
IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019 45

Automated Testing of Android Apps:
A Systematic Literature Review

Pingfan Kong , Li Li , Jun Gao , Kui Liu , Tegawendé F. Bissyandé , and Jacques Klein

Abstract—Automated testing of Android apps is essential for app
users, app developers, and market maintainer communities alike.
Given the widespread adoption of Android and the specificities of
its development model, the literature has proposed various testing
approaches for ensuring that not only functional requirements but
also nonfunctional requirements are satisfied. In this paper, we aim
at providing a clear overview of the state-of-the-art works around
the topic of Android app testing, in an attempt to highlight the
main trends, pinpoint the main methodologies applied, and enu-
merate the challenges faced by the Android testing approaches as
well as the directions where the community effort is still needed. To
this end, we conduct a systematic literature review during which
we eventually identified 103 relevant research papers published in
leading conferences and journals until 2016. Our thorough exam-
ination of the relevant literature has led to several findings and
highlighted the challenges that Android testing researchers should
strive to address in the future. After that, we further propose a few
concrete research directions where testing approaches are needed
to solve recurrent issues in app updates, continuous increases of
app sizes, as well as the Android ecosystem fragmentation.

Index Terms—Android, automated testing, literature review,
survey.

I. INTRODUCTION

ANDROID smart devices have become pervasive after gain-
ing tremendous popularity in recent years. As of July

2017, Google Play, the official app store, is distributing over
three million Android applications (i.e., apps), covering over
30 categories ranging from entertainment and personalization
apps to education and financial apps. Such popularity among
developer communities can be attributed to the accessible de-
velopment environment based on familiar Java programming
language as well as the availability of libraries implementing di-
verse functionalities [1]. The app distribution ecosystem around
the official store and other alternative stores such as Anzhi and
AppChina is further attractive for users to find apps and organi-
zations to market their apps [2].

Manuscript received July 31, 2017; revised February 19, 2018, May 27, 2018,
June 13, 2018, and August 3, 2018; accepted August 9, 2018. Date of publication
September 3, 2018; date of current version February 26, 2019. This work was
supported by the Fonds National de la Recherche, Luxembourg, under projects
CHARACTERIZE C17/IS/11693861 and Recommend C15/IS/10449467. As-
sociate Editor: S. Ghosh. (Corresponding author: Li Li.)

P. Kong, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein are with the In-
terdisciplinary Centre for Security, Reliability and Trust, University of Lux-
embourg, Luxembourg, LU 1855, Luxembourg (e-mail:,pingfan.kong@uni.lu;
jun.gao@uni.lu; kui.liu@uni.lu; tegawende.bissyande@uni.lu; jacques.klein@
uni.lu).

L. Li is with the Faculty of Information Technology, Monash University,
Melbourne, Vic. 3800, Australia (e-mail:,li.li@monash.edu).

Digital Object Identifier 10.1109/TR.2018.2865733

Fig. 1. Process of testing Android apps.

Unfortunately, the distribution ecosystem of Android is
porous to poorly tested apps [3]–[5]. Yet, as reported by
Kochhar [3], error-prone apps can significantly impact user
experience and lead to a downgrade of their ratings, eventually
harming the reputation of app developers and their organi-
zations [5]. It is thus becoming more and more important to
ensure that Android apps are sufficiently tested before they are
released on the market. However, instead of manual testing,
which is often laborious, time-consuming, and error-prone, the
ever-growing complexity and the enormous number of Android
apps call for scalable, robust, and trustworthy automated testing
solutions.

Android app testing aims at testing the functionality, usability,
and compatibility of apps running on Android devices [6], [7].
Fig. 1 illustrates a typical working process. At Step (1), target
app is installed on an Android device. Then, in Step (2), the app
is analyzed to generate test cases. We remind the readers that this
step (in dashed line) is optional and some testing techniques such
as automated random testing do not need to obtain preknowledge
for generating test cases. Subsequently, in Step (3), these test
cases are sent to the Android device to exercise the app. In Step
(4), execution behavior is observed and collected from all sorts
of perspectives. Finally, in Step (5), the app is uninstalled and
relevant data is wiped. We would like to remind the readers that
installation of the target app is sometimes not a necessity, e.g.,
frameworks like Robolectric allow tests directly run in JVM.
In fact, Fig. 1 can be borrowed to describe the workflow of
testing almost any software besides Android apps. Android app
testing, on the contrary, falls in a unique context and often fails
to use general testing techniques [8]–[13]. There are several
differences with traditional (e.g., Java) application testing that
motivate research on Android app testing. We enumerate and
consider for our review a few common challenges.

First, although apps are developed in Java, traditional Java-
based testing tools are not immediately usable on Android apps

0018-9529 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4479-0775
https://orcid.org/0000-0003-2990-1614
https://orcid.org/0000-0002-3864-5926
https://orcid.org/0000-0003-0145-615X
https://orcid.org/0000-0001-7270-9869
mailto:pingfan.kong@uni.lu
mailto:jun.gao@uni.lu
mailto:kui.liu@uni.lu
mailto:tegawende.bissyande@uni.lu
mailto:jacques.klein@uni.lu
mailto:jacques.klein@uni.lu
mailto:li.li@monash.edu

46 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

since most control-flow interactions in Android are governed by
specific event-based mechanisms such as the intercomponent
communication (ICC [14]). To address this first challenge, sev-
eral new testing tools have been specifically designed for taking
Android specificities into account. For example, RERAN [15]
was proposed for testing Android apps through a timing- and
touch-sensitive record-and-replay mechanism, in an attempt to
capture, represent, and replay complicated nondiscrete gestures
such as circular bird swipe with increasing slingshot tension in
Angry Birds.

Second, Android fragmentation, in terms of the diversity of
available OS versions and target devices (e.g., screen size vari-
eties), is becoming acuter as now testing strategies have to take
into account different execution contexts [16], [17].

Third, the Android ecosystem attracts a massive number
of apps requiring scalable approaches to testing. Furthermore,
these apps do not generally come with open source code, which
may constrain the testing scenarios.

Finally, it is challenging to generate a perfect coverage
of test cases, in order to find faults in Android apps. Tra-
ditional test case generation approaches based on symbolic
execution and tools such as Symbolic Pathfinder are chal-
lenged by the fact that Android apps are available in Dalvik
bytecode that differs from Java bytecode. In other words,
traditional Java-based symbolic execution approaches can-
not be directly applied to tackle Android apps. Further-
more, the event-driven feature, as well as framework li-
braries, pose further obstacles for systematic generation of test
cases [18].

Given the variety of challenges in testing Android apps, it is
important for this field, which has already produced a signifi-
cant amount of approaches, to reflect on what has already been
solved, and on what remains to tackle. To the best of our knowl-
edge, there is no related literature review or survey summarizing
the topic of Android testing. Thus, we attempt to meet this need
through a comprehensive study. Concretely, we undertake a sys-
tematic literature review (SLR), carefully following the guide-
lines proposed by Kitchenham et al. [19] and the lessons learned
from applying SLR within the software engineering domain by
Brereton et al. [20]. To achieve our goal, we have searched and
identified a set of relevant publications from four well-known
repositories including the ACM Digital Library and from major
testing-related venues such as ISSTA and ICSE. Then, we have
performed a detailed overview on the current state of research
in testing Android apps, focusing on the types and phases of
the testing approaches applied as well as on a trend analysis in
research directions. Eventually, we summarize the limitations
of the state-of-the-art apps and highlight potential new research
directions.

The main contributions of this paper are as follows.
1) We build a comprehensive repository tracking the re-

search community effort to address the challenges in test-
ing Android apps. In order to enable an easy navigation
of the state-of-the-art, thus enabling and encouraging re-
searchers to push the current frontiers in Android app test-
ing, we make all collected and built information publicly
available at http://lilicoding.github.io/TA2Repo/.

Fig. 2. Process of the SLR.

2) We analyze in detail the key aspects in testing Android
apps and provide a taxonomy for clearly summarizing and
categorizing all related research works.

3) Finally, we investigate the current state-of-the-art, enu-
merate the salient limitations, and pinpoint a few direc-
tions for furthering the research in Android testing.

The rest of the paper is organized as follows: Section II depicts
the methodology of this SLR, including a general overview and
detailed reviewing processes of our approach. In Section III, we
present the results of our selected primary publications, along
with a preliminary trend and statistic analysis on those collected
publications. Later, we introduce our data extraction strategy
and their corresponding findings in the following two sections:
Sections IV and V. After that, we discuss the trends we observed
and challenges the community should attempt to address in
Section VI and enumerate the threats to validity of this SLR in
Section VII. A comparison of this paper with literature studies
is given in Section VIII, and finally we conclude this SLR in
Section IX.

II. METHODOLOGY OF THIS SLR

We now introduce the methodology applied in this SLR. We
remind the readers that an SLR follows a well-defined strategy
to systematically identify, examine, synthesize, evaluate, and
compare all available literature works in a specific topic, result-
ing in a reliable and replicable report [19], [21], [22]. Fig. 2
illustrates the process of our SLR. At the beginning, we de-
fine relevant research questions (cf. Section II-A) to frame our
investigations. The following steps are unfolded to search and
consolidate the relevant literature, before extracting data for
answering the research questions, and finalizing the report.

Concretely, to harvest all relevant publications, we identify
a set of search keywords and apply them in two separate pro-
cesses: first, online repository search and, second, major1 venues
search. All results are eventually merged for further reviewing
(cf. Section II-B). Next, we apply some exclusion criteria on

1We rely on the China Computer Federation (CCF) ranking of computer
science venues.

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

KONG et al.: AUTOMATED TESTING OF ANDROID APPS: A SYSTEMATIC LITERATURE REVIEW 47

the merged list of publications, to exclude irrelevant papers
(e.g., papers not written in English) or less relevant papers (e.g.,
short papers), in order to focus on a small, but highly relevant,
set of primary publications (cf. Section II-C). Finally, we have
developed various metrics and reviewed the selected primary
publications against these metrics through full paper exami-
nation. After the examination, we crosschecked the extracted
results to ensure their correctness, and eventually we report on
the findings to the research community (cf. Section II-D).

A. Initial Research Questions

Given the common challenges enumerated in Section I, which
have motivated several research lines in Android apps, we in-
vestigate several research questions to highlight how and which
challenges have been focused on in the literature. In particular,
with regards to the fact that Android has programming speci-
ficities (e.g., event-based mechanisms, GUI), we categorize test
concerns targeted by the research community. With regards to
the challenge of ensuring scalability, we study the tests lev-
els that are addressed in research works. With regards to the
challenge of generating test cases, we investigate in detail the
fundamental testing techniques leveraged. Finally, with regards
to the fragmentation of the Android ecosystem, we explore the
extent of validation schemes for research approaches. Overall,
we note that testing Android apps is a broad activity that can tar-
get a variety of functional and nonfunctional requirements and
verification issues, leverage different techniques, and focus on
different granularity levels and phases. Our investigation thus
starts with the following related research questions.

1) RQ1: What are the test concerns? With this research ques-
tion, we survey the various objectives sought by Android
app testing researchers. In general, we investigate the test-
ing objectives at a high level to determine what require-
ments (e.g., security, performance, defects, and energy)
the literature addresses. We look more in-depth into the
specificities of Android programming, to enumerate the
priorities that are tackled by the community, including
which concerns (e.g., GUI and ICC mechanism) are fac-
tored in the design of testing strategies.

2) RQ2: Which test levels are addressed? With the second
research question, we investigate the levels (i.e., when
the tests are relevant in the app development process)
that research works target. The community could indeed
benefit from knowing to what extent regression testing
is (or is not) developed for apps that are now commonly
known to evolve rapidly.

3) RQ3: How are the testing approaches built? In the third
research question, we process detailed information on the
design and implementation of test approaches. In par-
ticular, we investigate the fundamental techniques (e.g.,
concolic testing or mutation testing) leveraged, as well
as the amount of input information (i.e., to what extent
the tester should know about the app prior to testing) that
approaches require to perform.

4) RQ4: To what extent are the testing approaches validated?
Finally, the fourth research question investigates the met-

TABLE I
SEARCH KEYWORDS

rics, datasets, and procedures in the literature for measur-
ing the effectiveness of state-of-the-art approaches. An-
swers to this question may shed light on the gaps in the
research agenda of Android testing.

B. Search Strategy

We now detail the search strategy that we applied to harvest
literature works related to Android app testing.

Identification of search keywords: Our review focuses on two
key aspects: Testing and Android. Since a diversity of terms
may be used by authors to refer, broadly or precisely, to any of
these aspects, we rely on the extended set of keywords identified
in Table I. Our final search string is then constructed as a con-
junction of these two categories of keywords (search string =
cat1 & cat2), where each category is represented as a disjunc-
tion of its keywords (cat = kw1 | kw2 | kw3).

Online repository search: We use the search string on online
literature databases to find and collect relevant papers. We have
considered four widely used repository for our work: ACM Dig-
ital Library,2 IEEE Xplore Digital Library,3 SpringerLink,4 and
ScienceDirect.5 The “advanced” search functionality of the four
selected online repositories are known to be inaccurate, which
usually result in a huge set of irrelevant publications, noising
the final paper set [22]. Indeed, those irrelevant publications do
not really match our keywords criteria. For example, they may
not contain any of the keywords shown in the Test category.
Thus, we develop scripts (combined with Python and Shell) to
perform offline matching verification on the papers yielded by
those search engines, where the scripts follow exactly the same
criteria that we have used for online repository search. For ex-
ample, regarding the keywords enumerated in the Test category,
if none of them is presented in a publication, the scripts will
mark that publication as irrelevant and subsequently exclude it
from the candidate list.

Major venues search: Since we only consider a few reposi-
tories for search, the coverage can be limited given that a few
conferences such as NDSS6 and SEKE7 do not host their pro-
ceedings in the aforementioned repositories. Thus, to mitigate
the threat to validity of not including all relevant papers, we fur-
ther explicitly search in proceedings of all major venues in com-
puter science. We have chosen the comprehensive CCF-ranking

2http://dl.acm.org/
3http://ieeexplore.ieee.org/Xlpore/home.jsp
4http://link.springer.com
5http://www.sciencedirect.com
6The Network and Distributed System Security Symposium
7International Conference on Software Engineering and Knowledge

Engineering

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

http://dl.acm.org/
http://ieeexplore.ieee.org/Xlpore/home.jsp
http://link.springer.com
http://www.sciencedirect.com

48 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

of venues8 and leveraged the DBLP9 repository to collect the
document object identifiers of the publications in order to crawl
abstracts and all publication metadata. Since this search process
considers major journal and conference venues, the resulting set
of literature papers should be a representative collection of the
state-of-the-art.

C. Exclusion Criteria

After execution of our search based on the provided key-
words, a preliminary manual scanning showed that the results
are rather coarse-grained since it included a number of irrele-
vant or less relevant publications that, nonetheless, matched10

the keywords. It is, thus, necessary to perform a fine-grained
inclusion/exclusion in order to focus on a consistent and reli-
able set of primary publications and reduce the eventual effort
in further in-depth examination. For this SLR, we have applied
the following exclusion criteria.

1) Papers that are not written in English are filtered out since
English is the common language spoken in the worldwide
scientific peer-reviewing community.

2) Short papers are excluded, mainly because such papers are
often work-in-progress or idea papers: on the one hand,
short papers are generally not mature, and, on the other
hand, many of them will eventually appear later in a full
paper format. In the latter case, mature works are likely to
already be included in our final set. In this paper, we take
a given publication as a short paper when it has fewer than
four pages (included) in IEEE/ACM-like double-column
format11 or fewer than eight pages (included) in LNCS-
like single column format as short papers are likely to be
four pages in double column format and eight pages in
single column format.

3) Papers that are irrelevant to testing Android apps are ex-
cluded. Our search keywords indeed included broad terms
such as mobile and smartphone as we aimed at finding all
papers related to Android even when the term “Android”
was not specifically included in the title and abstract. By
doing so, we have excluded papers that only deal with mo-
bile apps for other platforms such as iOS and Windows.

4) Duplicated papers are removed. It is quite common for
authors to publish an extended version of their conference
paper to a journal venue. However, these papers share
most of the ideas and approach steps. To consider both of
them would result in a biased weighting of the metrics in
the review. To mitigate this, we identify duplicate papers
by first comparing paper titles, abstracts, and authors and
then further manually check when a given pair of records

8http://www.ccf.org.cn/sites/ccf/paiming.jsp, we only take into account soft-
ware engineering and security categories, as from what we have observed, the
majority of papers related to testing Android apps.

9http://dblp.uni-trier.de
10The keywords were found, for example, to be mentioned in the related

sections of the identified papers.
11Note that we have actually kept a short paper entitled “GuiDiff: a regression

testing tool for graphical user interface” because it is very relevant to our study
and it does not have an extended version released in the following years.

share a major part of their contents. We filter out the least
recent publication when duplication is confirmed.

5) Papers that conduct comparative evaluations, including
surveys on different approaches of testing Android apps,
are excluded. Such papers indeed do not introduce new
technical contributions for testing Android apps.

6) Papers in which the testing approach targets the operating
system, networks, or hardware, rather than mobile apps
are excluded.

7) Papers that assess12 existing testing methods are also fil-
tered out. The publications that they discuss are supposed
to be already included in our search results.

8) Papers demonstrating how to set up environments and
platforms to retrieve runtime data from Android apps are
excluded. These papers are also important for Android
apps testing, but they are not focusing on new testing
methodology.

9) Finally, some of our keywords (e.g., “detection” of issues,
“testing” of apps) have led to the retrieval of irrelevant lit-
erature works that must be excluded. We have mainly iden-
tified two types of such papers: the first includes papers
that perform detection of malicious apps using machine
learning (and not testing); the second includes papers that
describe the building of complex platforms, adopting ex-
isting mature testing methodologies.

We refer to all collected papers that remain after the ap-
plication of exclusion criteria as primary publications. These
publications are the basis for extracting review data.

D. Review Protocol

Concretely, the review is conducted in two phases: First, we
perform an abstract review and quick full paper scan to filter out
irrelevant papers based on the exclusion criteria defined above.
At the end of this phase, the set of primary publications is
known. Subsequently, we perform a full review of each primary
publication and extract relevant information that is necessary
for answering all of our research questions.

In practice, we have split our primary publications to all the
coauthors to conduct the data extraction step. We have further
crosschecked all the extracted results: when some results are in
disagreement, informal discussions are conducted until a con-
sensus is reached.

III. PRIMARY PUBLICATIONS SELECTION

Table II summarizes statistics of collected papers during the
search phase. Overall, our repository search and major venue
search have yielded in total 9259 papers.

Following the exclusion criteria in Section II, the papers sat-
isfying the matching requirements immediately drop from 9259
to 472. We then manually go through the title and abstract of
each paper to further dismiss those that match the exclusion
criteria. After this step, the set of papers is reduced to 255 publi-
cations. Subsequently, we go through the full content of papers

12For example, [23] and [24] proposed tools and algorithms for measuring
the code coverage of testing methods.

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

http://dblp.uni-trier.de

KONG et al.: AUTOMATED TESTING OF ANDROID APPS: A SYSTEMATIC LITERATURE REVIEW 49

TABLE II
SUMMARY OF THE SELECTION OF PRIMARY PUBLICATIONS

Fig. 3. Word cloud based on the venue names of selected primary publications.

Fig. 4. Number of publications in each year.

in the set, leading to the exclusion of 84 more papers. Finally,
after discussion among the authors for the rest of the set, we
reach a consensus on considering 103 publications as relevant
primary publications. Table A1 (in the Appendix) enumerates
the details of those 103 publications.

It is noteworthy that around 4% of the final primary publica-
tions are exclusively found by major venues search, meaning that
they cannot be found based on well-known online repositories
such as IEEE and ACM. This result, along with our previous ex-
periences [22], suggests that repository search is necessary but
not sufficient for harvesting review publications. Other steps
(e.g., top venues search based on Google Scholar impact fac-
tor [22] or CCF ranking) should be taken in complement to
ensure reliable coverage of state-of-the-art papers.

Fig. 3 presents a word cloud based on the venue names of
selected primary publications. The more papers selected from
a venue, the bigger its name showing in the word cloud. Not
surprisingly, the recurrently targeted venues are mainly testing-
related conferences such as ISSTA, ICST, ISSRE, etc.

Fig. 4 illustrates the trend of the number of publications in
each year we have considered. From this figure, we can ob-

Fig. 5. Distribution of examined publications through published venue types
and domains. (a) Venue types. (b) Venue domains.

serve that the number of papers tackling the problem of testing
Android apps has increased gradually to reach a peak in 2014.
Afterwards, the pace of developing new testing techniques has
stabilized.

We further look into the selected primary publications through
their published venue types and domains. Fig. 5(a) and (b) illus-
trates the statistic results, respectively. Over 90% of examined
papers are published in conferences and workshops (which are
usually co-located with top conferences), while only 10% of
papers are published in journals. These findings are in line with
the current situation where intense competition in Android re-
search forces researchers to make available their works as fast as
possible. We further find that over 80% of examined papers are
published in software engineering and programming language
venues, showing that testing Android apps is mainly a concern
in the software engineering community. Nevertheless, as shown
by several papers published in proceedings of security venues,
testing is also a valuable approach to address security issues in
Android apps.

IV. TAXONOMY OF ANDROID TESTING RESEARCH

To extract relevant information from the literature, our SLR
must focus on specific characteristics eventually described in
each publication. To facilitate this process in a field that ex-
plores a large variety of approaches, we propose to build a tax-
onomy of Android testing. Such a taxonomy eventually helps to
gain insights into the state-of-the-art by answering the research
questions proposed in Section II-A.

By searching for answers to the aforementioned research
questions in each publication, we are able to make a system-
atic assessment of the literature with a schema for classifying
and comparing different approaches. Fig. 6 presents a high-level
view of the taxonomy diagram spreading in four dimensions
(i.e., Test Objectives, Test Targets, Test Levels, and Test Tech-
niques) associated with the first three research questions.13

Test objectives: This dimension summarizes the targeted ob-
jectives of our examined testing-related publications. We have

13Test Objectives and Test Targets for RQ1 (test concerns), Test Levels for
RQ2 (test levels), and Test Techniques for RQ3 (test approaches). RQ4 explores
the validity of testing approaches that is not summarized in the taxonomy.

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

50 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

Fig. 6. Taxonomy of Android app testing.

enumerated overall six recurring testing objectives such as
bug/defect detection.

Test targets: This dimension summarizes the representative
targets on which testing approaches focus. In particular, for
testing Android apps, the GUI/Event and ICC/interapplication
communication (IAC) are recurrently targeted. For simplicity,
we regroup all the other targets such as normal code analysis
into General.

Test levels: This dimension checks the different levels (also
known as phases) at which the test activities are performed.
Indeed, there is a common knowledge that software testing is
very important and has to be applied to many levels such as
unit testing, integration testing, etc. Android apps, as a specific
type of software, also need to go through a thorough testing
progress before being released to public markets. In this dimen-
sion, we sum up the targeted testing phases/levels of examined
approaches, to understand what has been focused so far by the
state-of-the-art.

Test techniques: Finally, the fourth dimension focuses on the
fundamental methodologies (e.g., fuzzy or mutation) that are
followed to perform the tests, as well as the testing environments
(e.g., on emulated hardware) and testing types (e.g., black-box
testing).

V. LITERATURE REVIEW

We now report on the findings of this SLR in light of the
research questions that we have raised in Section II-A.

A. What Concerns do the Approaches Focus on?

Our review investigates both the objectives that testing ap-
proaches seek to achieve and the app elements that are targeted
by the test cases. Test objectives focus on problems that can be
located anywhere in the code, while test targets focus on spe-

cific app elements that normally involve only certain types of
code (e.g., functionality).

1) Test Objectives: Android testing research has tackled var-
ious objectives, including the assessment of apps against non-
functional properties such as app efficiency in terms of energy
consumption, and functional requirements such as the presence
of bugs. We discuss in this section some recurrent test objectives
from the literature.

Concurrency: Android apps expose a concurrency model that
combines multithreading and asynchronous event-based dis-
patch, which may lead to subtle concurrency errors because
of unforeseen thread interleaving coupled with nondetermin-
istic reordering of asynchronous tasks. These error-prone fea-
tures are however useful and increasingly becoming common in
the development of efficient and feature-rich apps. To mitigate
concurrency issues, several works have been proposed, notably
for detecting races such as data races, event-based races, etc.
in Android apps. As an example, Maiya et al. [62] have built
DroidRacer, which identifies data races (i.e., the read and write
operations happen in parallel) by computing the happens-before
relation on execution traces that are generated systematically
through running test scenarios against Android apps. Bielik
et al. [47] later have proposed a novel algorithm for scaling
the inference of happens-before relations. Hu et al. [9] pre-
sented a work for verifying and reproducing event-based races,
where they have found that both imprecise Android component
modeling and implicit happens-before relation could result in
false positive for detecting potential races.

Security: As shown by Li et al. [22], the Android research
community is extensively working on providing tools and ap-
proaches for solving various security problems for Android
apps. Some of these works involve app testing, e.g., to observe
defective behavior [57] and malicious behavior [79] and to track
data leaks [75]. For example, Yan et al. [78] have built a novel
and comprehensive approach for the detection of resource leaks

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

KONG et al.: AUTOMATED TESTING OF ANDROID APPS: A SYSTEMATIC LITERATURE REVIEW 51

using test criteria based on neutral cycles: sequences of GUI
events should have a “neutral” effect and should not increase
the usage of resources. Hay et al. [45] dynamically detected in-
terapplication communication vulnerabilities in Android apps.

Performance: Android apps are sensitive to performance is-
sues. When a program thread becomes expensive, the system
may stop app execution after warning on the user interface that
the “Application [is] Not Responding.” The literature includes
several contributions on highlighting issues related to the per-
formance of Android apps such as poor responsiveness [29] and
exception handling [55]. Yang et al. [74], for example, have
proposed a systematic testing approach to uncover and quantify
common causes of poor responsiveness of Android apps. Con-
cretely, they explicitly extend the delay for typical problematic
operations, using the test amplification approach, to demonstrate
the effects of expensive actions that can be observed by users.

Energy: One of the biggest differences between traditional PC
and portable devices is the fact that portable devices may run
on battery power, which can get depleted during app usage. A
number of research works have investigated energy consumption
hotspots arising from software design defects, unwanted service
execution (e.g., advertisement), or have leveraged energy finger-
prints to detect mobile malware. As an example, Wan et al. [42]
presented a technique for detecting display energy hotspots to
guide the developers to improve the energy efficiency of their
apps. Since each activity performed on a battery powered device
drains a certain amount of energy from it, if the normal energy
consumption is known for a device, the additionally used energy
should be flagged as abnormal.

Compatibility: Android apps are often suffering from com-
patibility issues, where a given app can run successfully on a
device, characterized by a range of OS versions while failing
on others [85]. This is mainly due to the fragmentation in the
Android ecosystem brought by its open source nature. Every
vendor, theoretically, can have its own customized system (e.g.,
for supporting specific low-level hardware) and the screen size
of its released devices can vary as well. To address compati-
bility problems, there is a need to devise scalable and efficient
approaches for performing compatibility testing before releas-
ing an app into markets. Indeed, as pointed out by Vilkomir
et al. [59], it is expensive and time-consuming to consider test-
ing all device variations. The authors thus proposed to address
the issue with a combinatorial approach, which attempts to se-
lect an optimal set of mobile devices for practical testing. Zhang
et al. [41] leveraged a statistical approach to optimize the com-
patibility testing strategy where the test sequence is generated
by K-means statistic algorithm.

Bug/Defect:14 Like most software, Android apps are often
buggy, usually leading to runtime crashes. Due to the high
competition of apps in the Android ecosystem, defect identi-
fication is critical since they can be detrimental to user rat-
ing and adoption [86]. Indeed, researchers in this field leverage
various testing techniques such as fuzzing testing, mutation test-

14Terminologically, the aforementioned objectives could also be categorized
as bug/defect problems (e.g., concurrency issues). To make the summarization
more meaningful in this work, we only flag publications as bug/defect as long
as their main focuses are bug/defect problems, e.g., when they address the gap
between app’s misbehavior and developer’s original design.

ing, and search-based testing to dynamically explore Android
apps to pinpoint defective behavior [57], GUI bugs [84], intent
defects [72], crashing faults [11], etc.

Table III characterizes the publications selected for our SLR
in terms of the objectives discussed above. Through our in-depth
examination, the most considered testing objective is bug/defect,
accounting for 23.3% of the selected publications.

2) Test Targets: Test approaches in software development
generally target core functionality code. Since Android apps are
written in Java, the literature on Android app testing focused on
Android specificities, mainly on how to address the GUI testing
with a complex event mechanism as well as intercomponent and
interapplication communications.

GUI/Event: Android implements an event-driven graphical
user interface system, making Android apps testing challeng-
ing, since they intensively interact with user inputs, introducing
uncertainty and nondeterminism. It is generally complicated
to model the UI/system events because it not only needs the
knowledge of the set of GUI widgets and their supporting ac-
tions (e.g., click for buttons) but also requires the knowledge
of system events (e.g., receiving a phone call), which however
are usually unknown in advance. Consequently, it is generally
difficult to assemble a valid set of input event sequences for a
given Android app with respect to coverage, precision, and com-
pactness test criteria [87]. The Android testing community has
proposed many approaches to address this challenge. For exam-
ple, Android-GUITAR, an extension of the GUITAR tool [88],
was proposed to model the structure and execution behavior
of Android GUI through a formalism called GUI forests and
event-flow graphs. Denodroid [89] applies a dynamic approach
to generate inputs by instrumenting the Android framework to
record the reaction of events.

ICC/IAC: The ICC and IAC15 enable a loose coupling among
components [90], [91], thus reducing the complexity to develop
Android apps with a generic means to reuse existing function-
ality (e.g., obtain the contact list). Unfortunately, ICC/IAC also
come with a number of security issues, among which the po-
tential for implementing component hijacking, broadcast in-
jection, etc. [92]. Researchers have then investigated various
testing approaches to highlight such issues in Android apps.
IntentDroid [45], for instance, performs comprehensive IAC
security testing for inferring Android IAC integrity vulnera-
bilities. It utilizes lightweight platform-level instrumentation,
which is implemented through debug breakpoints, to recover
IAC-relevant app-level behavior. IntentFuzzer [58], on the other
hand, leverages fuzz testing techniques to detect capability leaks
(e.g., permission escalation attacks) in Android apps.

General: For all other publications that did not address the
above two popular targets, the category General applies. Publi-
cations with targets like normal code analysis are grouped into
this category.

Table IV characterizes the test targets discussed above. The
most frequently addressed testing target is GUI/Event, account-
ing for 45.6% of the selected publications. Meanwhile, there are

15IAC is actually ICC where the communicating components are from dif-
ferent apps.

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

52 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

TABLE III
TEST OBJECTIVES IN THE LITERATURE

only 12 publications targeted ICC/IAC. A total of 44 publica-
tions are regrouped under the General category.

Insights from RQ1—on Targets and Objectives
– “Bug/defect” has been the most trending concern among

Android research community. “Compatibility” testing, which
is necessary for detecting issues that plague the Android frag-
mented ecosystem, remains understudied. Similarly, we note
that because mobile devices are quickly getting powerful, de-
velopers build increasingly complex apps with services explor-
ing hardware multicore capabilities. Therefore, the community
should invest more efforts in approaches for concurrency testing.

– Our review has also confirmed that GUI is of paramount
importance in modern software development for guaranteeing
a good user experience. In Android apps, the GUI actions and
reactions are intertwined with the app logic, increasing the chal-
lenges of analyzing app codes for defects. For example, mod-
eling GUI behavior while taking into account potential runtime
interruption by system events (e.g., incoming phone call) is
necessary, yet not trivial. These challenges have created op-
portunities in Android research: as our literature review shows,
most test approaches target GUI or the Event mechanism. The

community now needs to focus on transforming the approaches
into scalable tools that will perform deeper security analyses
and accurate defect identification in order to improve the over-
all quality of apps distributed in markets.

B. Which Test Levels are Addressed?

Development of Android apps involves classical steps of tra-
ditional software development. Therefore, there are opportuni-
ties in various phases to perform tests with specific emphasis
and purpose. The software testing community commonly ac-
knowledges four levels of software testing [127], [128]. Our
literature review has identified that Android researchers have
proposed approaches, which considered Unit/regression test-
ing, integration testing, and system testing. Acceptance testing,
which involves end-users evaluating whether the app complies
with their needs and requirements, still faces a lack of research
effort in the literature.

Unit testing is usually applied at the beginning of the develop-
ment of Android apps, which are usually written by developers
and can be taken as a type of white-box testing. Unit testing

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

KONG et al.: AUTOMATED TESTING OF ANDROID APPS: A SYSTEMATIC LITERATURE REVIEW 53

TABLE IV
TEST TARGETS IN THE LITERATURE

intends to ensure that every functionality, which could be rep-
resented as a function or a component, works properly (i.e., in
accordance with the test cases). The main goal of unit testing
is to verify that the implementation works as intended. Regres-
sion testing consists in re-executing previously executed test
cases to ensure that subsequent updates of the app code have
not impacted the original program behavior, allowing issues (if
presented) to be resolved as quickly as possible. Usually, re-
gression testing is based on unit testing. It re-executes all the
unit test cases every time when a piece of code is changed. As
an example, Hu et al. [84] have applied unit testing to automat-
ically explore GUI bugs, where JUnit, a unit testing framework,
is leveraged to automate the generation of unit testing cases.

Integration testing: Integration testing combines all units
within an app (iteratively) to test them as a group. The pur-
pose of this phase is to infer interface defects among units
or functions. It determines how efficient the units are interac-
tive. For example, Yang et al. [58] have proposed a tool called
IntentFuzzer to test the capability problems involved in ICC.

System testing: System testing is the first step that the whole
app is tested as a whole. The goal of this phase is to assess

TABLE V
RECURRENT TESTING PHASES

whether the outlined requirements and quality standards have
been fulfilled. Usually, system testing is done in a black-box
style, which is usually conducted by independent testers who
have no knowledge of the apps to be tested. As an example,
Mao et al. [11] have proposed a testing tool named Sapienz that
combines several approaches including fuzzing testing, search-
based testing to systematically explore faults in Android apps.

Table V summarizes the aforementioned test phases, where
the most recurrently applied testing phase is system testing (ac-
counting for nearly 80% of the selected publications), followed
by unit testing and integration testing, respectively.

Insights from RQ2—on Test Levels
– The large majority of approaches reviewed in this SLR are

about testing the whole app against given test criteria. This
correlates with the test methodologies detailed below. Unit
and regression testing, which would help developers assess

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

54 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

TABLE VI
TEST METHOD EMPLOYED IN THE LITERATURE

individual functionalities in a white-box testing scenario, are
limited to a few approaches.

C. How are the Test Approaches Built?

Our review further investigates the approaches in-depth to
characterize the methodologies they leverage, the type of tests
that are implemented as well as the tool support they have ex-
ploited. In this paper, we refer to test technique as a broad
concept to describe all the technical aspects related to testing,
while we constrain the term test methodology to specifically
describe the concrete methodology that a test approach applies.

1) Test Methodologies: Table VI enumerates all the testing
methodologies we observed in our examination.

Model-based testing is a testing methodology that goes
one step further than traditional methodologies by automati-
cally generating test cases based on a model, which describes
the functionality of the system under test. Although such

methodology incurs a substantial, usually manual, effort to de-
sign and build the model, the eventual test approach is often
extensive, since test cases can be automatically generated and
executed. Our review has revealed that model-based testing is the
most common methodology used in Android testing literature:
63% of publications involve some model-based testing steps.
Takala et al. [123] presented a comprehensive documentation
on their experiences in applying a model-based GUI testing to
Android apps. They typically discuss how model-based testing
and test automation are implemented, how apps are modeled, as
well as how tests are designed and executed.

Search-based testing is using the metaheuristic search tech-
niques to generate software tests [129], with the aim to detect
as many bugs as possible, especially the most critical ones, in
the system under test. In [105], Mahmood et al. developed an
evolutionary testing framework for Android apps. Evolutionary
testing is a form of search-based testing, where an individual
corresponds to a test case, and a population comprised of many

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

KONG et al.: AUTOMATED TESTING OF ANDROID APPS: A SYSTEMATIC LITERATURE REVIEW 55

individuals is evolved according to certain heuristics to maxi-
mize the code coverage. Their technique thus tackles the com-
mon shortcoming of using evolutionary techniques for system
testing. In order to generate the test suites in an effective and
efficient way, Amalfitano et al. [102] proposed a novel search-
based testing technique based on the combination of genetic and
hill climbing techniques.

Random testing is a software testing technique where pro-
grams are tested by generating random, independent inputs.
Results of the output are compared against software specifica-
tions to verify that the test output is a pass or a fail [130]. In the
absence of specifications, program exceptions are used to detect
test case fails. Random testing is also acquired by almost all
other test suite generation methodologies and serves as a fun-
damental technique. Random testing has been used in several
literature works [89], [97], [103], [108], [126].

Fuzzing testing is a testing technique that applies invalid,
unexpected, or random data as inputs to a testing object. It is
commonly used to test for security problems in software or
computer systems. The main focus then shifts to monitoring the
program for exceptions such as crashes, or failing built-in code
assertions or for finding potential memory leaks. A number
of research papers (e.g., [23], [84]) have explored this type
of testing via automated or semiautomated fuzzing. Fuzzing
testing is slightly different from random testing, as it mainly
embraces, usually on purpose, unexpected, invalid inputs, and
focuses on monitoring crashes/exceptions of the tested apps,
while random testing does not need to conform to any such
software specifications.

A/B testing provides a means for comparing two variants of a
testing object, and hence determining which of the two variants
is more effective. A/B testing is recurrently used for statisti-
cal hypothesis tests. In [112], Adinata et al. have applied A/B
testing to test mobile apps, where they have solved three chal-
lenges of applying A/B testing, including element composition,
variant delivery, and internet connection. Holzmann et al. [109]
conducted A/B testing through a multivariate testing tool.

Concolic testing is a hybrid software verification technique
that performs symbolic execution, a classical technique that
treats program variables as symbolic variables, along with a
concrete execution path (testing on particular inputs). Anand
et al. [122] proposed a concolic testing technique, CONTEST, to
alleviate the path explosion problem. They develop a concolic-
testing algorithm to generate sequences of events. Checking
the subsumption condition between event sequences allows the
algorithm to trim redundant event sequences, thereby alleviating
path explosion.

Mutation testing is used to evaluate the quality of existing
software tests. It is performed by selecting a set of mutation
operators and then applying them to the source program, one
operator at a time, for each relevant program location. The result
of applying one mutation operator to the program is called a
mutant. If the test suite is able to detect the change (i.e., one
of the tests fails), then the mutant is said to be killed. In order
to realize an end-to-end system testing of Android apps in a
systematic manner, Mahmood et al. [105] proposed EvoDroid,
an evolutionary approach of system testing of apps, in which

TABLE VII
COMMON TEST TYPES

two types of mutation (namely, input genes and event genes)
are leveraged to identify a set of test cases that maximize code
coverage. Mutation testing-based approaches are, however, not
common in the Android literature.

Overall, our review has shown that the literature often com-
bines several methodologies to improve test effectiveness. In
[108], Chen and Xu combined model-based testing with ran-
dom testing to complete the testing. Finally, EvoDroid [105]
is a framework that explores model-based, search-based, and
mutation testing techniques.

2) Test Types: In general, there are three types of testing,
namely the White-box testing, Black-box testing, and Grey-box
testing. Table VII summarizes these testing types by empha-
sizing on the ideal tester (the software developer or a third-
party), on whether knowledge on implementation details is
fully/partially/not required.

White-box testing is a scenario in which the software is ex-
amined based on the knowledge of its implementation details.
It is usually applied by the software developers in early devel-
opment stages when performing unit testing. Another common
usage scenario is to perform thorough tests once all software
components are assembled (known as regression testing). In
this SLR, when an approach requires app source (or byte) code
knowledge, whether obtained directly or via reverse engineer-
ing, we consider it a white-box approach.

Black-box testing, on the other hand, is a scenario where in-
ternal design/implementation of the tested object is not required.
Black-box testing is often conducted by third-party testers, who
have no relationships with the developers of tested objects. If an
Android app testing process only requires the installation of the
targeted app, we reasonably put it under this category.

Grey-box testing is a tradeoff between white-box and black-
box testing. It does not require the testers to have full knowledge
on the source code where white-box testing needs. Instead, it
only needs the testers to know some limited specifications like
how the system components interact. For the investigations of
our SLR, if a testing approach requires to extract some knowl-
edge (e.g., from the Android manifest configuration) to guide
its tests, we consider it a grey-box testing approach.

Fig. 7 illustrates the distribution of test types applied by ex-
amined testing approaches. White-box testing is the least used
type, far behind black-box and grey-box testing. This is expected
because Android apps are usually compiled and distributed in
APK format, so testers in most scenarios have no access to
source code. We also wish to address that one literature can
make use of more than one testing type; this is why the sum of
the three types in Fig. 7 is larger than 103.

3) Test Environments: Unlike static analysis of Android
apps [22], testing requires to actually run apps on an execu-
tion environment such as a real device or an emulator.

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

56 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

Fig. 7. Breakdown of examined publications regarding their applied testing
types.

Fig. 8. Venn diagram of testing environment.

Real device has a number of advantages: they can be used
to test apps w.r.t compatibility aspects [41], [59], [63], energy
consumption [42], [68], [71], and the poor responsiveness is-
sue [29], [74]. Unfortunately, using real devices is not efficient,
since it cannot scale in terms of execution time and resources
(several devices may be required).

Emulator, on the contrary, can be scalable. When deployed
on the cloud, using the emulator can grant a tester great com-
puting resources and carry out parallel tests at a very large
scale [79]. Unfortunately, emulators are ineffective for security-
relevant tests, since some malware have the functionality to
detect whether they are running on an emulator. If so, they may
decide to refrain from exposing their malicious intention [131].
Emulators also introduce huge overhead when mimicking real-
life sensor inputs, e.g., requiring altering the apps under testing
at source code level [101].

Emulator + real device can be leveraged together to test An-
droid apps. For example, one can first use an emulator to launch
large-scale app testing for preselecting a subset of relevant apps
and then resort to real devices for more accurate testing.

As can be seen from Fig. 8, real devices are largely used
by 68 publications in our final list. Only 38 publications used
emulators, despite the fact that they are cheap. A total of 15
publications chose both environments to avoid disadvantages of
either. Deducting these 15 publications, we can calculate that 23
publications focused solely on emulators, where 53 publications
selected real devices as the only environment.

4) Tool Support: While performing the SLR, we have ob-
served that several publicly available tools were recurrently
leveraged to implement or complement the state-of-the-art ap-
proaches. Table VIII enumerates such tools with example refer-
ences to works where they are explored.

AndroidRipper is a tool for automatic GUI testing of Android
apps. It is driven by a user-interface ripper that automatically
and systematically travels the app’s GUI aiming at exercising a
given app in a structured way. In order to generate test cases in
an effective and efficient way, Amalfitano et al. [102] extended
this work with search-based testing techniques, where genetic
and hill climbing algorithms are considered.

EMMA is an open-source toolkit for measuring and reporting
Java code coverage. Since Android apps are written in Java,
researchers often use EMMA to compute the code coverage of
their Android app testing approaches, including EvoDroid [105]
and SIG-Droid [99].

Monkey is a test framework released and maintained by
Google, the official maintainer of Android. It generates and
sends pseudorandom streams of user/system events into the run-
ning system. This functionality is exploited in the literature to
automatically identify defects of ill-designed apps. As an exam-
ple, Hu et al. [84] leveraged Monkey to identify GUI bugs of
Android apps. The randomly generated test cases (events) are
fed into a customized Android system that produces log/trace
files during the test. Those log/trace files can then be leveraged
to perform postanalysis and thereby to discover event-related
bugs.

RERAN is a record and replay tool for testing Android apps.
Unlike traditional record-and-reply tools, which are inadequate
for Android apps because of their expressiveness on smartphone
features, RERAN supports sophisticated GUI gestures and com-
plex sensor events. Moreover, RERAN achieves accurate timing
requirements among various input events. A3E [115], for exam-
ple, uses RERAN to record its targeted and depth-first explo-
ration for systematic testing of Android apps. Those recorded
explorations can later be replayed so that to benefit debuggers
in quickly localizing the exact event stream that has led to the
crash.

Robotium is an open-source test framework, which has full
support for native and hybrid apps. It also eases the way to
write powerful and robust automatic black-box UI tests of An-
droid apps. SIG-Droid [99], for example, leverages Robotium
to execute its generated test cases (with the help of symbolic
execution). We have found during our review that Robotium
were most frequently leveraged by state-of-the-art testing ap-
proaches.

Robolectric is a unit testing framework, which simulates the
Android execution environment (either on a real device or on
an emulator) in a pure Java environment. The main advantage
of doing that is to improve the testing efficiency because tests
running inside a JVM are much faster than that of running on
an Android device (or even emulator), where it usually takes
minutes to build, deploy, and launch an app. Sadeh et al. [124]
have effectively used Robolectric framework to conduct unit
testing for their calculator application. They have found that it
is rather easy to write test cases with this framework, which

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

KONG et al.: AUTOMATED TESTING OF ANDROID APPS: A SYSTEMATIC LITERATURE REVIEW 57

TABLE VIII
SUMMARY OF BASIC TOOLS THAT ARE FREQUENTLY LEVERAGED BY OTHER TESTING APPROACHES

requires only a few extra steps and abstractions. Because testers
do not need to maintain a set of fake objects and interfaces, it is
even preferable for complex apps.

Sikuli uses visual technology to automate GUI testing through
screenshot images. It is particularly useful when there is no easy
way to obtain the app source code or the internal structure of
graphic interfaces. Lin et al. [106], [113] leveraged Sikuli in
their work to enable record-and-replay testing of Android apps,
where the user interactions are saved beforehand in Sikuli test
formats (as screenshot images).

Insights from RQ3—on Used Techniques
– Given the complexity of interactions among components

in Android apps as well as with the operating system,
it is not surprising that most approaches in the literature
resort to “model-based” techniques, which build models
for capturing the overall structure and behavior of apps to
facilitate testing activities (e.g., input generation, execution
scenarios selection, etc.).

– The unavailability of source code for market apps makes
white-box techniques less attractive than grey-box and
black-box testing for assessing apps in the wild. Neverthe-
less, our SLR shows that the research community has not
sufficiently explored testing approaches that would directly
benefit app developers during the development phase.

– Tool support for building testing approaches is abundant.
The use of the Robotium open-source test framework by
numerous approaches once again demonstrates the impor-
tance of making tools available to stimulate research.

D. To What Extent are the Approaches Validated?

Several aspects must be considered when assessing the ef-
fectiveness of a testing approach. We consider in this SLR the
measurements performed on code coverage as well as on accu-
racy. We also investigate the use of a ground truth to validate
performance scores, the size of the experimental dataset.

Coverage is a key aspect for estimating how well the program
is tested. Larger coverage generally correlates with higher possi-
bilities of exposing potential bugs and vulnerabilities, as well as
uncovering malicious behavior. There are numerous coverage
metrics leveraged by state-of-the-art works. For example, for
evaluating Code Coverage, metrics such as LoC (Lines of
Code) [11], [102], [105], Block [97], Method [108], [115], and

TABLE IX
ASSESSMENT METRICS (E.G., FOR COVERAGE, ACCURACY)

Branch [114] have been proposed in our community. In order
to profile the Accuracy of testing approaches, other coverage
metrics are also proposed in the literature such as bugs [42] and
vulnerabilities [45] (e.g., how many known vulnerabilities can
the evaluated testing approach cover?). Table IX enumerates
the coverage metrics used in the literature, where LoC appears
to be the most concerned metric.

Ground truth refers to a reference dataset where each element
is labeled. In this SLR, we consider two types of ground truths.
The first is related to malware detection approaches: the ground
truth then contains apps labeled as benign or malicious. As an
example, the Drebin [132] dataset has recurrently been lever-
aged as ground truth to evaluate testing approaches [133]. The
second is related to vulnerability and bug detection: the ground
truth represents code that is flagged to be vulnerable or buggy
based on the observation of bug reports summited by end users
or bug fix histories committed by developers [55], [84].

The Dataset Size is the number of apps tested in the experi-
mental phase. We can see from Fig. 9 that most works (ignoring
outliers) carried out experiments on no more than 100 apps, with
a median number of 8 apps. Comparing to the distribution of
the number of evaluated apps summarized in an SLR of static
analysis of Android apps [22], where the median and maximum
numbers are, respectively, 374 and 318 515, far bigger than the
number of apps considered by testing approaches. This result is

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

58 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

Fig. 9. Distribution of the number of tested apps (outliers are removed).

Fig. 10. Trend of testing types. (a) Black-box. (b) White-box. (c) Grey-box.

somehow expected as testing approaches (or dynamic analysis
approaches) are generally not scalable.

Insights from RQ4—on Approach Validation
Although literature works always provide evaluation section

to provide evidence (often through comparison) that their ap-
proaches are effective, their reproducibility is still challenged
by the fact that there is a lack of established ground truth and
benchmarks. Yet, reproducibility is essential to ensure that the
field is indeed progressing based on a baseline performance,
instead of relying on subjective observation by authors and on
datasets with variable characteristics.

VI. DISCUSSION

Research on Android app testing has been prolific in the past
years. Our discussion will focus on the trends that we observed
while performing this SLR, as well as on the challenges that the
community should still attempt to address.

A. Trend Analysis

The development of the different branches in the taxonomy
is disparate.

Fig. 10 illustrates the trend in testing types over the years.
Together, black-box and grey-box testing are involved in 90%
of the research works. Their evolution is thus reflected by the
overall evolution of research publications (cf. Fig. 4). White-box
testing remains low in all years.

Fig. 11 presents the evolution over time of works address-
ing different test levels. Unit/regression and integration testing
phases include a low, but stable, number of works every year.
Overall, system testing has been heavily used in the literature
and has even doubled between 2012 and 2014. System testing
of Android apps is favored since app execution is done on a
specific virtual machine environment with numerous runtime

Fig. 11. Trend of testing levels. (a) Unit/regression. (b) Integration.
(c) System.

Fig. 12. Trend of testing methods. (a) Model-based. (b) Search-based.
(c) Random. (d) Fuzzing. (e) Concolic. (f) Mutation.

dependencies: it is not straightforward to isolate a single block
for unit/regression testing or to test the integration of two com-
ponents without interference from other components. Never-
theless, with the increasing use of code instrumentation [14],
there are new opportunities to eventually slice Android apps for
performing more grey-box and white-box testing.

Trend analysis of testing methods in Fig. 12 confirms
that model-based testing is dominating in the literature of
Android app testing, and its evolution is reflected in the overall
evolution of testing approaches. Most approaches indeed start
by constructing a GUI model or a call graph to generate efficient
test cases. In the last couple of years, mutation testing has
been appearing in the literature, similarly to the search-based
techniques.

With regard to testing targets, Fig. 13(a)–(b) shows that the
graphical user interfaces, as well as the event mechanism, are
continuously at the core of research approaches. Since Android
Activities (i.e., the UIs) are the main entry points for executing
test cases, the community will likely continue to develop
black-box and grey-box test strategies that increase interactions
with GUI to improve code coverage. Intercomponent and
interapplication communications, on the other hand, have been
popular targets around 2014.

With regard to testing objectives, Fig. 13(c)–(h) shows that
security concerns have attracted a significant amount of re-
search, although the output has been decreasing in the last cou-
ple of years. Bug/defect identification, however, has somewhat
stabilized.

B. Evaluation of Authors

Android testing is a new field of research, which has at-
tracted several contributions over the years due to the multiple
opportunities that it offers for researchers to apply theoretical
advances in the domain of software testing. We emphasize the
attractiveness of the field by showing in Fig. 14 the evolution
of single authors contributing to research approaches. We count

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

KONG et al.: AUTOMATED TESTING OF ANDROID APPS: A SYSTEMATIC LITERATURE REVIEW 59

Fig. 13. Trend of testing targets and objectives. (a) GUI/Event. (b) ICC/IAC.
(c) Concurrency. (d) Security. (e) Performance. (f) Energy. (g) Compatibility.
(h) Bug/defect.

Fig. 14. Trend in community authors. “New Authors” and “Stayed Authors”
indicate the number of authors that enter the field (no relevant publications
before) and have stayed in the field (they will keep publishing in the following
years).

in each year, the Total Authors who participated in at least one
of our selected publications, the New Authors that had had no
selected publication until that year, and the number of Stayed
Authors who had publications selected both that year and the
years to come. Overall, the figures raise several interesting find-
ings, which are as follows.

1) Every year, the community of Android testing research
authors is almost entirely renewed.

2) Only a limited number of researchers publish again in the
theme after one publication.

These facts may suggest that the research in Android app
testing is often governed by opportunities. Furthermore, chal-
lenges (e.g., building a sound GUI event model) quickly
arise, making authors lose interest in pursuing in this research
direction. Although we believe that the fact that the topic is
within reach of a variety of authors from other backgrounds is
good for bringing new ideas and crossfertilizing, the maturity
of the field will require commitment from more authors staying
in the field.

C. Research Output Usability

In the course of our investigations for performing the review,
we have found that the research community on Android app test-

ing seldom contributes with reusable tools (e.g., implementation
of approaches for GUI testing), not even mention to contribute
with open source testing tools. Yet, the availability of such tools
is necessary not only to limit the efforts in subsequent works
but also to encourage true progress beyond the state-of-the-art.

Despite the fact that most testing approaches are not made
publicly available, it is nevertheless gratifying to observe that
some of them have been leveraged in industry. For example,
research tool TEMA has now been integrated into the RATA
project,16 where researchers (from Tampere University of Tech-
nology) and practitioners (from Intel Finland, OptoFidelity, and
VTT) work together to provide robot-assisted test automation
for mobile apps. Another research tool named SAPIENZ has
led to a start-up called MaJiCKe and recently been acquired
by Facebook London, being the core component of Facebook’s
testing solutions for mobile apps.

D. Open Issues and Future Challenges

Although the publications we chose all have their own solid
contributions, some authors posed open issues and future chal-
lenges to call in more research attention to the domain. We
managed to collect the concerns and summarized as follows.

1) Satisfying Fastidious Preconditions: One recurrently dis-
cussed issue is to generate test cases that can appropriately
satisfy preconditions such as login to an app. When the
oracles generate events to traverse the activities of An-
droid apps, some particular activities are extremely hard
to be touched. A publicly known condition is to tap the
same button for seven consecutive times in order to trig-
ger developer mode [12], [99]. Another example would
be to break through the login page, which requires a par-
ticular combination of user account and passwords. Both
preconditions are clearly not easy to be satisfied during
the process of testing Android apps.

2) Modeling Complex Events (e.g., gestures or n-user
events): In addition to simple events such as clicking, An-
droid OS also involves quite a lot of complex events such
as user gestures (swipe, long press, zoom in/out, spin, etc.)
and system events (network connectivity, events coming
from light, pressure and temperature sensors, GPS, fin-
gerprint recognizer, etc.). All the events would introduce
nondeterministic behaviors if they are not properly mod-
eled. Unfortunately, at the moment, most of our reviewed
papers only tackle simple events like clicking, letting other
events remain untouched [67], [101].

3) Bridging Incompatible Instruction Sets: To improve the
performance of Android apps, Google provides a toolset,
i.e., the Android Native Developer Kit, allowing app de-
velopers to implement time-intensive tasks via C/C++.
Those tasks implemented with C/C++ are closely depen-
dent on the CPU instruction sets (e.g., Intel or ARM) and
hence can only be launched in right instruction sets, e.g.,
tasks implemented based on the ARM architecture can
only be executed on ARM-based devices). However, as
most mobile devices nowadays are assembled with ARM

16http://wiki.tut.fi/RATA/WebHome

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

http://wiki.tut.fi/RATA/WebHome

60 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

chips, while most PCs running Android emulators are as-
sembled with Intel chips, running ARM-based emulators
on Intel-based PCs are extremely slow; this gap has caused
problems for emulator-based testing approaches [95].

4) Evaluating Testing Approaches Fairly: Frequently, re-
searchers complain about the fact that our community has
not provided a reliable coverage estimator to approximate
the coverage (e.g., code coverage) of testing approaches
and to fairly compare them [12], [29], [41], [43]. Although
some outstanding progress has been made for developing
estimation tools [23], our SLR still indicates that there
does not exist any universally acquired tool that supports
fair comparison among testing approaches. We, therefore,
urge our fellow researchers to appropriately resolve this
open issue and subsequently contribute to our commu-
nity a reliable artefact benefiting many aspects of future
research studies.

5) Addressing Usability Defect: The majority of the research
studies focuses on functional defects of Android apps.
The usability defect does not attract as much attention as
the users are concerned [53]. Usability defect, like poor
responsiveness [74], is a major drawback of Android apps
and receives massive complaints from users. Bad view
organization on the screen arising from incompatibility
and repetitive imprecise recognition of user gestures also
imply bad user experience.

E. New Research Directions

In light of the SLR summary of the state-of-the-art and con-
sidering the new challenges reported in the literature, there are
opportunities for exploring new testing applications to improve
the quality of Android apps or/and increase confidence in using
them safely. We now enumerate three example directions, which
are as follows.

1) Validation of App Updates: Android app developers reg-
ularly update their apps for various reasons, including keeping
them attractive to the user base.17 Unfortunately, recent stud-
ies in [134] have shown that updates of Android apps often come
with more security vulnerabilities and functional defects. In
this context, the community could investigate and adapt regres-
sion techniques for identifying defect-prone or unsafe updates.
To accelerate the identification of such issues in updates, one
can consider exploring approaches with behavioral equivalence,
e.g., using “record and replay” test-case generation techniques.

2) Accounting for the Ecosystem Fragmentation: As previ-
ously highlighted, the fragmentation of the Android ecosys-
tem (with a high variety in operating system versions where a
given app will be running, as well as a diversity of hardware
specifications) is a serious challenge for performing tests that
can expose all issues that a user might encounter on his spe-
cific device runtime environment. There is still room to investi-
gate test optimization and prioritization for Android to cover a
majority of devices and operating system versions. For example,
on top of modeling apps, researchers could consider modeling

17https://savvyapps.com/blog/how-often-should-you-update-your-app

the framework (and its variabilities) and account for it during
test execution.

3) Code Prioritization Versus Test Prioritization: Finally,
we note that Android apps are becoming larger and larger in
terms of size, including obsolete code for functionalities that
are no longer needed, or to account for the diversity of de-
vices (and their OS versions). For example, in large companies,
because of developer rotation, “dead” code/functionality may
remain hidden in plain sight of app code without development
teams risking to remove them. As a result, the effort thrown
in maintaining those apps increases continuously, where con-
sequently the testing efforts required to verify the functional
correctness of those apps also boost. Therefore, to alleviate this
problem, we argue that testing such apps clearly necessitates
optimizing the selection of code that must be tested in priority.
Test cases prioritization must then be performed in conjunction
with a code optimization process to focus on actively used code
w.r.t. user interactions to the app.

VII. THREATS TO VALIDITY

We have identified the following threats to validity in our
study.

On potential misses of literature—We have not considered
for our review books and Master or Ph.D. dissertations related
to the Android testing. This threat is mitigated by the fact that
the content of such publications is eventually presented in peer-
reviewed venues that we have considered. We have also consid-
ered only publications written in English. Nevertheless, while
searching with the compiled English keywords, we have also
found a few papers written in other languages, such as German
and Chinese. The number of such non-English papers remain,
however, significantly small, compared with the collected En-
glish literature, suggesting that our SLR is likely complete. Last
but not least, although we have refined our searching keywords
several times, it is still possible that some synonyms are missed
in this paper. To mitigate this, we believe that natural language
processing could be leveraged to disclose such synonyms. We,
therefore, consider it as our future work toward engineering
sound keywords for supporting SLR.

On data extraction errors—Given that papers are often im-
precise with information related the aspects that we have inves-
tigated, the extracted data may not have been equally reliable
for all approaches, and data aggregation can still include sev-
eral errors as warned by Turner et al. [135] for such studies.
We have nevertheless strived to mitigate this issue by applying
a crosschecking mechanism on the extracted results, following
the suggestion of Brereton et al. [20]. To further alleviate this,
we plan to validate our extracted results through their original
authors.

On the representativeness of data sources and metrics—-
We have implemented the “major venues search” based on the
venue ranking provided by the CCF. This ranking is not only
potentially biased toward a specific community of researchers
but may also change from one year to another. A replication of
this study based on other rankings may lead to different primary
publications set, although the overall findings will likely remain

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

KONG et al.: AUTOMATED TESTING OF ANDROID APPS: A SYSTEMATIC LITERATURE REVIEW 61

the same since most major venues continue to be so across years
and across ranking systems.

The aspects and metrics investigated in this approach may
also not be exhaustive or representative of everything that char-
acterizes testing. Nevertheless, these metrics have been collected
from testing literature to build the taxonomy and are essential
for comparing approaches.

VIII. RELATED WORK

Mobile operating systems, in particular, the open-source An-
droid platform, have been fertile ground for research in software
engineering and security. Several surveys and reviews have been
performed on approaches for securing [136], [137], or statically
analyzing Android apps [22]. An SLR is indeed important to
analyze the contributions of a community to resolve the chal-
lenges of a specific topic. In the case of Android testing, such a
review is missing.

Several works in the literature have, however, attempted to
provide an overview of the field via surveys or general sys-
tematic mappings on mobile application testing techniques. For
example, the systematic mapping of Sein et al. [138] addresses
all together Android, iOS, Symbian, Silverlight, and Windows.
The authors have provided a higher-level categorization of tech-
niques into five groups, which are as follows:

1) usability testing;
2) test automation;
3) context-awareness;
4) security;
5) general category.
Méndez-Porras et al. [139] have provided another mapping,

focusing on a more narrowed field, namely automated testing of
mobile apps. They discuss two major challenges for automating
the testing process of mobile apps, which are an appropriate set
of test cases and an appropriate set of devices to perform the
testing. Our work, with this SLR, goes in-depth to cover dif-
ferent technical aspects of the literature on specifically Android
app testing (as well as test objectives, targets, and publication
venues).

Other related works have discussed directly the challenges
of testing Android apps in general. For example, Amalfitano
et al. [140] analyzed specifically the challenges and open issues
of testing Android apps, where they have summarized suitable
and effective principles, guidelines, models, techniques, and
technologies related to testing Android apps. They enumerate
existing tools and frameworks for automated testing of Android
apps. They typically summarize the issues of software testing
regarding nonfunctional requirements, including performance,
stress, security, compatibility, usability, accessibility, etc.

Gao et al. [141] presented a study on mobile testing-as-a-
service (MTaaS), where they discussed the basic concepts of
performing MTaaS. Besides, the motivations, distinct features,
requirements, test environments, and existing approaches are
also discussed. Moreover, they have also discussed the current
issues, needs, and challenges of applying MTaaS in practice.

More recently, Starov et al. [142] performed a state-of-the-art
survey to look into a set of cloud services for mobile testing.

Based on their investigation, they divided the cloud services of
mobile testing into three subcategories, which are as follows:

1) device clouds (mobile cloud platforms);
2) services to support application lifecycle management;
3) tools to provide processing according to some testing tech-

niques.
They also argue that it is essential to migrate the testing pro-

cess to the clouds, which would make teamwork become possi-
ble. Besides, it can also reduce the testing time and development
costs.

Muccini et al. [143] conducted a short study on the challenges
and future research directions for testing mobile apps. Based on
their study, they find that 1) mobile apps are so different from
traditional ones and thus they require different and specialized
techniques in order to test them, and 2) there seems to be many
challenges. As an example, the performance, security, reliability,
and energy are strongly affected by the variability of the testing
environment.

Janicki et al. [144] surveyed the obstacles and opportunities
in deploying model-based GUI testing of mobile apps. Unlike
conventional automatic test execution, model-based testing goes
one step further by considering the automation of test genera-
tion phases as well. Based on their studies, they claim that the
most valuable kind of research need (as future work) is to per-
form a comparative experiment on using conventional test and
model-based automation, as well as exploratory and script-based
manual testing to evaluate concurrently on the same system and
thus to measure the success of those approaches.

Finally, the literature includes several surveys [136], [145]–
[147] on Android, which cover some aspects of Android testing.
As an example, Tam et al. [136] have studied the evolution
of Android malware and Android analysis techniques, where
various Android-based testing approaches such as A3E have
been discussed.

IX. CONCLUSION

We report in this paper on an SLR performed on the topic
of Android app testing. Our review has explored 103 papers
that were published in major conferences, workshops, and
journals in software engineering, programming language, and
security domain. We have then proposed a taxonomy of the
related research exploring several dimensions including the
objectives (i.e., what functional or nonfunctional concerns
are addressed by the approaches) that were pursued and the
techniques (i.e., what type of testing methods—mutation,
concolic, etc.) that were leveraged. We have further explored
the assessments presented in the literature, highlighting the
lack of established benchmarks to clearly monitor the progress
made in the field. Finally, beyond quantitative summaries, we
have provided a discussion on future challenges and proposed
new research directions of Android testing research for further
ensuring the quality of apps with regards to compatibility
issues, vulnerability-inducing updates, etc.

APPENDIX

The full list of examined primary publications are enumerated
in Table A1.

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

62 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

TABLE A1
FULL LIST OF EXAMINED PUBLICATIONS

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

KONG et al.: AUTOMATED TESTING OF ANDROID APPS: A SYSTEMATIC LITERATURE REVIEW 63

TABLE A1
(CONTINUED)

REFERENCES

[1] L. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon, “An investigation into
the use of common libraries in Android apps,” in Proc. 23rd IEEE Int.
Conf. Softw. Anal., Evolution, Reeng., 2016, pp. 403–414.

[2] L. Li et al., “Androzoo++: Collecting millions of Android apps and their
metadata for the research community,” 2017, arXiv:1709.05281.

[3] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo,
“Understanding the test automation culture of app developers,” in Proc.
8th Int. Conf. Softw. Testing, Verification Validation, 2015, pp. 1–10.

[4] L. Li, “Mining androzoo: A retrospect,” in Proc. Doctoral Symp. 33rd
Int. Conf. Softw. Maintenance Evolution, 2017, pp. 675–680.

[5] H. Wang, H. Li, L. Li, Y. Guo, and G. Xu, “Why are Android apps
removed from Google play? A large-scale empirical study,” in Proc.
15th Int. Conf. Mining Softw. Repositories, 2018, pp. 231–242.

[6] L. Li, J. Gao, T. F. Bissyandé, L. Ma, X. Xia, and J. Klein, “Character-
ising deprecated Android APIs,” in Proc. 15th Int. Conf. Mining Softw.
Repositories, 2018, pp. 254–264.

[7] L. Li, T. F. Bissyandé, Y. Le Traon, and J. Klein, “Accessing inaccessible
Android APIs: An empirical study,” in Proc. 32nd Int. Conf. Softw.
Maintenance Evolution, 2016, 411–422.

[8] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek, “Reducing
combinatorics in GUI testing of Android applications,” in Proc. Int. Conf.
Softw. Eng., 2016, pp. 559–570.

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

64 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

[9] Y. Hu, I. Neamtiu, and A. Alavi, “Automatically verifying and reproduc-
ing event-based races in Android apps,” in Proc. Int. Symp. Softw. Testing
Anal., 2016, pp. 377–388.

[10] L. Clapp, O. Bastani, S. Anand, and A. Aiken, “Minimizing GUI event
traces,” in Proc. ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2016,
pp. 422–434.

[11] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for Android applications,” in Proc. Int. Symp. Softw. Testing Anal.,
2016, pp. 94–105.

[12] X. Zeng et al., “Automated test input generation for Android: Are we
really there yet in an industrial case?” in Proc. ACM SIGSOFT Int. Symp.
Found. Softw. Eng., 2016, pp. 987–992.

[13] F. Dong et al., “Frauddroid: Automated ad fraud detection for Android
apps,” in Proc. 26th ACM Joint Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng., 2018.

[14] L. Li et al., “IccTA: Detecting inter-component privacy leaks in Android
apps,” in Proc. IEEE 37th Int. Conf. Softw. Eng., 2015, pp. 280–291.

[15] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “RERAN: Timing-and
touch-sensitive record and replay for Android,” in Proc. Int. Conf. Softw.
Eng., 2013, pp. 72–81.

[16] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “CiD: Automating the
detection of API-related compatibility issues in Android apps,” in Proc.
ACM SIGSOFT Int. Symp. Softw. Testing Anal., 2018, pp. 153–163.

[17] L. Wei, Y. Liu, and S. Cheung, “Taming Android fragmentation: Char-
acterizing and detecting compatibility issues for Android apps,” in Proc.
31st IEEE/ACM Int. Conf. Automated Softw. Eng., 2016, pp. 226–237.

[18] N. Mirzaei, S. Malek, C. S. Psreanu, N. Esfahani, and R. Mahmood,
“Testing Android apps through symbolic execution,” in Proc. ACM SIG-
SOFT Softw. Eng. Notes, 2012, pp. 1–5 .

[19] B. Kitchenham and S. Charters, “Guidelines for performing system-
atic literature reviews in software engineering,” Univ. Durham, Durham,
U.K., EBSE Tech. Rep., EBSE-2007-01, 2007.

[20] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from applying the systematic literature review process within
the software engineering domain,” J. Syst. Softw., vol. 80, no. 4, pp. 571–
583, 2007.

[21] P. H. Nguyen, M. Kramer, J. Klein, and Y. Le Traon, “An extensive
systematic review on the model-driven development of secure systems,”
Inf. Softw. Technol., vol. 68, pp. 62–81, 2015.

[22] L. Li et al., “Static analysis of Android apps: A systematic literature
review,” Inf. Softw. Technol., vol. 88, pp. 67–95, 2017.

[23] Y. Zhauniarovich, A. Philippov, O. Gadyatskaya, B. Crispo, and F. Mas-
sacci, “Towards black box testing of Android apps,” in Proc. 10th Int.
Conf. Availability, Rel. Secur., 2015, pp. 501–510.

[24] C.-C. Yeh and S.-K. Huang, “CovDroid: A black-box testing coverage
system for Android,” in Proc. IEEE 39th Annu. Comput. Softw. Appl.
Conf., 2015, vol. 3, pp. 447–452.

[25] C. Yang, G. Yang, A. Gehani, V. Yegneswaran, D. Tariq, and G. Gu,
“Using provenance patterns to vet sensitive behaviors in Android apps,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 58–77.

[26] L. Malisa, K. Kostiainen, M. Och, and S. Capkun, “Mobile applica-
tion impersonation detection using dynamic user interface extraction,”
in Proc. Eur. Symp. Res. Comput. Secur., 2016, pp. 217–237.

[27] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and
D. Poshyvanyk, “Automatically discovering, reporting and reproducing
Android application crashes,” in Proc. IEEE Int. Conf. Softw. Testing,
Verification Validation, 2016, pp. 33–44.

[28] J. C. J. Keng, L. Jiang, T. K. Wee, and R. K. Balan, “Graph-aided directed
testing of Android applications for checking runtime privacy behaviours,”
in Proc. IEEE 11th Int. Workshop Automat. Softw. Test, 2016, pp. 57–63.

[29] Y. Kang, Y. Zhou, M. Gao, Y. Sun, and M. R. Lyu, “Experience report:
Detecting poor-responsive UI in Android applications,” in Proc. IEEE
27th Int. Symp. Softw. Rel. Eng., 2016, pp. 490–501.

[30] Y. Hu and I. Neamtiu, “Fuzzy and cross-app replay for smartphone apps,”
in Proc. IEEE 11th Int. Workshop Automat. Softw. Test, 2016, pp. 50–56.

[31] H. Tang, G. Wu, J. Wei, and H. Zhong, “Generating test cases to expose
concurrency bugs in Android applications,” in Proc. IEEE 31st Int. Conf.
Automated Softw. Eng., 2016, pp. 648–653.

[32] Y. Kang, Y. Zhou, H. Xu, and M. R. Lyu, “DiagDroid: Android perfor-
mance diagnosis via anatomizing asynchronous executions,” in Proc. Int.
Conf. Found. Softw. Eng., 2016, pp. 410–421.

[33] M. Gómez, R. Rouvoy, B. Adams, and L. Seinturier, “Reproducing
context-sensitive crashes of mobile apps using crowdsourced monitor-
ing,” in Proc. Int. Conf. Mobile Softw. Eng. Syst., 2016, pp. 88–99.

[34] Q. Sun, L. Xu, L. Chen, and W. Zhang, “Replaying harmful data races
in Android apps,” in Proc. IEEE Int. Symp. Softw. Rel. Eng. Workshop,
2016, pp. 160–166.

[35] X. Wu, Y. Jiang, C. Xu, C. Cao, X. Ma, and J. Lu, “Testing Android apps
via guided gesture event generation,” in Proc. Asia-Pacific Softw. Eng.
Conf., 2016, pp. 201–208.

[36] H. Zhang, H. Wu, and A. Rountev, “Automated test generation for detec-
tion of leaks in Android applications,” in Proc. IEEE 11th Int. Workshop
Automat. Softw. Test, 2016, pp. 64–70.

[37] R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek, “Energy-aware
test-suite minimization for Android apps,” in Proc. Int. Symp. Softw.
Testing Anal., 2016, pp. 425–436.

[38] J. Qian and D. Zhou, “Prioritizing test cases for memory leaks in Android
applications,” J. Comput. Sci. Technol., vol. 31, pp. 869–882, 2016.

[39] M. Ermuth and M. Pradel, “Monkey see, monkey do: Effective generation
of GUI tests with inferred macro events,” in Proc. 25th Int. Symp. Softw.
Testing and Anal., 2016, pp. 82–93.

[40] T. Zhang, J. Gao, O.-E.-K. Aktouf, and T. Uehara, “Test model and
coverage analysis for location-based mobile services,” in Proc. Int. Conf.
Softw. Eng. Knowl. Eng., 2015, pp. 80–86.

[41] T. Zhang, J. Gao, J. Cheng, and T. Uehara, “Compatibility testing service
for mobile applications,” in Proc. IEEE Symp. Service-Oriented Syst.
Eng., 2015, pp. 179–186.

[42] M. Wan, Y. Jin, D. Li, and W. G. J. Halfond, “Detecting display energy
hotspots in Android apps,” in Proc. IEEE 8th Int. Conf. Softw. Testing,
Verification Validation, 2015, pp. 1–10.

[43] Š. Packevičius, A. Ušaniov, Š. Stanskis, and E. Bareiša, “The testing
method based on image analysis for automated detection of UI defects
intended for mobile applications,” in Proc. Int. Conf. Inf. Softw. Technol.,
2015, pp. 560–576.

[44] K. Knorr and D. Aspinall, “Security testing for Android mhealth
apps,” in Proc. Softw. Testing, Verification Validation Workshops, 2015,
pp. 1–8.

[45] R. Hay, O. Tripp, and M. Pistoia, “Dynamic detection of inter-application
communication vulnerabilities in Android,” in Proc. Int. Symp. Softw.
Testing Anal., 2015, pp. 118–128.

[46] G. d. C. Farto and A. T. Endo, “Evaluating the model-based testing
approach in the context of mobile applications,” Electron. Notes Theor.
Comput. Sci., vol. 314, pp. 3–21, 2015.

[47] P. Bielik, V. Raychev, and M. T. Vechev, “Scalable race detection for An-
droid applications,” in Proc. ACM SIGPLAN Int. Conf. Object-Oriented
Program., Syst., Lang. Appl., 2015, pp. 332–348.

[48] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.
Memon, “MobiGUITAR: Automated model-based testing of mobile
apps,” IEEE Softw., vol. 32, no. 5, pp. 53–59, Sep./Oct. 2015.

[49] O.-E.-K. Aktouf, T. Zhang, J. Gao, and T. Uehara, “Testing location-
based function services for mobile applications,” in Proc. IEEE Symp.
Service-Oriented Syst. Eng., 2015, pp. 308–314.

[50] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu, “Effective real-time An-
droid application auditing,” in Proc. IEEE Symp. Secur. Privacy, 2015,
pp. 899–914.

[51] B. Hassanshahi, Y. Jia, R. H. Yap, P. Saxena, and Z. Liang, “Web-to-
application injection attacks on Android: Characterization and detec-
tion,” in Proc. 20th Eur. Symp. Res. Comput. Secur., 2015, pp. 577–598.

[52] I. C. Morgado and A. C. Paiva, “Testing approach for mobile applications
through reverse engineering of UI patterns,” in Proc. Int. Conf. Automated
Softw. Eng. Workshop, 2015, pp. 42–49.

[53] L. Deng, N. Mirzaei, P. Ammann, and J. Offutt, “Towards mutation
analysis of Android apps,” in Proc. Int. Conf. Softw. Testing, Verification
Validation Workshops, 2015, pp. 1–10.

[54] A. R. Espada, M. del Mar Gallardo, A. Salmerón, and P. Merino,
“Runtime verification of expected energy consumption in smartphones,”
Model Checking Softw., vol. 9232, pp. 132–149, 2015.

[55] P. Zhang and S. G. Elbaum, “Amplifying tests to validate exception
handling code: An extended study in the mobile application domain,” in
Proc. Int. Conf. Softw. Eng., 2014, Art. no. 32.

[56] R. N. Zaeem, M. R. Prasad, and S. Khurshid, “Automated genera-
tion of oracles for testing user-interaction features of mobile apps,” in
Proc. IEEE 7th Int. Conf. Softw. Testing, Verification, Validation, 2014,
pp. 183–192.

[57] C.-C. Yeh, H.-L. Lu, C.-Y. Chen, K.-K. Khor, and S.-K. Huang, “CRAX-
Droid: Automatic Android system testing by selective symbolic execu-
tion,” in Proc. IEEE 8th Int. Conf. Softw. Secur. Rel.-Companion, 2014,
pp. 140–148.

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

KONG et al.: AUTOMATED TESTING OF ANDROID APPS: A SYSTEMATIC LITERATURE REVIEW 65

[58] K. Yang, J. Zhuge, Y. Wang, L. Zhou, and H. Duan, “Intentfuzzer: De-
tecting capability leaks of Android applications,” in Proc. ACM Symp.
Inf., Comput. Commun. Secur., 2014, pp. 531–536.

[59] S. Vilkomir and B. Amstutz, “Using combinatorial approaches for test-
ing mobile applications,” in Proc. Int. Conf. Softw. Testing, Verification,
Validation Workshops, 2014, pp. 78–83.

[60] H. Shahriar, S. North, and E. Mawangi, “Testing of memory leak in
Android applications,” in Proc. IEEE 15th Int. Symp. High-Assurance
Syst. Eng., 2014, pp. 176–183.

[61] S. Salva and S. R. Zafimiharisoa, “APSET, an Android application secu-
rity testing tool for detecting intent-based vulnerabilities,” Int. J. Softw.
Tools Technol. Transfer, vol. 17, pp. 201–221, 2014.

[62] P. Maiya, A. Kanade, and R. Majumdar, “Race detection for Android
applications,” in Proc. ACM SIGPLAN Conf. Programm. Lang. Des.
Implementation, 2014, pp. 316–325.

[63] J. Huang, “AppACTS: Mobile app automated compatibility testing ser-
vice,” in Proc. IEEE 2nd Int. Conf. Mobile Cloud Comput., Services,
Eng., 2014, pp. 85–90.

[64] C. Hsiao et al., “Race detection for event-driven mobile applications,”
in Proc. ACM SIGPLAN Conf. Programm. Lang. Des. Implementation,
2014, pp. 326–336.

[65] C. Guo, J. Xu, H. Yang, Y. Zeng, and S. Xing, “An automated testing
approach for inter-application security in Android,” in Proc. 9th Int.
Workshop Automat. Softw. Test, 2014, pp. 8–14.

[66] T. Griebe and V. Gruhn, “A model-based approach to test automation
for context-aware mobile applications,” in Proc. 29th Annu. ACM Symp.
Appl. Comput., 2014, pp. 420–427.

[67] P. Costa, M. Nabuco, and A. C. R. Paiva, “Pattern based GUI testing for
mobile applications,” in Proc. Int. Conf. Quality Inf. Commun. Technol.,
2014, pp. 66–74.

[68] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury,
“Detecting energy bugs and hotspots in mobile apps,” in Proc. 22nd
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2014, pp. 588–598.

[69] T. Vidas, J. Tan, J. Nahata, C. L. Tan, N. Christin, and P. Tague, “A5: Au-
tomated analysis of adversarial Android applications,” in Proc. 4th ACM
Workshop Secur. Privacy Smartphones Mobile Devices, 2014 pp. 39–50.

[70] G. Suarez-Tangil, M. Conti, J. E. Tapiador, and P. Peris-Lopez,
“Detecting targeted smartphone malware with behavior-triggering
stochastic models,” in Proc. Eur. Symp. Res. Comput. Secur., 2014,
pp. 183–201.

[71] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M. Di
Penta, and D. Poshyvanyk, “Mining energy-greedy API usage patterns
in Android apps: An empirical study,” in Proc. 11th Workshop Conf.
Mining Softw. Repositories, 2014, pp. 1–11.

[72] R. Sasnauskas and J. Regehr, “Intent fuzzer: Crafting intents of death,”
in Proc. Joint Int. Workshop Dyn. Anal. Softw. Syst. Performance Testing,
Debugging, Analytics, 2014, pp. 1–5.

[73] S. Zhao, X. Li, G. Xu, L. Zhang, and Z. Feng, “Attack tree based Android
malware detection with hybrid analysis,” in Proc. Int. Conf. Trust, Secur.
Privacy Comput. Commun., 2014, pp. 380–387.

[74] S. Yang, D. Yan, and A. Rountev, “Testing for poor responsiveness
in Android applications,” in Proc. Int. Workshop Eng. Mobile-Enabled
Syst., 2013, pp. 1–6.

[75] S. T. A. Rumee and D. Liu, “DroidTest: Testing Android applications for
leakage of private information,” Int. J. Inf. Secur., vol. 7807, pp. 341–353,
2013.

[76] V. Nandakumar, V. Ekambaram, and V. Sharma, “Appstrument—A uni-
fied app instrumentation and automated playback framework for testing
mobile applications,” in Proc. Int. Conf. Mobile Ubiquitous Syst.: Netw.
Services, 2013, pp. 474–486.

[77] A. Avancini and M. Ceccato, “Security testing of the communication
among Android applications,” in Proc. Int. Workshop Automat. Softw.
Test, 2013, pp. 57–63.

[78] D. Yan, S. Yang, and A. Rountev, “Systematic testing for resource leaks
in Android applications,” in Proc. Int. Symp. Softw. Rel. Eng., 2013,
pp. 411–420.

[79] R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek, and A.
Stavrou, “A whitebox approach for automated security testing of Android
applications on the cloud,” in Proc. Int. Workshop Automat. Softw. Test,
2012, pp. 22–28.

[80] D. Franke, S. Kowalewski, C. Weise, and N. Prakobkosol, “Testing con-
formance of life cycle dependent properties of mobile applications,” in
Proc. IEEE 12th Int. Conf. Softw. Testing, Verification Validation, 2012,
pp. 241–250.

[81] K. B. Dhanapal et al., “An innovative system for remote and automated
testing of mobile phone applications,” in Proc. Service Res. Innov. Inst.
Global Conf., 2012, pp. 44–54.

[82] C. Zheng et al., “SmartDroid: An automatic system for revealing
UI-based trigger conditions in Android applications.” in Proc. 2nd
ACM Workshop Secur. Privacy Smartphones Mobile Devices, 2012,
pp. 93–104.

[83] A. K. Maji, F. A. Arshad, S. Bagchi, and J. S. Rellermeyer, “An empirical
study of the robustness of inter-component communication in Android,”
in Proc. Int. Conf. Dependable Syst. Netw., 2012, pp. 1–12.

[84] C. Hu and I. Neamtiu, “Automating GUI testing for Android applica-
tions,” in Proc. Int. Workshop Automat. Softw. Test, 2011, pp. 77–83.

[85] L. Wei, Y. Liu, and S.-C. Cheung, “Taming Android fragmentation:
Characterizing and detecting compatibility issues for Android apps,”
in Proc. 31st IEEE/ACM Int. Conf. Automated Softw. Eng., 2016,
pp. 226–237.

[86] H. Khalid, M. Nagappan, and A. Hassan, “Examining the relationship
between findbugs warnings and end user ratings: A case study on 10,000
Android apps,” IEEE Softw., vol. 33, no. 4, pp. 34–39, Jul.-Aug. 2016.

[87] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for auto-
mated GUI-model generation of mobile applications,” in Proc. Int. Conf.
Fundamental Approaches Softw. Eng., 2013, pp. 250–265.

[88] A. M. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: Reverse en-
gineering of graphical user interfaces for testing,” in Proc. 10th Workshop
Conf. Reverse Eng., 2003, vol. 3, p. 260.

[89] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for Android apps,” in Proc. Joint Meeting Eur. Softw. Eng. Conf.
ACM SIGSOFT Symp. Found. Softw. Eng., 2013, pp. 224–234.

[90] D. Octeau et al., “Combining static analysis with probabilistic models
to enable market-scale Android inter-component analysis,” in Proc. 43th
Symp. Principles Programm. Lang., 2016, pp. 469–484.

[91] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, and Y. Le Traon, “ApkCom-
biner: combining multiple Android apps to support inter-app analysis,”
in Proc. 30th IFIP Int. Conf. ICT Syst. Secur. Privacy Protection, 2015,
pp. 513–527.

[92] L. Li, A. Bartel, J. Klein, and Y. Le Traon, “Automatically exploiting
potential component leaks in Android applications,” in Proc. 13th Int.
Conf. Trust, Secur. Privacy Comput. Commun., 2014, p. 10.

[93] K. Jamrozik, P. von Styp-Rekowsky, and A. Zeller, “Mining sandboxes,”
in Proc. IEEE/ACM 38th Int. Conf. Softw. Eng., 2016, pp. 37–48.

[94] Y.-M. Baek and D.-H. Bae, “Automated model-based Android GUI test-
ing using multi-level GUI comparison criteria,” in Proc. Int. Conf. Auto-
mated Softw. Eng., 2016, pp. 238–249.

[95] Z. Qin, Y. Tang, E. Novak, and Q. Li, “MobiPlay: A remote execu-
tion based record-and-replay tool for mobile applications,” in Proc.
IEEE/ACM 38th Int. Conf. Softw. Eng., 2016, pp. 571–582.

[96] Y. L. Arnatovich, M. N. Ngo, T. H. B. Kuan, and C. Soh, “Achieving high
code coverage in Android UI testing via automated widget exercising,”
in Proc. 23rd Asia-Pacific Softw. Eng. Conf., 2016, pp. 193–200.

[97] H. Zhu, X. Ye, X. Zhang, and K. Shen, “A context-aware approach for
dynamic GUI testing of Android applications,” in Proc. 39th IEEE Annu.
Comput. Softw. Appl. Conf., 2015, pp. 248–253.

[98] K. Song, A.-R. Han, S. Jeong, and S. D. Cha, “Generating various con-
texts from permissions for testing Android applications,” in Proc. Int.
Conf. Softw. Eng. Knowl. Eng., 2015, pp. 87–92.

[99] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek, “Sig-Droid: Auto-
mated system input generation for Android applications,” in Proc. IEEE
26th Int. Symp. Softw. Rel. Eng., 2015, pp. 461–471.

[100] B. Jiang, P. Chen, W. K. Chan, and X. Zhang, “To what extent is stress
testing of Android tv applications automated in industrial environments?”
IEEE Trans. Rel., vol. 65, no. 3, pp. 1223–1239, Sep. 2016.

[101] T. Griebe, M. Hesenius, and V. Gruhn, “Towards automated UI-tests
for sensor-based mobile applications,” in Proc. Int. Conf. Intell. Softw.
Methodologies, Tools Techn., 2015, pp. 3–17.

[102] D. Amalfitano, N. Amatucci, A. R. Fasolino, and P. Tramontana, “AGRip-
pin: A novel search based testing technique for Android applications,”
in Proc. Int. Workshop Softw. Development Lifecycle Mobile, 2015,
pp. 5–12.

[103] C. Q. Adamsen, G. Mezzetti, and A. Møller, “Systematic execution of
Android test suites in adverse conditions,” in Proc. Int. Symp. Softw.
Testing Anal., 2015, pp. 83–93.

[104] I. C. Morgado and A. C. Paiva, “The impact tool: Testing UI patterns
on mobile applications,” in Proc. 30th IEEE Int. Conf. Automated Softw.
Eng., 2015, pp. 876–881.

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

66 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

[105] R. Mahmood, N. Mirzaei, and S. Malek, “EvoDroid: Segmented evo-
lutionary testing of Android apps,” in Proc. ACM SIGSOFT Int. Symp.
Found. Softw. Eng., 2014, pp. 599–609.

[106] Y.-D. Lin, J. F. Rojas, E. T.-H. Chu, and Y.-C. Lai, “On the ac-
curacy, efficiency, and reusability of automated test oracles for An-
droid devices,” IEEE Trans. Softw. Eng., vol. 40, no. 10, pp. 957–970,
Oct. 2014.

[107] C.-J. Liang et al., “Caiipa: Automated large-scale mobil app testing
through contextual fuzzing,” in Proc. 20th Annu. Int. Conf. Mobile Com-
put. Netw., 2014, pp. 519–530.

[108] X. Li, Y. Jiang, Y. Liu, C. Xu, X. Ma, and J. Lu, “User guided automation
for testing mobile apps,” in Proc. 21st Asia-Pacific Softw. Eng. Conf.,
2014, pp. 27–34.

[109] C. Holzmann and P. Hutflesz, “Multivariate testing of native mobile appli-
cations,” in Proc. 12th Int. Conf. Advances Mobile Comput. Multimedia,
2014, pp. 85–94.

[110] X. Chen and Z. Xu, “Towards automatic consistency checking between
web application and its mobile application,” in Proc. Int. Conf. Softw.
Eng. Knowl. Eng., 2014, pp. 53–58.

[111] D. Amalfitano et al., “Improving code coverage in Android apps
testing by exploiting patterns and automatic test case generation,” in
Proc. Int. Workshop Long-Term Ind. Collaboration Softw. Eng., 2014,
pp. 29–34.

[112] M. Adinata and I. Liem, “A/b test tools of native mobile application,” in
Proc. 24th Int. Conf. Data Softw. Eng., 2014, pp. 1–6.

[113] Y.-D. Lin, E. T.-H. Chu, S.-C. Yu, and Y.-C. Lai, “Improving the accuracy
of automated GUI testing for embedded systems,” IEEE Softw., vol. 31,
no. 1, pp. 39–45, Jan./Feb. 2014.

[114] W. Choi, G. Necula, and K. Sen, “Guided GUI testing of Android apps
with minimal restart and approximate learning,” in Proc. ACM SIG-
PLAN Int. Conf. Object Oriented Programm. Syst. Lang. Appl., 2013,
pp. 623–640.

[115] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for sys-
tematic testing of Android apps,” in Proc. ACM SIGPLAN Int. Conf.
Object Oriented Programm. Syst. Lang. Appl., 2013, pp. 641–660.

[116] D. Amalfitano, A. R. Fasolino, P. Tramontana, and N. Amatucci, “Con-
sidering context events in event-based testing of mobile applications,” in
Proc. IEEE 6th Int. Conf. Softw. Testing, Verification Validation Work-
shops, 2013, pp. 126–133.

[117] A. Corradi, M. Fanelli, L. Foschini, and M. Cinque, “Context data dis-
tribution with quality guarantees for Android-based mobile systems,”
Secur. Commun. Netw., vol. 6, pp. 450–460, 2013.

[118] S. Bauersfeld, “GUIdif—A regression testing tool for graphical user
interfaces,” in Proc. Int. Conf. Softw. Testing, Verification Validation,
2013, pp. 499–500.

[119] C. S. Jensen, M. R. Prasad, and A. Møller, “Automated testing with
targeted event sequence generation,” in Proc. Int. Symp. Softw. Testing
Anal., 2013, pp. 67–77.

[120] H. v. d. Merwe, B. v. d. Merwe, and W. Visser, “Verifying Android
applications using java pathfinder,” in Proc. ACM SIGSOFT Softw. Eng.
Notes, 2012, pp. 1–5.

[121] H.-K. Kim, “Hybrid mobile testing model,” in Proc. Int. Conf.,
Adv. Softw. Eng. Appl. Disaster Recovery Business Continuity, 2012,
pp. 42–52.

[122] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proc. ACM SIGSOFT Int. Symp. Found.
Softw. Eng., 2012, Art. no. 59.

[123] T. Takala, M. Katara, and J. Harty, “Experiences of system-level model-
based GUI testing of an Android application,” in Proc. 4th IEEE Int.
Conf. Softw. Testing, Verification Validation, 2011, pp. 377–386.

[124] B. Sadeh, K. Ørbekk, M. M. Eide, N. C. Gjerde, T. A. Tønnesland, and S.
Gopalakrishnan, “Towards unit testing of user interface code for Android
mobile applications,” in Proc. Int. Conf. Softw. Eng. Comput. Syst., 2011,
pp. 163–175.

[125] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “A GUI crawling-
based technique for Android mobile application testing,” in Proc. IEEE
4th Int. Conf. Softw. Testing, Verification Validation Workshops, 2011,
pp. 252–261.

[126] Z. Liu, X. Gao, and X. Long, “Adaptive random testing of mobile ap-
plication,” in Proc. 2nd Int. Conf. Comput. Eng. Technol., 2010, pp. v2-
297–v2-301.

[127] M. G. Limaye, Software Testing. New York, NY, USA: McGraw-Hill,
2009.

[128] S. T. Fundamentals, Software testing levels. [Online]. Avail-
able: http://softwaretestingfundamentals.com/software-testing-levels/.
Accessed on: Aug. 2018.

[129] A. Wasif, T. Richard, and F. Robert, “A systematic review of search-
based testing for non-functional system properties,” Inf. Softw. Technol.,
vol. 51, pp. 957–976, 2009.

[130] R. Hamlet, “Random testing,” in Encyclopedia Software Engineering.
Hoboken, NJ, USA: Wiley, 1994.

[131] T. Vidas and N. Christin, “Evading Android runtime analysis via sandbox
detection,” in Proc. 9th ACM Symp. Inf. Comput. Commun. Secur., 2014,
pp. 447–458.

[132] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of An-
droid malware in your pocket.” in Proc. Netw. Distrib. Syst. Secur.,
2014, pp. 23–26.

[133] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoff-
mann, “Mobile-sandbox: Having a deeper look into Android ap-
plications,” in Proc. 28th Annu. ACM Symp. Appl. Comput., 2013,
pp. 1808–1815.

[134] V. F. Taylor and I. Martinovic, “To update or not to update: Insights from
a two-year study of Android app evolution,” in Proc. ACM Asia Conf.
Comput. Commun. Secur., 2017, pp. 45–57.

[135] M. Turner, B. Kitchenham, D. Budgen, and O. Brereton, “Lessons learnt
undertaking a large-scale systematic literature review,” in Proc. 12th Int.
Conf. Eval Assessment Softw. Eng., vol. 8, 2008.

[136] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The
evolution of Android malware and Android analysis techniques,” ACM
Comput. Surv., vol. 49, no. 4, 2017, Art. no. 76.

[137] M. Xu et al., “Toward engineering a secure Android ecosystem: A survey
of existing techniques,” ACM Comput. Surv., vol. 49, no. 2, 2016, Art.
no. 38.

[138] S. Zein, N. Salleh, and J. Grundy, “A systematic mapping study of mobile
application testing techniques,” J. Syst. Softw., vol. 117, pp. 334–356,
2016.

[139] A. Méndez-Porras, C. Quesada-López, and M. Jenkins, “Automated test-
ing of mobile applications: A systematic map and review,” in Proc. 18th
Ibero-Amer. Conf. Softw. Eng., Lima, Peru, 2015, pp. 195–208.

[140] D. Amalfitano, A. R. Fasolino, P. Tramontana, and B. Robbins, “Testing
Android mobile applications: Challenges, strategies, and approaches,”
Advances Comput., vol. 89, no. 6, pp. 1–52, 2013.

[141] J. Gao, W.-T. Tsai, R. Paul, X. Bai, and T. Uehara, “Mobile testing-as-a-
service (MTaaS)–Infrastructures, issues, solutions and needs,” in Proc.
15th Int. Symp. High-Assurance Syst. Eng, 2014, pp. 158–167.

[142] O. Starov, S. Vilkomir, A. Gorbenko, and V. Kharchenko, “Testing-as-a-
service for mobile applications: State-of-the-art survey,” in Dependability
Problems of Complex Information Systems, W. Zamojski and J. Sugier,
Eds. Berlin, Germany: Springer, 2015, pp. 55–71.

[143] H. Muccini, A. D. Francesco, and P. Esposito, “Software testing of mobile
applications: Challenges and future research directions,” in Proc. 7th Int.
Workshop Automat. Softw. Test., 2012, pp. 29–35.

[144] M. Janicki, M. Katara, and T. Pääkkönen, “Obstacles and opportu-
nities in deploying model-based GUI testing of mobile software: A
survey,” Softw. Testing, Verification Rel., vol. 22, no. 5, pp. 313–341,
2012.

[145] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, “A taxonomy and
qualitative comparison of program analysis techniques for security as-
sessment of Android software,” IEEE Trans. Softw. Eng., vol. 43, no. 6,
pp. 492–530, Jun. 2017.

[146] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of
app store analysis for software engineering,” IEEE Trans. Softw. Eng.,
vol. 43, no. 9, pp. 817–847, Sep. 2017.

[147] P. Yan and Z. Yan, “A survey on dynamic mobile malware detection,”
Softw. Quality J., pp. 1–29, 2017.

Authors’ photographs and biographies not available at the time of publication.

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 23,2020 at 01:51:39 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

