at
expanding the training dataset size to optimize iSMELL’s predic-
tive performance; (2) MoE-based Code Smell Detection, where we
train the MoE model to select expert toolsets. We use a multi-head
self-attention mechanism [28] to enhance the vectors input to the
MoE model. The model outputs an accuracy matrix to select expert
toolsets for detecting code; (3) LLM-based Code Refactoring, if the
smell is detected, we adjust the prompt according to the type of
smell, enabling it to provide targeted solutions. Then, we delve into
the details of each stage in iSMELL.

3.1 Data Preparation
3.1.1 Combined Code Embedding. For comprehensive analysis and
handling of code, it is crucial to meticulously capture the multidi-
mensional characteristics of code. The vectors fed into our model
are concatenated from metric vectors and semantic feature vectors,
with the specific extraction process detailed as follows.

BERT-based Code Embedding: iSMELL harnesses CodeBERT
to precisely encode deep semantic information of source code snip-
pets. CodeBERT is designed based on the Transformer architecture,
renowned for its powerful sequence handling capabilities and self-
attention mechanisms, excelling in natural language processing
(NLP) and understanding programming languages [29–31]. Follow-
ing pre-training on large-scale multimodal data, CodeBERT can
comprehend the complex structure, syntactic features, and under-
lying programming intents and logical connections within code.
Upon inputting code, CodeBERT’s encoder meticulously analyzes
it, yielding a 768-dimensional vector 𝜐1. This vector embodies a
high-dimensional semantic embedding of the original code, encap-
sulating its multifaceted features.

Metric-based Code Embedding: To obtain various quantita-
tive characteristics of the code, we use the CKMetric Extractor [32],
which extracts quantitative information at class and method levels
directly from uncompiled Java source code through static analysis,
bypassing the compilation step. This tool encompasses 35 key met-
rics, such as WMC (Weighted Method Class), DIT (Depth of Inheri-
tance Tree), NOC (Number of Children), CBO (Coupling between
Objects), RFC (Response for a Class) and LCOM (Lack of Cohesion
of Methods) etc. It covers the widely recognized CK metric suite
[33, 34], providing a solid foundation for quality assessment and
complexity analysis in the field of software engineering. For each
metric, iSMELL calculates nine statistics including sums, medians,
standard deviations, variances, minimums, maximums, skewness,
kurtosis, and entropy. These additional statistical insights, com-
bined with the original 35-dimensional metric vectors, constitute a
higher-dimensional 44-dimensional feature vector 𝜐2, comprehen-
sively characterizing various aspects of the code. Finally, iSMELL
concatenates 𝜐1 with 𝜐2, forming an integrated 812-dimensional
vector 𝜐.

3.1.2 Data Augmentation. In our research, each data sample under-
goes comprehensive code smell detection using seven specialized
toolsets. These toolsets necessitate projects to be in a compilable
state to ensure accurate detection. Given that our dataset origi-
nates from a diverse array of GitHub open-source projects, the
task of ensuring successful configuration and compilation for each
project is exceedingly time-consuming, leading to the collection of
merely a few hundred valid records. The scarcity of training sam-
ples is prone to causing overfitting. Consequently, we employed
data augmentation techniques to mitigate this issue. Many data
augmentation techniques leverage predefined rules to transform
code while preserving syntactic correctness and semantic meaning.
Nonetheless, these approaches are resource-intensive, necessitating
that models re-embed the data for each augmented instance. To
tackle this issue, we followed previous work [35] and meticulously
select four efficient representation-level data augmentation tech-
niques to expand our training set. The augmented data is fifteen
times that of the original. These techniques are Gaussian Scaling
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[35], Binary Interpolation [35], Linear Interpolation [36], and Lin-
ear Extrapolation [35]. Gaussian Scaling operates by multiplying
each value in a vector by a factor randomly drawn from a Gaussian
distribution:

ℎnew = ℎ · (1 + 𝜖) (1)

ℎ is the original feature vector (inputs). 𝜖 is random noise sampled
from a normal distribution 𝑁

(
0, 𝜎2

)
with a mean of 0 and standard

deviation of 𝜎 . ℎnew is the feature vector after Gaussian Scaling.
Binary Interpolation is a distinctive interpolation technique where
it randomly swaps some features between two selected samples:

ℎnew [𝑖] =𝑚[𝑖] · ℎ1 [𝑖] + (1 −𝑚[𝑖]) · ℎ2 [𝑖] (2)

𝑚[𝑖] denotes a random binary mask obtained from a Bernoulli dis-
tribution. Meanwhile, ℎ1 [𝑖] and ℎ2 [𝑖] signify the initial data points
for the features being considered. Linear Interpolation and Linear
Extrapolation are very similar. Linear Interpolation assumes that
the relationship between data points is linear. Linear Extrapolation
predicts new data points outside the range of known data points:

ℎnew = 𝜆 · ℎ𝑖 + (1 − 𝜆) · ℎ 𝑗 (3)

The ℎ𝑖and ℎ 𝑗 are the original data points. The interpolation factor,
𝜆, determines the position of the new data point relative to the two
original points, effectively interpolating between them when 𝜆 falls
within the range of 0 to 1 for Linear Interpolation. Conversely, in
Linear Extrapolation, 𝜆 takes values less than 0 or greater than 1,
extending beyond the known data boundaries. After transforming
each sample in the dataset into an 812-dimensional vector 𝜐, we
proceed to apply representation-level augmentation by selecting
two samples with identical labels and code smell types.

3.2 MoE-based Code Smell Detection
To ensure the acquisition of optimal information from the most
suitable detection experts, we introduce a gating network to weight
each expert tool’s outputs. This gating network, in collaboration
with the multi-headed self-attention mechanisms embedded within
each expert model, jointly captures the profound and multidimen-
sional features of source code snippets. This synergistic process
culminates in the generation of a weighted accuracy matrix.

3.2.1 Gating Network. To implement this mechanism, the gat-
ing network plays a crucial role. It first deeply analyzes the 812-
dimensional composite vector obtained from CodeBERT and CK
metric toolsets, identifying key features of code snippets through
complex nonlinear transformations. Subsequently, based on these
features, the gating network dynamically assigns weights to each
expert tool, directly guiding the prediction of different smells in
subsequent stages. It is noteworthy that since the output of each
expert tool is tailored to a specific smell, the gating network ensures
that for each smell, the model can extract information from the
most suitable expert rather than simply averaging the opinions of
all experts. The processing logic of the gating function begins by
first retaining the top 𝑘 maximum values from the input vector
𝐻 (𝑥) using the TopK function. Subsequently, the Softmax function
is applied to normalize these values, resulting in the gating vector.
This gating vector is utilized to weight-adjust the outputs of various
expert models. The formula for the gating function is as follows:

𝐺𝜎 (𝑥) = Softmax(TopK(𝐻 (𝑥), 𝑘)) (4)
𝐺𝜎 (𝑥) is the gating vector employed to weigh the outputs from
expert models, generated from the input vector 𝐻 (𝑥) following
processing via TopK and Softmax operations. The formula for the
TopK function, which retains the top 𝑘 maximum values:

Top𝐾 (𝑣, 𝑘)𝑖 = 𝑓 (𝑥) (5)

𝑓 (𝑥) =
{
𝑣𝑖 , if 𝑣𝑖 is in the top 𝑘 elements of 𝑣
−∞, otherwise

(6)

Top𝐾 (𝑣, 𝑘)𝑖 : The output of the function, representing the 𝑖th ele-
ment of the resulting vector retaining the top 𝑘 maximum values
from 𝑣 . In Equation 4, 𝐻 (𝑥) constitutes the feature vector emitted
by expert models, where each element 𝐻 (𝑥)𝑖 represents the output
of an expert model for a specific feature.

𝐻 (𝑥)𝑖 = (𝑥 ·𝑊𝑔)𝑖 + StandardNormal()
· Softplus((𝑥 ·𝑊noise)𝑖 )

(7)

𝑊𝑔 is the weight matrix transforming the input vector 𝑥 into the
feature vector produced by expert models. StandardNormal() is
a value randomly sampled from a standard normal distribution.
Softplus(), representing the Softplus function, is introduced to in-
corporate non-linear characteristics into the model’s processing.
𝑊noise constitutes the noise weight matrix, which introduces noise
to the input vector 𝑥 with the aim of bolstering the model’s robust-
ness against variations.

3.2.2 Multi-Head Self-Attention. The iSMELL approach employs a
Multi-Head Self-Attention mechanism to further refine and explore
the deep semantics of input vectors. The core of theMulti-Head Self-
Attention mechanism lies in its ability to parallelly process multiple
attention heads, each focusing on a different subspace of the input
vector, thereby capturing information from diverse perspectives.
First, we use a set of linear transformations to map the input vector
into sets of query, key, and value vectors, each set corresponding to
a specific attention head. Then, by calculating the dot product be-
tween queries and keys and applying scaling and softmax functions,
we generate a set of attention weights for each head, reflecting the
relationships between different parts of the input vector and their
importance to the current context. Next, based on these weights,
we perform a weighted sum of the value vectors to generate the
output for each head. The outputs of all heads are concatenated and
passed through a linear network transformation, restoring them to
the original dimension, but by this point, the vector has undergone
deep feature interaction and information recombination, rich in
cross-dimensional contextual understanding.

3.2.3 Accuracy Matrix. In the MoE model within iSMELL, both the
gating network and each individual expert model are endowed with
independent self-attention mechanisms. This comprehensive fea-
ture vector is simultaneously fed into seven distinct expert models.
Each expert model independently outputs vector 𝜐 ∈ R1×3 for the
three core smell classes. Each dimension of the vector corresponds
to a specific code smell, with its numerical value directly indicating
the "confidence" or accuracy level of the expert tool in detecting
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that particular smell. Thus, the collection of vectors output by the
seven expert models naturally forms a matrix 𝑀 ∈ R7×3, where
each row represents an expert, and each column is associated with
the detection of a specific smell type. The key step is to perform a
dot product operation between the weight vector generated by the
gating network and the aforementioned accuracy matrix to obtain
the weighted accuracy matrix𝑀𝑤𝑒𝑖 ∈ R7×3. This operation essen-
tially weights the accuracy of the expert model outputs, ensuring
that those expert models with higher recognition ability for specific
smells have a greater impact. The resulting weighted accuracy ma-
trix contains column vectors that compare the weighted confidence
of all expert toolsets under each smell type.

In the final decision stage, for each smell, we identify the expert
tool with the highest weighted accuracy from the corresponding
column vectors, and then use the selected expert tool to check for
the corresponding code smells.

3.3 LLM-based Code Refactoring
In the iSMELL approach, once the Mixture of Experts (MoE) model
selects expert toolsets to identify specific code smells, the system
automatically triggers a detailed LLM refactoring process. This
process embodies differential strategies for handling different smell
types, aiming to ensure that the refactoring suggestions are both
precise and efficient.

3.3.1 Refactoring Prompt Design. The prompt for code smell refac-
toring primarily consists of five components: instructions, tool
results, definitions, refactoring examples, and the code to be an-
alyzed. Instructions: Initially, we request the LLMs to process
specific types of code smells based on the results of previous code
smell detection toolsets. For each type of code smell, we also offer
specific suggestions for refactoring to enhance the LLMs’ ability
to address that particular code smell. Definitions: To make LLMs
understand the code smell better, we provide definitions for the
code smells detected by the toolset. Refactoring Examples: First,
we build a retrieval database 𝐸𝐷𝐵 for refactoring examples. For
each type of code smell, we carefully select five refactoring exam-
ples from open-source projects. Then, when preparing the prompt
for a given code snippet and its specific code smell, we randomly
retrieve one from the database 𝐸𝐷𝐵. Code to be analyzed: This
component presents the code snippet that need to be analyzed. To
make the LLMs learn more about the repo-level context, we ship
the contextual information with the code to be analyzed. For "Re-
fused Bequest", we input the code of the parent class into the LLMs.
This step improves the model’s understanding and management of

Figure 2: Prompt for code refactoring

inheritance structures, thereby enhancing the accuracy and effec-
tiveness of code smell refactoring. The core of the God Class issue
lies in the irrational internal structure of the class, where direct
analysis of the class’s code alone suffices for initiating refactoring.
For Feature Envy, the primary action involves extracting parts of
external classes that are frequently accessed within the method. In
refactoring these smells, no additional information beyond the code
under consideration needs to be provided to the LLMs. We provide
the concrete prompt for each code smell on our website [19].

3.3.2 Performing the Refactoring. There are twomain types of code
refactoring for fixing code smells according to the impact scope,
i.e., refactoring for class-level and method-level code smell [37].
Class-Level Refactoring has an impact on multiple classes. Thus,
both the code snippets to be analyzed and the output refactoring
results are typically quite lengthy. When requiring LLMs to directly
generate the complete refactored code, it typically entails multi-
ple iterative queries to compile the entire codebase. This process
can be fraught with issues such as selective forgetting and high
interaction costs. Moreover, the inference process may even halt
due to execution policy. Consequently, in the context of class-level
code smells, we do not mandate that LLMs provide explicit modifi-
cation code; instead, we employ an abstract yet efficient approach
by outputting a guideline for refactoring. Specifically, which con-
sists of four main stages. ❶ MoE-based Smelly Code Detection:
We leverage MoE model to analyze the original code and detect
smelly code. ❷ LLM-based Structure Design: We utilize LLM to
output the abstract structure of the refactored code, i.e., class ar-
chitecture, method signature, global properties, etc. ❸ LLM-based
Methods Re-Organizing: From the given abstract structure of
refactored code, we can obtain a list of refactored class/method
signatures that need to fill in. Then we prompt the LLMs to match
the refactored class/method signatures to the origin signatures. ❹
Tool-based Methods Moving: We develop a tool to do the auto-
matic move work. In this study, God Class and Refused Bequest are
suitable for class-level code smell refactoring. We release the code-
mitigation tool on our website [19].Method-Level Refactoring
has an impact on multiple methods. Due to the limited refactoring
scope, we directly request the LLM to provide the complete code of
the refactored methods. In this study, Feature Envy is suitable for
method-level code smell refactoring.

4 EXPERIMENTAL DESIGN
We address the following three research questions to evaluate the
performance of iSMELL:

RQ1: How does the iSMELL perform compared to the state-of-
the-art code smell detection baselines?

RQ2: How does each individual component of iSMELL contribute
to the overall performance?

RQ3: What is the perceived and quantitative quality of refactored
code generated by iSMELL?

4.1 Study Subjects
4.1.1 Code Smells. Lacerda et al. [20] reported on 10 of the most
prevalent code smell types. We have selected three complex code
smells from these, which are categorized as class-level and method-
level smells based on their impact scope. The three code smells were
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chosen for their representativeness and the specific challenges they
present. They encompass a range of issues, from method-level to
class-level concerns, such as the concentration of responsibilities,
improper dependencies, and the misapplication of inheritance prin-
ciples. Addressing each code smell requires a tailored approach:
while complex smells may necessitate advanced detection tech-
niques, simpler ones, like ‘Long Method’, can often be effectively
identified using rule-based systems. For instance, DesigniteJava
detects ‘Long Method’ by flagging methods that exceed 100 lines
of code. Their definitions are as follows:

God Class: It refers to a class that assumes too many responsi-
bilities. Typically, it is a large class that consolidates control and
supervision of many disparate objects. Feature Envy: This occurs
when a method excessively relies on another class. It suggests that
the features of another class might be better placed elsewhere. Re-
fused Bequest: This situation arises when a subclass inherits from
a parent class but does not need all the behaviors provided by the
parent class. Thus, the subclass rejects some behaviors inherited
from the parent class.
4.1.2 Expert Tools for Code Smell Detection. To ensure the effec-
tiveness of iSMELL in detecting code smells, we have selected the
following expert toolsets not only because they are currently pop-
ular code analysis toolsets but also because we have considered
the diversity and sources of their internal algorithms. Detailed lists
of the supported smell types for these toolsets are compiled and
summarized in Table 1 for comparison and reference.

PMD [22]: It is an extensible, multi-language static code ana-
lyzer that comes with over 400 built-in rules to detect common
programming defects. JDeodorant [14]: It is an Eclipse plugin that
integrates code smell detection with recommendations for refactor-
ing strategies. Organic [38]: It is an Eclipse plugin that supports
the detection of multiple code smells. It analyzes code by comparing
collected metrics against internally set thresholds to identify these
smells. DesigniteJava [39]: It is a code quality assessment tool that
detects numerous design and implementation smells and computes
a variety of object-oriented metrics. JSpIRIT [40]: It supports the
detection of various code smells and facilitates the identification of
code smell aggregates, as well as the prioritization of these smells
for remediation. FeTruth [13]: It is a tool that employs deep learn-
ing techniques to detect instances of Feature Envy in code, and
it also recommends refactoring strategies to address this particu-
lar code smell. JMove [41]: It is an Eclipse plugin that identifies
opportunities for the Move Method refactoring.

4.2 Dataset
4.2.1 Data Collection. The training data originates from three
widely-used datasets, whichwere respectively constructed by Palomba
Table 1: The types of code smells supported by the tools

Name God Class Feature Envy Refused Bequest
PMD ✓ × ×
JDeodorant ✓ ✓ ×
Organic ✓ ✓ ✓
DesigniteJava ✓ × ×
JSpIRIT ✓ ✓ ✓
FeTruth × ✓ ×
JMove × ✓ ×

Table 2: Statistics of the code smell datasets

Palomba
et al. [42]

Fontana
et al. [43]

Khomh
et al. [44] Total Training Test

God Class 94 0 102 196 2352 39
Refused Bequest 0 0 248 248 2976 50
Feature Envy 25 185 0 210 2520 42

et al. [42], Fontana et al. [43], and Khomh et al. [44]. The composi-
tion of these datasets is illustrated in Table 2.

4.2.2 Ground Truth. We employed the seven professional code
smell detection toolsets mentioned in Section 4.1.2. Subsequently,
we applied these toolsets to each instance within the dataset to
conduct smell detection and ascertain the ground truth. If a partic-
ular smell was identified by the expert toolsets, the corresponding
instance was labeled as 1; conversely, if the respective smell was
not detected, it was labeled as 0.

4.2.3 Data Augmentation. We evaluated the performance of our
model using five-fold cross-validation. Considering the substantial
similarity between linear extrapolation and linear interpolation,
we combine them as one method for implementation. For each
augmentation technique, we conduct five iterations. During train-
ing, we utilized all four augmentation methods and augmented the
training data fifteen times. Each augmentation involved resampling
the data and coefficients to expand the original dataset. The size
of the augmented training data compared to the training dataset is
shown in Table 2.

4.3 Baselines
The seven expert toolsets involved in the MoE also serve as baseline
toolsets. In addition, we have selected four state-of-the-art LLMs,
which are introduced as follows:

GPT-3.5 turbo [45]: It is a natural language processing model
introduced by OpenAI, based on the GPT (Generative Pre-trained
Transformer) architecture. It supports a maximum context input of
16k tokens. GPT-4.0 turbo [46]: It represents the latest generation
of LLM technology. Compared to GPT4.0, it can accept more con-
text inputs, supporting a maximum context input of 128k tokens.
LLAMA3-70B [47]: Pre-trained on over 1.5 trillion data tokens, it
has achieved state-of-the-art performance levels on a wide range of
tasks, establishing the LLAMA series as top-tier open-source large
language models applicable to various application and deployment
scenarios. It supports a maximum context input of 1048K tokens.
CodeLlama-34B [48]: Meta has fine-tuned the Llama2 version
model for code programming tasks, resulting in CodeLlama-34B. It
supports a maximum context input of 100k tokens.

4.4 Evaluation Metrics
4.4.1 Metrics for Smell Detection. This study investigates a multi-
label binary classification problem aimed at identifying whether
multiple specific code smells exist in code samples. Each code sam-
ple may be associated with multiple binary subtasks, where the
presence or absence of each smell constitutes an independent bi-
nary classification problem. Therefore, the presence of each smell
is considered as a positive instance of that category, while its ab-
sence is considered as a negative instance. True Positives (TPs)
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Table 3: Performances of iSMELL and expert tools baselines

PMD JDeodorant Organic
Designite

Java JSpIRIT FeTruth JMove iSMELL Oracle

Accuracy 27.38% 45.81% 77.68% 31.12% 65.60% 19.68% 18.57% 81.53% 87.92%
GodClass 82.14% 82.14% 86.73% 93.37% 72.96% N/A N/A 95.14% 99.44%

FeatureEnvy N/A 56.19% 70.95% N/A 53.33% 59.05% 55.71% 72.24% 81.90%
RefusedBequest N/A N/A 76.21% N/A 70.16% N/A N/A 78.99% 84.68%

F1 27.69% 36.42% 68.50% 31.22% 46.30% 8.19% 2.02% 75.17% 83.91%
GodClass 83.06% 81.32% 86.17% 93.66% 74.68% N/A N/A 95.52% 98.58%

FeatureEnvy N/A 6.12% 64.00% N/A 14.04% 24.56% 6.06% 59.98% 75.00%
RefusedBequest N/A N/A 45.87% N/A 35.09% N/A N/A 60.89% 70.31%

Recall 24.60% 25.54% 54.80% 29.91% 31.99% 4.91% 1.05% 65.31% 72.28%
GodClass 73.79% 69.81% 75.70% 89.72% 62.77% N/A N/A 92.41% 97.20%

FeatureEnvy N/A 3.16% 52.75% N/A 8.42% 14.74% 3.16% 47.17% 60.00%
RefusedBequest N/A N/A 30.12% N/A 24.10% N/A N/A 49.01% 54.22%

Precison 31.67% 63.45% 91.30% 32.65% 83.78% 24.56% 25.00% 90.71% 100.00%
GodClass 95.00% 97.37% 100.00% 97.96% 92.19% N/A N/A 99.05% 100.00%

FeatureEnvy N/A 100.00% 81.36% N/A 42.11% 73.68% 75.00% 83.67% 100.00%
RefusedBequest N/A N/A 96.15% N/A 64.52% N/A N/A 82.13% 100.00%

and True Negatives (TNs) are defined for each smell category, in-
dicating that the model correctly predicts the presence or absence
of the smell. False Positives (FPs) and False Negatives (FNs) are
also defined accordingly, for each smell category, representing in-
stances where the model incorrectly predicts the presence of a smell
or erroneously ignores a smell that is actually present. Concern-
ing performance evaluation metrics [49], this study employs F1
score, Overall Accuracy, Precision, and Recall for quantifying
the model’s performance.
4.4.2 Metrics for Smell Refactoring. Inmanually inspectingwhether
and to what extent the refactored code should be accepted, we em-
ploy a scoring system ranging from 0 to 4. The detailed scoring
criteria are as follows: 0 points: There are significant differences
between the suggested refactoring code and the actual refactoring
code, such as missing core method logic, posing a threat to major
functionality, or the code smell remaining unresolved after refac-
toring. Additionally, for false positives—samples where code was
predicted to need refactoring but actually did not, we instructed
participants to assign a score of 0. 1 point: Significant differences
are observed, including missing essential functions or fundamental
changes in the code’s logical structure. 2 points: Moderate mis-
matches are noted, such as incomplete instructions in methods
or adjustments in logical structure. 3 points: Minor differences
are present, such as variable renaming or small omissions of non-
essential statements. 4 points: All aspects of the suggested and
actual refactoring codes are identical. In quantitatively assessing
the performance of code refactoring, we observe the variation of
the representative code-smell metrics before and after refactoring.
These metrics include WMC, DIT, NOC, CBO, RFC, and LCOM (as
introduced in Section 3.1.1).

4.5 Implementation details
For all LLMs, we set their parameter Temperatures to 0.2. Further-
more, we impose a limit of 1500 for the MAX TOKEN count in
responses from all LLMs. Following previous studies [35], for lin-
ear interpolation and extrapolation, we sample the 𝛼 value from
a uniform distribution𝑈 ∼ (0.9, 1.1). For binary interpolation, we
sample the 𝛼 value from a Bernoulli distribution 𝐵(𝑝 = 0.25). As for
Gaussian scaling, we sample the 𝛽 value from a normal distribution

Table 4: Performances of iSMELL and LLMs baselines

GPT3.5 GPT4.0 LLaMA3.0 CodeLlama iSMELL
Accuracy 49.39% 63.46% 60.55% 53.67% 81.53%
GodClass 35.20% 77.55% 73.47% 42.35% 95.14%

FeatureEnvy 58.10% 55.71% 54.29% 54.29% 72.24%
RefusedBequest 53.23% 58.87% 55.65% 62.10% 78.99%

F1 30.61% 55.66% 52.57% 19.20% 75.17%
GodClass 16.99% 80.53% 71.74% 1.74% 95.52%

FeatureEnvy 33.33% 4.12% 7.69% 11.11% 59.98%
RefusedBequest 39.58% 52.78% 57.03% 38.16% 60.89%

Recall 25.61% 52.63% 50.18% 12.63% 65.31%
GodClass 12.15% 85.05% 61.68% 0.93% 92.41%

FeatureEnvy 23.16% 2.11% 4.21% 6.32% 47.17%
RefusedBequest 45.78% 68.67% 87.95% 34.94% 49.01%

Precison 38.02% 59.06% 55.21% 40.00% 90.71%
GodClass 28.26% 76.47% 85.71% 12.50% 99.05%

FeatureEnvy 59.46% 100.00% 44.44% 46.15% 83.67%
RefusedBequest 34.86% 57.89% 42.20% 42.03% 82.13%

𝑁 (0, 0.1). We set the number of training rounds to 70. The training
of the MoE model was conducted on a GeForce RTX 4070TI GPU.
When performing code smell detection, Llama3 and CodeLlama
were run on an A800 GPU with 80GB of VRAM.

5 RESULTS
5.1 Advantages on Code Smell Detection
5.1.1 Prompt Design for LLM-baselines. To fairly assess the perfor-
mance disparity between our method and LLMs in smell detection,
we meticulously designed the prompts. We removed superfluous
comments from the code to enable the LLMs to accommodate and
process more contextual information. Furthermore, when code in-
volves inheritance relationships, we fed the parent class code into
the LLMs concurrently, thereby enhancing their comprehension
and handling of the inheritance structure. The prompt for smell
detection mainly consists of three parts: instruction, definition, and
code to be analyzed. ❶ Instruction: The instruction section prompts
the LLMs to systematically examine the code, aiming to identify
three typical code smells, including God Class, Feature Envy, and
Refused Bequest. ❷ Definition: The definition part elaborates on
the specific meanings of these three smells to ensure the model has
an accurate understanding of them. ❸ Code to be analyzed: In the
section for the code to be analyzed, the target code segment for
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smell detection is directly embedded. Due to the lengthy nature of
the prompt for smell detection, we will disclose the specific details
along with the code and dataset [19].

5.1.2 Results. Assessment results are shown in Table 3 and Table
4, where the "Oracle" column data represents the theoretical upper
limit of detection performance under the optimal tool selection. It
is worth noting that due to the independent operation of LLMs and
their lack of reliance on expert toolsets, their detection efficiency
theoretically can surpass this upper limit. Comparison between
iSMELL and expert toolsets is as follows.

iSMELL vs. Individual Expert Tool. For the detection of God
Class, iSMELL achieved an F1 score of 95.52%, surpassing the per-
formance of all expert toolsets. Specifically, iSMELL outperformed
the best expert tool, DesigniteJava (93.66%), by 1.86%. iSMELL’s
accuracy was 95.14%, a 1.77% improvement over DesigniteJava
(93.37%). In detecting Feature Envy, iSMELL attained an F1 score of
59.98%, surpassing most expert toolsets but falling short of Organic
(64.00%). iSMELL’s accuracy was 72.24%, a 1.29% improvement over
the best expert tool, Organic (70.95%). For Refused Bequest, iSMELL
achieved an F1 score of 60.89%, surpassing the performance of all
expert toolsets. Specifically, iSMELL outperformed the best expert
tool, Organic (45.87%), by 15.02%. iSMELL’s accuracy was 78.99%, a
2.78% improvement over Organic (76.21%).

iSMELL vs. LLMs. For detecting God Class, iSMELL achieved
an F1 score of 95.52%, surpassing all LLMs. Specifically, iSMELL
surpassed the best-performing LLM, GPT4.0 (F1 score of 80.53%),
by 18.61%. The accuracy of iSMELL was 95.14%, marking a 22.68%
increase over GPT4.0’s accuracy of 77.55%. For identifying Fea-
tureEnvy, iSMELL registered an F1 score of 59.98%, surpassing all
other LLMs. Notably, iSMELL improved upon the top LLM, GPT3.5
(which had an F1 score of 33.33%), by an impressive 79.96%. The ac-
curacy of iSMELL reached 72.24%, representing a significant 24.34%
enhancement over GPT3.5’s accuracy of 58.10%. In the case of
RefusedBequest, iSMELL’s F1 score stood at 60.89%. iSMELL outper-
formed the best LLM in this category, Llama (F1 score of 57.03%), by
6.77%. The accuracy of iSMELL was 78.99%, indicating a substantial
27.20% improvement over CodeLlama’s accuracy of 62.10%.

Answering RQ1: The iSMELL achieves a significant improve-
ment in F1 score and accuracy compared to state-of-the-art large
language models, with an average increase of 35.05% and 28.47%,
respectively. Compared to the most advanced expert toolsets,
the average improvement is 9.74% and 4.96%, respectively.

5.2 Ablation Study on Code Smell Detection
5.2.1 Variants. To evaluate core components contributions, we ob-
tained two variants: (1) iSMELL w/o CM, removing the CK metric
vectors integrated into the data preprocessing stage. (2) iSMELL
w/o GN, removing the gating network responsible for weight allo-
cation in the MoE model, assigning equal weights to each expert
toolset. We trained these variants using the same experimental
setup as iSMELL and evaluated performance on the same test sets.
The detailed analysis of experiments is outlined below.

Table 5: Ablation study on iSMELL

iSMELL iSMELL
w/o CM

iSMELL
w/o GN

Accuracy 81.53% 79.26% 77.72%
GodClass 95.14% 88.66% 87.66%

FeatureEnvy 72.24% 72.03% 68.01%
RefusedBequest 78.99% 77.70% 78.13%

F1 75.17% 71.14% 68.02%
GodClass 95.52% 88.42% 87.38%

FeatureEnvy 59.98% 59.11% 50.83%
RefusedBequest 60.89% 56.34% 57.25%

Recall 65.31% 59.15% 55.33%
GodClass 92.41% 81.72% 79.37%

FeatureEnvy 47.17% 45.46% 37.59%
RefusedBequest 49.01% 44.06% 45.01%

Precison 90.71% 89.97% 90.18%
GodClass 99.05% 96.78% 97.84%

FeatureEnvy 83.67% 86.82% 82.95%
RefusedBequest 82.13% 82.57% 83.49%

5.2.2 Results. Table 5 shows the performance of iSMELL and its
two variants. It can be seen that removing these two components
results in a significant performance decrease. Specifically, when
comparing iSMELL with iSMELL w/o CM, removing the CK metric
resulted in a decrease in accuracy by 2.27% and a decrease in F1
score by 4.03%. When comparing iSMELL with iSMELL w/o GN,
after the gate control network became ineffective, the accuracy and
F1 scores decreased by 3.81% and 7.15%, respectively. Removing
metrics-induced performance degradation explicitly confirms the
indispensability of these static code metrics in identifying code
smells. They provide crucial perspectives on code structure and
potential problematic areas for the model. Experimental results
highlight the specificity and complementarity of different expert
toolsets in smell detection, with the dynamic weight configuration
mechanism at the gating network proving to be a key factor in
enhancing model performance.

Answering RQ2: Both the code metrics and the gating network
components have positive contributions to the performance of
iSMELL. Gated networks contribute more significantly. After
removing the gated networks, the model’s accuracy and F1
scores decreased by 3.81% and 7.15%.

5.3 Performance on Code Smell Refactoring

Table 6: Quantitative metrics results

Refused Bequest God Class Feature Envy
Before After Before After Before After

CBO 3.17 1.83 (↓ 1.34) 41.38 22.00 (↓ 19.38) 32.94 31.88 (↓ 1.06)
WMC 7.56 5.83 (↓ 1.73) 382.25 79.06 (↓ 303.19) 239.24 215.88 (↓ 23.36)
DIT 1.89 1.33 (↓ 0.56) 3.5 2.25 (↓ 1.25) 1.47 1.47 (→)
NOC 0.28 0.17 (↓ 0.11) 0.19 0.19 (→) 0.29 0.29 (→)
RFC 9.78 7.11 (↓ 2.67) 145.31 48.38 (↓ 96.93) 110.53 100.71 (↓ 9.82)
LCOM 9.56 4.72 (↓ 4.84) 1897.19 159.06 (↓ 1738.13) 798.24 798.12 (↓ 0.12)

5.3.1 Quantitative Analysis. According to Table 6, we can clearly
observe the average changes in code quality attributes before and
after refactoring. Before refactoring, God Classes often have a large
number of methods, bear too much responsibility, and are highly
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coupled with other classes, leading to poor cohesion. After refac-
toring, these methods are distributed among multiple classes, sig-
nificantly reducing the number and complexity of methods in in-
dividual classes. The responsibilities of each class become clearer,
reducing unnecessary coupling. As a result, metrics such as WMC,
CBO, RFC, and LCOM experience significant decreases after God
Class refactoring. Since God Class refactoring often does not in-
volve adjustments to inheritance relationships, changes in DIT
and NOC are minimal. Since Refused Bequest refactoring involves
removing unnecessary inheritance levels, DIT will decrease here.
Additionally, refactoring typically involves subclasses no longer in-
heriting methods from the superclass that they don’t need or aren’t
suitable for, indirectly reducing the WMC, CBO, RFC, and LCOM
of subclasses. However, the impact is usually smaller compared to
God Class refactoring because it typically affects only a few related
classes. This refactoring has a limited direct impact on the number
of subclasses, so NOC changes are minimal. Feature Envy refactor-
ing mainly addresses excessive dependencies of methods on other
classes by moving methods or creating local extension classes to
improve. This directly reduces the WMC of the original class while
possibly slightly decreasing CBO and RFC because it reduces direct
dependencies on external classes. Feature Envy refactoring has no
effect on DIT and NOC as its main focus is on method location
rather than class structure. LCOM may slightly improve as method
relocation enhances the cohesion of the class where it’s moved.
5.3.2 Human Evaluation. Procedure. In our study, focusing on
the code smell data predicted by the MoE model, we conducted
in-depth refactoring attempts on 25 randomly selected instances for
each category of code smells. Out of a total of 75 samples, there are
some false-positive samples, i.e., samples predicted to need refac-
toring but actually not. The participants score these samples as
0. We enlisted the participation of three individuals, comprising
two master’s degree students and one experienced developer. All
participants possess a minimum of three years of experience in Java
development, with one having over five years of experience. It is
noteworthy that these participants are not co-authors of this paper.
Agreements were signed with each participant, explicitly mandat-
ing objective annotation or evaluation. Each evaluator was tasked
with reviewing 50 instances, ensuring that each piece of code under-
went independent assessment by at least two reviewers. In cases of
discrepancy, we established a discussion mechanism, obliging the
concerned reviewers to communicate thoroughly until consensus
was reached, thereby enhancing the consistency and reliability of
the evaluation outcomes. Furthermore, feedback from authorita-
tive code smell detection toolsets served as a pivotal reference for
assessing the quality of the code before and after refactoring. If
the refactored code from the large language model is accepted, we
also evaluate the effectiveness of large language model refactoring
using the metric of Content consistency.

Results. Figure 3 illustrates the results of human evaluation,
depicting the accuracy of iSMELL’s refactoring using violin plots.
Overall, the code generated by iSMELL is acceptable in most cases
and effectively preserves the core functionality of the code. Across
the three smells (Feature Envy, God Class, Refused Bequest), the
average refactoring accuracies of our method are 2.60, 2.08, and
2.36, with acceptance rates of 68%, 64%, and 72%, respectively. Af-
ter conducting the God Class refactoring, we did not observe any

Figure 3: Human evaluation scores and comments

samples meeting the 4-point criterion. This phenomenon can be
attributed to the excessive redundancy within the God Class code
itself. Due to the token count limitations faced by LLMs during out-
put generation, this frequently leads to incompleteness in content,
thereby affecting the evaluation results. Compared to other smells,
the proportion of zero scores in the refactoring results for Refused
Bequest is higher. This is because six false positive cases in the total
sample mostly belong to the Refused Bequest type, leading to an in-
crease in low scores in the evaluation. During the evaluation of the
refactoring tool, we collected feedback from several participants,
as shown in Figure 3. These comments illustrate the dual nature
of iSMELL: while it is effective in many cases, particularly with
"Feature Envy," there is room for improvement when it comes to
handling larger, more complex classes.

In summary, integrating detection and refactoring capabilities
within the tool streamlines the workflow, offering developers a con-
venient and efficient way to maintain high-quality code standards.

Figure 4: A bad case for refactoring God Class. Despite refac-
toring, the processwasn’t thorough enough and theGodClass
still persists, yelling an interactive need for multiple itera-
tive refactorings.
5.3.3 Case Study. To further investigate why iSMELL scored lower
in human evaluation, we conducted a qualitative analysis on a ran-
domly selected bad case under score 1. As shown in Figure 4, the
God Class ‘Project’ contained 1,992 lines of code (LOC). iSMELL put
forth an initial suggestion for the class structure, which the partici-
pants found to be suitable. However, the outcome after the LLM’s
mapping was less satisfactory; even after being divided into seven
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classes, the original class still retained 900 LOC. The participants
pointed out that although the split and mapping were somewhat
accurate, the overall structure remained excessively large and com-
plex. Consequently, they rejected the refactoring result, signaling
the necessity for further refinement to attain an acceptable level of
code quality and class granularity.

Our findings suggest that the difficulty in refactoring longer
classes may be due to the initial concentration of responsibilities,
making it challenging to entirely eliminate code smells in a single
refactoring effort. The complexity and interconnections within
the components of longer classes can lead to residual smells after
refactoring. To enhance the effectiveness of refactoring, our future
work will focus on implementing multiple iterative refactorings. By
doing so, we aim to address any residual smells that remain after
the initial refactoring, ensuring a more thorough code cleanup.

Answering RQ3: In both human evaluation and quantitative
assessment, the code generated by iSMELL is generally accept-
able and effectively preserves the core functionality of the code,
with a noticeable improvement in the quality attributes of the
refactored code.

6 DISCUSSION
6.1 Advantages and Limitations
Advantages of iSMELL. ❶ Scalability: In this work, we focus on
three representative code smells that pose significant challenges,
as described in Section 4.1.1. Although we evaluated a limited num-
ber of code smells, our method, iSMELL, is scalable and capable of
addressing a wide range of code smells beyond those selected. The
number of smells iSMELL can address is determined by the expert
tools integrated into iSMELL. By simply augmenting the rows of the
MoE matrix, we can incorporate additional detection tools, thereby
expanding our detection capabilities. Similarly, by increasing the
columns in the MoE matrix, we can target more code smells, thus
broadening our scope without compromising efficiency or perfor-
mance. ❷ Comprehensiveness: By integrating various detection
algorithms and expert tools, iSMELL establishes a robust platform
for code smell detection. This integration overcomes the limita-
tions of individual tools, enabling the identification of a broader
range of code smells. ❸ Flexibility: Utilizing a MoE framework,
iSMELL demonstrates adaptability and scalability. This framework
facilitates the seamless integration of emerging detection tools and
technologies, allowing it to stay current with advancements in soft-
ware engineering. The modular design of the MoE structure ensures
that updates and replacements can be easily managed, maintaining
the system’s relevance and upgradability over time. ❹ Optimized
Performance: iSMELL leverages the strengths of diverse tools, se-
lecting the most appropriate algorithm for specific scenarios. This
approach enhances both accuracy and efficiency in addressing com-
plex or atypical code smells. By selecting the optimal solutions
from its extensive toolkit, iSMELL minimizes false positives and
maximizes the detection of genuine issues.

The potential and current state of refactoring tools. The
potential (upper bound) of our approach’s performance in code
smell detection, referred to as the Oracle, is directly influenced by
the integrated detection tools. Significant performance disparities

among these tools impact the effectiveness of our method, particu-
larly in detecting complex smells such as feature envy. Additionally,
the availability of tools for detecting certain smells constrains iS-
MELL’s overall effectiveness. Therefore, developing more efficient
detection tools for specific types of smells is both necessary and
urgent. Such advancements are crucial for enhancing the overall
performance of methods that utilize LLMs to integrate detection
tools, like iSMELL.

The limitations and potentials of LLMs in software refac-
toring. While LLMs have demonstrated strong capabilities in code
generation, there remains a significant gap in their ability to ef-
fectively perform code refactoring in practice. LLMs excel in han-
dling refactoring tasks that do not require extensive contextual
or repository-level understanding but struggle with complex code
transformations. Another limitation is the restriction on input/out-
put token length, which often necessitates multiple interactions
to pass comprehensive contextual information. This can result in
issues such as selective forgetting and increased interaction costs.
LLMs, being pattern recognition and generation systems for static
text, lack the ability to directly perceive the actual runtime state
of code. Dynamic code analysis, which involves observing a pro-
gram’s behavior at runtime—tracking variable states, function calls,
memory usage, concurrent behaviors, and more—presents inherent
challenges for LLMs. As a result, LLMs face significant limitations
when it comes to performing dynamic code analysis.

6.2 Potential Application Scenarios
The iSMELL that we propose leverages a MoE architecture to in-
tegrate various expert detection toolsets for comprehensive code
inspection and enhances LLMs to refactor code. We argue that this
framework could be further extended to other complex software
engineering tasks. For example, vulnerability detection requires
human experts to manually define the features of vulnerabilities,
which is a laborious and tedious task. As a result, various auto-
mated vulnerability detection toolsets have emerged, some from
the commercial sector, such as Trivy [50], OpenVAS [51], Clair [52],
and others from academia [53–56]. Similar to the challenges in code
smell detection, these expert tools are diverse and have deviations
in certain types of vulnerabilities, and LLMs have limitations in
terms of static or dynamic code analysis. By integrating expert
toolsets from vulnerability detection and the LLMs, we not only
cover a broader range of vulnerability types but also potentially
explain or patch the detected vulnerability via LLMs. There has
been a wide range of software engineering tasks that are worth
exploring, such as code review, automated program repair, etc.

On the time efficiency aspect, our approach is a trade-off solution
on applying expert toolsets and LLMs. Training an MoE model for
70 epochs approximately takes 5 minutes, and inferring a single
data entry requires less than 0.02 seconds. Refactoring one complex
smell code instance takes around 30 seconds. Overall, our proposed
method constitutes a lightweight and time-efficient solution for
code refactoring, blending LLMs with specialized tooling. When
migrating this approach to other application scenarios, the time
efficiency is affected by factors such as the efficiency of domain-
specific expert toolsets and the complexity of data preprocessing
within the applied LLMs.
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We believe that our proposed solution can provide new insights
for better leveraging LLMs and existing methods to tackle complex
software tasks more effectively.

6.3 Threats to validity
6.3.1 Internal Validity. To obtain accurate assessment metrics, we
adopted widely recognized open-source metric extraction toolsets
in the research field, which are also commonly used by other schol-
ars. However, considering the large number of projects covered
in our analysis dataset, some metric indicators may have encoun-
tered miscalculations due to technical obstacles during the parsing.
Specifically, during our error troubleshooting process, instances of
inaccurate metric calculations were identified. Nevertheless, given
that the expert toolsets we selected have undergone rigorous test-
ing by the community and are widely trusted, we believe that the
proportion of metric values with calculation deviations is minimal
and will not significantly impact the overall research conclusions.

6.3.2 External Validity. We selected three representative datasets
that encompass numerous software development projects closely
related to modern industry. These datasets not only exhibit diversity
in scale but also span across various business domains, aiming to
mitigate concerns regarding result generalizability. However, all
projects included in the analysis are of open-source nature and are
uniformly written in the Java language, which inevitably limits the
generalizability of our conclusions to industry projects using other
programming languages or non-open-source environments.

7 RELATEDWORK
Code Smell Detection. Most existing code smell detectors are
heuristic-based [14, 15, 17, 40, 57]. However, recent research has
shifted towards integrating deep learning techniques [12, 13], aim-
ing to enhance detection accuracy and generalization through au-
tomatic feature learning. 1) Heuristics-based Approaches. Tsan-
talis et al. [14, 15] introduced JDeodorant, which uses “distance”
to quantify method-class interaction frequencies, helping identify
“Feature Envy” and suggesting “Move Method” refactoring. For
“God Classes”, JDeodorant employs cluster analysis to detect com-
plexity and recommend decomposition by extracting methods and
attributes into new classes. Moha et al. [58] developed DECOR,
a heuristic tool that detects code smells using predefined rules.
For God Classes, DECOR analyzes metrics like LCOM5, method-
/attribute counts, and one-to-many associations, comparing them
against its detection rules. 2) Deep Learning-based Approaches.
Liu et al. [12] were the first to apply deep learning technology to
detect and address Feature Envy. Their model architecture clev-
erly combines CNNs and LSTMs. They also innovatively developed
a technique for automatically generating training data. Addition-
ally, Liu et al. [13] mined historical change data from open-source
projects, extracted representative positive and negative samples,
and combined heuristic rules with learning-based filters to identify
smells. Li and Zhang [59] parse code into abstract syntax trees with
control and data flow edges, then employed bidirectional LSTM
networks with graph convolutional networks and attention mecha-
nisms to predict various smells. Yu [60] collects code metrics and

calling relationships to convert into graphs, concurrently intro-
ducing a graph augmenter to obtain enhanced graphs, then ap-
plies graph neural networks to detect Feature Envy. Building upon
these studies, we integrate heuristic-based with learning-based
smell detection techniques in our solution, aspiring to establish a
highly scalable approach. This approach not only encompasses a
broader spectrum of smell types but also bolsters detection capabil-
ity through technological complementarity.

Code Smell Refactoring. In addressing the challenges of opti-
mizing software codebases, a myriad of refactoring strategies have
been extensively explored and implemented. Each study typically
focuses on tailored methodologies to address specific issues, aiming
to enhance code structure and quality across multiple levels, includ-
ing classes, methods, and variables. The feTruth developed by Liu et
al. [13] utilizes a combination of heuristic and learning-based filters
to exclude non-Feature Envy cases, then employs a neural network
classifier to predict potential refactoring suggestions. In practice,
feTruth also demonstrates high accuracy in recommending target
classes. Aniche et al. [61] frame the refactoring recommendation
problem as a binary classification task. Through analysis of over
two million real refactoring instances, they validate the effective-
ness of various machine learning algorithms in predicting diverse
refactoring operations. Ma et al. [62] leverage the pre-trained model
CodeT5 [63] to predict the target classes for method movement by
analyzing the relationship between methods and potential target
classes. Ouni et al. [64] proposed a multi-objective optimization
algorithmic approach to identify sequences of refactorings, lever-
aging the development history collected from software projects
to reinforce the refactoring outcomes. While the bulk of current
research centers on proposing refactoring strategy suggestions, pri-
marily concentrating on operations at the method and class levels,
our approach harnesses the potent learning capabilities of LLMs to
directly output refactored code snippets, achieving a more nuanced
form of code-level refactoring.

8 CONCLUSION AND FUTUREWORK
This paper introduces iSMELL, a method for comprehensive code
smell detection through a Mixture of Experts (MoE) architecture,
that utilizes various code smell detection toolsets, and enhances
Large Language Models (LLMs) to refactor identified code smells.
Evaluation results demonstrate that iSMELL outperforms other
baselines in code smell detection. We employ both quantitative and
human evaluations of LLM-refactored code, indicating that iSMELL
satisfactorily refactors identified code smells and improves code
quality attributes. In the future, we plan to establish a repository for
refactored code. This repository aims to leverage search algorithms
to identify the refactoring examples that are most similar to the
smelly code, uponwhich prompts will be constructed based on these
examples. We also plan to systematically compare the effectiveness
of our refactoring approach with existing mainstream methods.
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