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ABSTRACT

Issue tracking systems are commonly used in modern software

development for collecting feedback from users and developers. An

ultimate automation target of software maintenance is then the sys-

tematization of patch generation for user-reported bugs. Although

this ambition is aligned with the momentum of automated program

repair, the literature has, so far, mostly focused on generate-and-

validate setups where fault localization and patch generation are

driven by a well-defined test suite. On the one hand, however, the

common (yet strong) assumption on the existence of relevant test

cases does not hold in practice for most development settings: many

bugs are reported without the available test suite being able to re-

veal them. On the other hand, for many projects, the number of

bug reports generally outstrips the resources available to triage

them. Towards increasing the adoption of patch generation tools by

practitioners, we investigate a new repair pipeline, iFixR, driven

by bug reports: (1) bug reports are fed to an IR-based fault localizer;

(2) patches are generated from fix patterns and validated via regres-

sion testing; (3) a prioritized list of generated patches is proposed

to developers. We evaluate iFixR on the Defects4J dataset, which

we enriched (i.e., faults are linked to bug reports) and carefully-

reorganized (i.e., the timeline of test-cases is naturally split). iFixR

generates genuine/plausible patches for 21/44 Defects4J faults with

its IR-based fault localizer. iFixR accurately places a genuine/plau-

sible patch among its top-5 recommendation for 8/13 of these faults

(without using future test cases in generation-and-validation).
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1 INTRODUCTION

Automated program repair (APR) has gained incredible momentum

since the seminal work of GenProg [83], various approaches [13, 14,

19, 20, 26, 27, 33, 34, 39, 45, 48, 49, 52, 53, 55, 62, 65, 83, 84, 92, 93]

have been proposed in the literature aiming at reducing manual de-

bugging efforts through automatically generating patches. Beyond

fixing syntactic errors, i.e., cases where the code violates some pro-

gramming language specifications [17], the current challenges lie in

fixing semantic bugs, i.e., cases where implementation of program

behavior deviates from developer’s intention [23, 61].

Ten years ago, the work of Weimer et al. [83] was explicitly mo-

tivated by the fact that, despite significant advances in specification

mining (e.g., [40]), formal specifications are rarely available. Thus,

test suites represented an affordable approximation to program

specifications. Unfortunately, the assumption that test cases are

readily available still does not hold in practice [8, 28, 68]. There-

fore, while current test-based APR approaches would be suitable

in a test-driven development setting [7], their adoption by practi-

tioners faces a simple reality: developers majoritarily (1) write few

tests [28], (2) write tests after the source code [8], and (3) write tests

to validate that bugs are indeed fixed and will not reoccur [24].

Although APR bots [79] can come in handy in a continuous

integration environment, the reality is that bug reports remain the

main source of the stream of bugs that developers struggle to handle

314

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3338906.3338935
https://doi.org/10.1145/3338906.3338935


ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Koyuncu, Liu, Bissyandé, Kim, Monperrus, Klein, and Le Traon

Bug 11975 - [net/mac80211/debugfs_sta.c:202]: Buffer overrun 
Description: The trailing zero (`\0’) will be written to state[4] which is out of bound.

(a) Linux Kernel Bug ReportFigure 1: Example of Linux bug report addressed by R2Fix.

daily [6]. Bugs are indeed reported in natural language, where

users tentatively describe the execution scenario that was being

carried out and the unexpected outcome (e.g., crash stack traces).

Such bug reports constitute an essential artifact within a software

development cycle and can become an overwhelming concern for

maintainers. For example, as early as in 2005, a triager of the Mozilla

project was reported in [6, page 363] to have commented that:

łEveryday, almost 300 bugs appear that need triaging. This is

far too much for only the Mozilla programmers to handle.ž

However, a few studies [10, 43] have undertaken to automate

patch generation based on bug reports. To the best of our knowledge,

Liu et al. [43] proposed the most advanced study in this direction.

Their R2Fix approach carries several caveats: as illustrated in Fig-

ure 1, it focuses on perfect bug reports [43, page 283] (1) which

explicitly include localization information, (2) where the symptom

is explicitly indicated by the reporter, and (3) which are about one of

the following three simple bug types: Buffer overflow, Null Pointer

dereference or memory leak. R2Fix runs a straightforward classifi-

cation to identify the bug category and uses a match and transform

engine to generate patches. As the authors admitted, their target

space represents <1% of bug reports in their dataset. It should be

noted that, given the limited scope of the changes implemented in

its fix patterns, R2Fix does not need to run tests for verifying that

the generated patches do not break any functionality.

This paper. We propose to investigate the feasibility of a pro-

gram repair system driven by bug reports, thus we replace classi-

cal spectrum-based fault localization with Information Retrieval

(IR)-based fault localization. Eventually, we propose iFixR, a new

program repair workflow which considers a practical repair setup

by imitating the fundamental steps of manual debugging. iFixR

works under the following constraint:

When a bug report is submitted to the issue tracking system, a relevant

test case reproducing the bug may not be readily available.

Therefore, iFixR is leveraged in this study to assess to what ex-

tent anAPR pipeline is feasible under the practical constraint of limited

test suites. iFixR uses bug reports written in natural language as

the main input. Eventually, we make the following contributions:

• We present the architecture of a program repair system adapted

to the constraints of maintainers dealing with user-reported bugs.

In particular, iFixR replaces classical spectrum-based fault local-

ization with Information Retrieval (IR)-based fault localization.

• We propose a strategy to prioritize patches for recommendation

to developers. Indeed, given that we assume only the presence of

regression test cases to validate patch candidates, many of these

patches may fail on the future test cases that are relevant to the

reported bugs. We order patches to present correct patches first.

• We assess and discuss the performance of iFixR on the Defects4J

benchmark to compare with the state-of-the-art APR tools. To

that end, we provide a refined Defects4J benchmark for APR

targeting bug reports. Bugs are carefully linked with the corre-

sponding bug reports, and for each bug we are able to dissociate

future test cases that were introduced after the relevant fixes.

Overall, experimental results show that there are promising

research directions to further investigate towards the integration of

automatic patch generation in actual software development cycles.

In particular, our findings suggest that IR-based fault localization

errors lead less to overfitting patches than spectrum-based fault

localization errors. Furthermore, iFixR offers provides comparable

results to most state-of-the-art APR tools, although it is run under

the constraint that post-fix knowledge (i.e., future test cases) is

not available. Finally, iFixR’s prioritization strategy tends to place

more correct/plausible patches on top of the recommendation list.

2 MOTIVATION

We motivate our work by revisiting two essential steps in APR:

(1) During fault localization, relevant program entities are identified

as suspicious locations that must be changed. Commonly, state-

of-the-art APR tools leverage spectrum-based fault localization

(SBFL) [13, 33, 50, 52, 92, 93], which uses execution coverage

information of passing and failing test cases to predict buggy

statements. We dissect the Defects4J dataset to highlight the

practical challenges of fault localization for user-reported bugs.

(2) Once a patch candidate is generated, the patch validation step

ensures that it is actually relevant for repairing the program.

Currently, widespread test-based APR techniques use test suites

as the repair oracle. This however is challenged by the incom-

pleteness of test suites, and may further not be inline with

developer requirements/expectations in the repair process.

2.1 Fault Localization Challenges

Defects4J is a manual curated dataset widely used in the APR litera-

ture [13, 19, 73, 84, 90, 91]. Since Defects4J was not initially built for

APR, the real order of precedence between the bug report, the patch

and the test case is being overlooked by the dataset users. Indeed,

Defects4J offers a user-friendly way of checking out buggy versions

of programs with all relevant test cases for readily benchmarking

test-based systems. We propose to carefully examine the actual bug

fix commits associated with Defects4J bugs and study how the test

suite is evolved. Table 1 provides detailed information.

Table 1: Test case changes in fix commits of Defects4J bugs.

Test case related commits # bugs

Commit does not alter test cases 14

Commit is inserting new test case(s) and updating previous test case(s) 62

Commit is updating previous test case(s) (without inserting new test cases) 76

Commit is inserting new test case(s) (without updating previous test cases) 243

Overall, for 96%(=381/395) bugs, the relevant test cases are ac-

tually future data with respect to the bug discovery process. This

finding suggests that, in practice, even the fault localization may

be challenged in the case of user-reported bugs, given the lack of

relevant test cases. The statistics listed in Table 2 indeed shows

that if future test cases are dropped, no test case is failing when

executing buggy program versions for 365 (i.e., 92%) bugs.

Table 2: Failing test cases after removing future test cases.

Failing test cases # bugs

Failing test cases exist (and no future test cases are committed) 14
Failing test cases exist (but future test cases update the test scenarios) 9
Failing test cases exist (but they are fewer when considering future test cases) 4
Failing test cases exist (but they differ from future test cases which trigger the bug) 3
No failing test case exists (i.e., only future test cases trigger the bug) 365
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In the APR literature, fault localization is generally performed

using the GZoltar [12] testing framework and a SBFL formula [88]

(e.g., Ochiai [3]). To support our discussions, we attempt to perform

fault localization without the future test cases to evaluate the per-

formance gap. Experimental results (see details forward in Table 6

of Section 5) expectedly reveal that the majority of the Defects4J

bugs (i.e., 375/395) cannot be localized by SBFL at the time the bug

is reported by users.

It is necessary to investigate alternate fault localization approaches

that build on bug report information since relevant test cases are often

unavailable when users report bugs.

2.2 Patch Validation in Practice

The repair community has started to reflect on the acceptability [27,

63] and correctness [76, 91] of the patches generated by APR tools.

Notably, various studies [11, 35, 69, 76, 94] have raised concerns

about overfitting patches: a typical APR tool that uses a test suite

as the correctness criterion can produce a patched program that

actually overfits the test-suite (i.e., the patch makes the program

pass all test cases but does not actually repair it). Recently, new

research directions [89, 97] are being explored in the automation

of test case generation for APR to overcome the overfitting issue.

Nevertheless, so far they have had minimal positive impact due to

the oracle problem [98] in automatic test generation.

At the same time, the software industry takes a more systematic

approach for patch validation by developers. For instance, in the

open-source community, the Linux development project has inte-

grated a patch generation engine to automate collateral evolutions

that are validated by maintainers [30, 66]. In proprietary settings,

Facebook has recently reported on their Getafix [75] tool, which

automatically suggests fixes to their developers. Similarly, Ubisoft

developed Clever [64] to detect risky commits at commit-time using

patterns of programming mistakes from the code history.

Patch recommendation for validation by developers is acceptable in

the software development communities. It may thus be worthwhile to

focus on tractable techniques for recommending patches in the road

to fully automated program repair.

3 THE IFIXR APPROACH

Figure 2 overviews the workflow of the proposed iFixR approach.

Given a defective program, we consider the following issues:

(1) Where is the bug? We take as input the bug report in natu-

ral language submitted by the program user. We rely on the

information in this report to localize the bug positions.

(2) How should we change the code?We apply fix patterns that

are recurrently found in real-world bug fixes. Fix patterns are

selected following the structure of the abstract syntax tree rep-

resenting the code entity of the identified suspicious code.

(3) Which patches are valid? We make no assumptions on the

availability of positive test cases [83] that encode functionality

requirements at the time the bug is discovered. Nevertheless,

we leverage existing test cases to ensure, at least, that the patch

does not regress the program.

(4) Which patches do we recommend first? In the absence of

a complete test suite, we cannot guarantee that all patches that

pass regression tests will fix the bug. We rely on heuristics

to re-prioritize the validated patches in order to increase the

probability of placing a correct patch on top of the list.

3.1 Input: Bug reports

Issue tracking systems (e.g., Jira) are widely used by software devel-

opment communities in the open source and commercial realms. Al-

though they can be used by developers to keep track of the bugs that

they encounter and the features to be implemented, issue tracking

systems allow for user participation as a communication channel

for collecting feedback on software executions in production.

Table 3 illustrates a typical bug report when a user of the LANG

library code has encountered an issue while using the NumberUtils

API. A description of erroneous behavior is provided. Occasionally,

the user may include in the bug description some information on

how to reproduce the bug. Oftentimes, users simply insert code

snippets or dump the execution stack traces.

In this study, among our dataset of 162 bug reports, we note that

only 27 (i.e., ∼17%) are reported by users who are also developer-

scontributing to the projects. 15 (i.e., ∼9%) bugs are reported and

again fixed by the same project contributors. These percentages

suggest that, for the majority of cases, the bug reports are indeed

genuinely submitted by users of the software who require project

developers’ attention.

Table 3: Example bug report (Defects4J Lang-7).

Issue No. LANG-822

Summary NumberUtils#createNumber - bad behaviour for leading "ś"

Description NumberUtils#createNumber checks for a leading "ś" in the string, and returns
null if found. This is documented as a work round for a bug in BigDecimal.
Returning nulll is contrary to the Javadoc and the behaviour for other methods
which would throw NumberFormatException.
It’s not clear whether the BigDecimal problem still exists with recent versions of
Java. However, if it does exist, then the check needs to be done for all invocations
of BigDecimal, i.e. needs to be moved to createBigDecimal.

Given the buggy program version and a bug report, iFixR must

unfold the workflow for precisely identifying (at the statement level)

the buggy code locations. We remind the reader that, in this step,

future test cases cannot be relied upon. We consider that if such

test cases could have triggered the bug, a continuous integration

system would have helped developers deal with the bug before the

software is shipped towards users.

3.2 Fault Localization w/o Test Cases

To identify buggy code locations within the source code of a pro-

gram, we resort to Information Retrieval (IR)-based fault localiza-

tion (IRFL) [67, 80]. The general objective is to leverage potential

similarity between the terms used in a bug report and the source

code to identify relevant buggy code locations. The literature in-

cludes a large body of work on IRFL [57, 72, 81, 85, 87, 96, 99] where

researchers systematically extract tokens from a given bug report

to formulate a query to be matched in a search space of documents

formed by the collections of source code files and indexed through

tokens extracted from source code. IRFL approaches then rank the

documents based on a probability of relevance (often measured as

a similarity score). Highly ranked files are predicted to be the ones

that are likely to contain the buggy code.

Despite recurring interest in the literature, with numerous ap-

proaches continuously claiming new performance improvements
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Figure 2: The iFixR Program Repair Workflow.

over the state-of-the-art, we are not aware of any adoption in pro-

gram repair research or practice. We postulate that one of the

reasons is that IRFL techniques have so far focused on file-level lo-

calization, which is too coarse-grained (in comparison to spectrum-

based fault localization output). Recently, Locus [85] and BLIA [96]

are state-of-the-art techniques which narrow down localization,

respectively to the code change or the method level. Nevertheless,

to the best of our knowledge, no IRFL technique has been proposed

in the literature for statement-level localization.

In this work, we develop an algorithm to rank suspicious state-

ments based on the output (i.e., files) of a state-of-the-art IRFL tool,

thus yielding a fine-grained IR-based fault localizer which will then

be readily integrated into a concrete patch generation pipeline.

3.2.1 Ranking Suspicious Files. We leverage an existing IRFL tool.

Given that expensive extractions of tokens from a large corpus of

bug reports is often necessary to tune IRFL tools [41], we selected a

tool for which the authors provide datasets and pre-processed data.

We use the D&C [31] as the specific implementation of file-level

IRFL available online [1] , which is a machine learning-based IRFL

tool using a similarity matrix of 70-dimension feature vectors (7 fea-

tures from bug reports and 10 features from source code files): D&C

uses multiple classifier models that are trained each for specific

groups of bug reports. Given a bug report, the different predictions

of the different classifiers are merged to yield a single list of suspi-

cious code files. Our execution of D&C (Line 2 in Algorithm 1) is

tractable given that we only need to preprocess those bug reports

that we must localize. Trained classifiers are already available. We

ensure that no data leakage is induced (i.e., the classifiers are not

trained with bug reports that we want to localize in this work).

3.2.2 Ranking Suspicious Statements. Patch generation requires

fine-grained information on code entities that must be changed. For

iFixR, we propose to produce a standard output, as for spectrum-

based fault localization, to facilitate integration and reuse of state-

of-the-art patch generation techniques. To start, we build on the

conclusions on a recent large-scale study [47] of bug fixes to limit

the search space of suspicious locations to the statements that are

more error-prone. After investigating in detail the abstract syn-

tax tree (AST)-based code differences of over 16 000 real-world

patches from Java projects, Liu et al. [47] reported that the follow-

ing specific AST statement nodes were significantly more prone

to be faulty than others: IfStatements, ExpressionStatements,

FieldDeclarations, ReturnStatements and VariableDeclara-

tionStatements. Lines 7ś17 in Algorithm 1 detail the process to

produce a ranked list of suspicious statements.

Algorithm 1 describes the process of our fault localization ap-

proach used in iFixR. Top k files are selected among the returned

list of suspicious files of the IRFL along with their computed suspi-

ciousness scores. Then each file is parsed to retain only the relevant

Algorithm 1: Statement-level IR-based Fault Localization.

Input :br : a bug report
Input : irT ool : IRFL tool
Output :Sscore : Suspicious Statements with weight scores

1 Function main (br ,irT ool )
2 F ← fileLocalizations (irT ool ,br )

3 F ← selectTop (F ,k )

4 cb ← bagOfTokens (br ) /* cb : Bag of Tokens of bug report */

5 c′
b
← preprocess (cb ) /* tokenization,stopword removal, stemming */

6 vb ← tfIdfVectorizer(c′
b
) /* vb : Bug report Feature Vector */

7 for f in F do
8 S ← parse(f ) /* S: List of statements */

9 for s in S do
10 cs ← bagOfTokens (s ) /* cs : Bag of Tokens of statements */

11 c′s ← preprocess (cs )

12 vs ← tfIdfVectorizer(c′s ) /* vs : Statements Feature Vector */

13 /* Cosine similarity between bug report and statement */

14 simcos ← similaritycosine (vb ,vs )

15 wscore ← simcos × f .score; /* score: Suspicious Value */

16 Wscore .add(s ,wscore )

17 Sscore ←Wscore .sort()

18 return Sscore

error-prone statements from which textual tokens are extracted.

The summary and descriptions of the bug report are also analyzed

(lexically) to collect all its tokens. Due to the specific nature of stack

traces and other code elements which may appear in the bug report,

we use regular expressions to detect stack traces and code elements

to improve the tokenization process, which is based on punctua-

tions, camel case splitting (e.g., findNumber splits into find, number)

as well as snake case splitting (e.g., find_number splits into find,

number). Stop word removal [2] is then applied before performing

stemming (using the PorterStemmer [25]) on all tokens to create

homogeneity with the term’s root (i.e., by conflating variants of the

same term). Each bag of tokens (for the bug report, and for each

statement) is then eventually used to build a feature vector. We use

cosine similarity among the vectors to rank the file statements that

are relevant to the bug report.

Given that we considered k files, the statements of each having

their own similarity score with respect to the bug report, we weight

these scores with the suspiciousness score of the associated file.

Eventually, we sort the statements using the weighted scores and

produce a ranked list of code locations (i.e., statements in files) to

be recommended as candidate fault locations.

3.3 Fix Pattern-based Patch Generation

A common, and reliable, strategy in automatic program repair is to

generate concrete patches based on fix patterns [27] (also referred

to as fix templates [51] or program transformation schemas [19]).

Several APR systems [15, 19, 27, 32, 46, 48, 49, 51, 60, 73] in the lit-

erature implement this strategy by using diverse sets of fix patterns

obtained either via manual generation or automatic mining of bug

fix datasets. In this work, we consider the pioneer PAR system by

Kim et al. [27]. Concretely, we build on kPAR [48], an open-source
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Java implementation of PAR in which we included a diverse set of

fix patterns collected from the literature. Table 4 provides an enu-

meration of fix patterns used in this work. For more implementation

details, we refer the reader to our replication package. All tools

and data are released as open source to the community to foster

further research into these directions. As illustrated in Figure 3,

a fix pattern encodes the recipe of change actions that should be

applied to mutate a code element.

Table 4: Fix patterns implemented in iFixR.
Pattern description used by∗ Pattern description used by∗

Insert Cast Checker Genesis Mutate Literal Expression SimFix
Insert Null Pointer Checker NPEFix Mutate Method Invocation ELIXIR
Insert Range Checker SOFix Mutate Operator jMutRepair
Insert Missed Statement HDRepair Mutate Return Statement SketchFix
Mutate Conditional Expression ssFix Mutate Variable CapGen
Mutate Data Type AVATAR Move Statement(s) PAR
Remove Statement(s) FixMiner

∗ We mention only one example tool even when several tools implement it.

+ if (exp instanceof T) {

...(T) exp...; ......

+ }

Figure 3: Illustration of łInsert Cast Checkerž fix pattern.

For a given reported bug, once our fault localizer yields its list

of suspicious statements, iFixR iteratively attempts to select fix

patterns for each statement. The selection of fix patterns is con-

ducted in a naïve way based on the context information of each

suspicious statement (i.e., all nodes in its abstract syntax tree, AST).

Specifically, iFixR parses the code and traverses each node of the

suspicious statement AST from its first child node to its last leaf

node in a breadth-first strategy (i.e, left-to-right and top-to-bottom).

If a node matches the context a fix pattern (i.e., same AST node

types), the fix pattern will be applied to generate patch candidates

by mutating the matched code entity following the recipe in the

fix pattern. Whether the node matches a fix pattern or not, iFixR

keeps traversing its children nodes and searches fix patterns for

them to generate patch candidates successively. This process is

iteratively performed until leaf nodes are encountered.

Consider the example of bug Math-75 illustrated in Figure 4.

iFixR parses the buggy statement (i.e., statement at line 302 in the

file Frequency.java) into an AST as illustrated by Figure 5. First,

iFixR matches a fix pattern that can mutate the expression in the

return statement with other expression(s) returning data of type

double. It further selects fix patterns for the direct child node (i.e.,

method invocation: getCumPct((Comparable<?> v))) of the re-

turn statement. This method invocation can be matched against fix

patterns with two contexts: method name and parameter(s). With

the breadth-first strategy, iFixR assigns a fix pattern, calling an-

other method with the same parameters (cf. PAR [27, page 804]), to

mutate the method name, and then selects fix patterns to mutate the

parameter. Furthermore, iFixR will match fix patterns for the type

and variable of the cast expression respectively and successively.

3.4 Patch Validation with Regression Testing

For every reported bug, fault localization followed by patternmatch-

ing and code mutation will yield a set of patch candidates. In a

typical test-based APR system, these patch candidates must let the

program pass all test cases (including some positive test cases [83],

which encode the actual functional requirements relevant to the

bug). Thus, the patch candidates set is actively pruned to remove

File: src/main/java/org/apache/commons/math/stat/Frequency.java

Line-301 public double getPct(Object v) {

Line-302 return getCumPct((Comparable<?>) v);

Line-303 }

Figure 4: Buggy code of Defects4J bug Math-75.

ReturnStatement “raw_code”

MethodInvocation “raw_code”

MethodName “getCumPct” CastExpression “raw_code”

Type “Comparable<?>” VariableName “v”

①

② ③

④ ⑤

*“raw_code” denotes the corresponding source code at the related node position.

Figure 5: AST of bug Math-75 source code statement.

all patches that do not meet these requirements. In our work, in

accordance with our investigation findings that such test cases may

not be available at the time the bug is reported (cf. Section 2), we

assume that iFixR cannot reason about future test cases to select

patch candidates.

Instead, we rely only on past test cases, which were available

in the code base, when the bug is reported. Such test cases are

leveraged to perform regression testing [95], which will ensure that,

at least, the selected patches do not obstruct the behavior of the

existing, unchanged part of the software, which is already explicitly

encoded by developers in their current test suite.

3.5 Output: Patch Recommendation List

Eventually, iFixR produces a ranked recommendation list of patch

suggestions for developers. Until now, the order of patches is influ-

enced mainly by two steps in the workflow:

(1) localization: our statement-level IRFL yields a ranked list of

statements to modify in priority.

(2) pattern matching: the AST node of the buggy code entity is

broken down into its children and iteratively navigated in a

breadth-first manner to successively produce candidate patches.

Eventually, the produced list of patches has an order, which carries

the biases of fault localization [48], and is noised by the pre-set

breadth-first strategy for matching fix patterns. We thus design an

ordering process with a function1, frcmd : 2P → Pk , as follows:

frcmd (patches) = (pritype ◦ prisusp ◦ prichanдe )(patches) (1)

where pri∗ are three heuristics-based prioritization functions used

in iFixR. frcmd takes a set of patches validated via regression test-

ing (cf. Section 3.4) and produces an ordered sequence of patches

(frcmd (patches) = seqrcmd ∈ P
k ). We propose the following

heuristics to re-prioritize the patch candidates:

(1) [Minimal changes]: we favor patches that minimize the dif-

ferences between the patched program and the buggy pro-

gram. To that end, patches are ordered following their AST

edit script sizes. Formally, we define prichanдe : 2P → P
n

where n = |patches |, prichanдe (patches) = [pi ,pi+1,pi+2, · · · ]

and holds ∀p ∈ patches,Cchanдe (pi ) ≤ Cchanдe (pi+1). Here,

Cchanдe (p) is a function that counts the number of deleted and

inserted AST nodes by the change actions of p.

1The domain of the function is a power set 2P , and the co-domain (Pk ) is a k -
dimensional vector space [29] where k is the maximum number of recommended
patches, and P denotes the set of all generated patches.
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(2) [Fault localization suspiciousness]: when two patch

candidates have equal edit script sizes, the tie is broken by using

the suspiciousness scores (of the associated statements) yielded

during IR-based fault localization. Thus, when Cchanдe (pi ) ==

Cchanдe (pi+1), prisusp re-orders the two patch candidates. We

define prisusp : Pn → P
n such that prisusp (seqchanдe ) =

[· · · ,pi ,pi+1, · · · ] holds Ssusp (pi ) ≥ Ssusp (pi+1), where

seqchanдe is the result of prichanдe and Ssusp returns a suspi-

cious score of the statement that a given patch pi changes.

(3) [Affected code elements]: after a manual analysis of fix pat-

terns and the performance of associated APR in the literature,

we empirically found that some change actions are irrelevant

to bug fixing. Thus, for the corresponding pre-defined patterns,

iFixR systematically under-prioritizes their generated patches

against any other patches, although among themselves the rank-

ing obtained so far (throughprichanдe andprisusp ) is preserved

for those under-prioritized patches. These are patches gener-

ated by (i) mutating a literal expression, (ii) mutating a variable

into a method invocation or a final static variable, or (iii) insert-

ing a method invocation without parameter. This prioritization,

is defined by pritype : Pn → Pk , which returns a sequence of

top k ordered patches (k ≤ n = |patches |). To define this priori-

tization function, we assign natural numbers j1, j2, j3, j4 ∈ N to

each patch generation types (i.e., j1 ←(i), j2 ←(ii), and j3 ←(iii),

respectively) and (j4 ←) everything else, which strictly hold

j4 > j1, j4 > j2, j4 > j3. This prioritization function takes the re-

sult of prisusp and returns another sequence [pi ,pi+1,pi+2, · · · ]

that holds ∀pi ,Dtype (pi ) ≥ Dtype (pi+1). Dtype is defined as

Dtype : 2P → {j1, j2, j3, j4} and determines how a patch pi has

been generated as defined above. From the ordered sequence,

the function returns the leftmost (i.e., top) k patches as a result.

4 EXPERIMENTAL SETUP

We now provide details on the experiments that we carry out to

assess the iFixR patch generation pipeline for user-reported bugs.

Notably, we discuss the dataset and benchmark, some implementa-

tion details before enumerating the research questions.

4.1 Dataset & Benchmark

To evaluate iFixR we rely on the Defects4J [22] which is widely

used as a benchmark in the Java APR literature. Nevertheless, given

that Defects4J does not provide direct links to the bug reports that

are associated with the benchmark bugs, we must undertake a fairly

accurate bug linking task [78]. Furthermore, to realistically evaluate

iFixR, we reorganize the dataset test suites to accurately simulate

the context at the time the bug report is submitted by users.

4.1.1 Bug linking. To identify the bug report describing a given bug

in the Defects4J dataset we focus on recovering the links between

the bug fix commits and bug reports from the issue tracking system.

Unfortunately, projects Joda-Time, JFreeChart and Closure have

migrated their source code repositories and issue tracking systems

into GitHub without a proper reassignment of bug report identifiers.

Therefore, for these projects, bug IDs referred to in the commit logs

are ambiguous (for some bugs this may match with the GitHub

issue tracking numbering, while in others, it refers to the original

issue tracker). To avoid introducing noise in our validation data, we

simply drop these projects. For the remaining projects (Lang and

Math), we leverage the bug linking strategies implemented in the

Jira issue tracking software. We use a similar approach to Fischer et

al. [16] and Thomas et al. [78] to link to commits to corresponding

bug reports. Concretely, we crawled the bug reports related to each

project and assessed the links with a two-step search strategy: (i)

we check commit logs to identify bug report IDs and associate the

corresponding changes as bug fix changes; then (ii) we check for

bug reports that are indeed considered as such (i.e., tagged as "BUG")

and are further marked as resolved (i.e., with tags "RESOLVED" or

"FIXED"), and completed (i.e., with status "CLOSED").

Eventually, our evaluation dataset includes 156 faults (i.e., De-

fects4J bugs). Actually, for the considered projects, Defects4J enu-

merates 171 bugs associated with 162 bug reports: 15 bugs are

indeed left out because either (1) the corresponding bug reports

are not in the desired status in the bug tracking system, which may

lead to noisy data, or (2) there is ambiguity in the buggy program

version (e.g., some fixed files appear to be missing in the repository

at the time of bug reporting).

4.1.2 Test suite reorganization. We ensure that the benchmark sep-

arates past test cases (i.e., regression test cases) from future test

cases (i.e., test cases that encode functional requirements specified

after the bug is reported). This timeline split is necessary to simu-

late the snapshot of the repository at the time the bug is reported.

As highlighted in Section 2, for over 90% cases of bugs in the De-

fects4J benchmark, the test cases relevant to the defective behavior

was actually provided along the bug fixing patches. We have thus

manually split the commits to identify test cases that should be

considered as future test cases for each bug report.

4.2 Implementation Choices

During implementation, we have made the following parameter

choices in the iFixR workflow:

• IR fault localization considers the top 50 (i.e., k = 50 in Algo-

rithm 1) suspicious files for each bug report, in order to search

for buggy code locations.

• For patch recommendation experiments, we limit the search

space to the top 20 suspected buggy statements yielded by the

fine-grained IR-based fault localization.

• For comparison experiments, we implement spectrum-based fault

localization using the GZoltar testing framework with the Ochiai

ranking strategy. Unless otherwise indicated, GZoltar version

0.1.1 is used (as it is widely adopted in the literature, by Astor [59],

ACS [92], ssFix [90] and CapGen [84] among others).

4.3 Research Questions

The assessment objective is to assess the feasibility of automat-

ing the generation of patches for user-reported bugs, while

investigating the foreseen bottlenecks as well as the research direc-

tions that the communitymust embrace to realize this long-standing

endeavor. To that end, we focus on the following research questions

associated with the different steps in the iFixR workflow.

• RQ1 [Fault localization] : To what extent does IR-based fault local-

ization provide reliable results for an APR scenario? In particular,

we investigate the performance differences when comparing our
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fine-grained IRFL implementation against the classical spectrum-

based localization.

• RQ2 [Overfitting] : To what extent does IR-based fault localization

point to locations that are less subject to overfitting? In particular,

we study the impact on the overfitting problem that incomplete

test suites generally carry.

• RQ3 [Patch ordering] : What is the effectiveness of iFixR’s patch

ordering strategy? In particular, we investigate the overall work-

flow of iFixR, by re-simulating the real-world cases of software

maintenance cycle when a bug is reported: future test cases are

not available for patch validation.

5 ASSESSMENT RESULTS

In this section, we present the results of the investigations for the

previously-enumerated research questions.

5.1 RQ1: [Fault Localization]

Fault localization being the first step in program repair, we evalu-

ate the performance of the IR-based fault localization developed

within iFixR. As recently thoroughly studied by Liu et al. [48],

an APR tool should not be expected to fix a bug that current fault

localization systems fail to localize. Nevertheless, with iFixR, we

must demonstrate that our fine-grained IRFL offers comparable

performance with SBFL tools used in the APR literature.

Table 5 provides performance measurements on the localization

of bugs. SBFL is performed based on two different versions of the

GZoltar testing framework, but always based on the Ochiai ranking

metric. Finally, because fault localization tools output a ranked list

of suspicious statements, results are provided in terms of whether

the correct location is placed under the top-k suspected statements.

In this work, following the practice in the literature [48, 56], we

consider that a bug is localized if any buggy statement is localized.

Table 5: Fault localization results: IRFL (IR-based) vs. SBFL

(Spectrum-based) on Defects4J (Math and Lang) bugs.

(171 bugs) Top-1 Top-10 Top-50 Top-100 Top-200 All

IRFL 25 72 102 117 121 139

SBFL
GZv1 26 75 106 110 114 120
GZv2 23 79 119 135 150 156

† GZv1 and GZv2 refer to GZoltar 0.1.1 and 1.6.0 respectively.

Overall, the results show that our IRFL implementation is strictly

comparable to the common implementation of spectrum-based

fault localization when applied on the Defects4J bug dataset. Note

that the comparison is conducted for 171 bugs of Math and Lang,

given that these are the projects for which the bug linking can be

reliably performed for applying the IRFL. Although performance

results are similar, we remind the reader that SBFL is applied by

considering future test cases. To highlight a practical interest of

IRFL, we compute for each bug localizable in the top-10, the elapsed

time between the bug report date and the date the relevant test

case is submitted for this bug. Based on the distribution shown in

Figure 6, on mean average, IRFL could reduce this time by 26 days.

Figure 6: Distribution of elapsed time (in days) between bug

report submission and test case attachment.

Finally, to stress the importance of future test cases for spectrum-

based fault localization, we consider all Defects4J bugs and compute

localization performance with and without future test cases.

Results listed in Table 6 confirms that in most bug cases, the

localization is impossible: Only 10 bugs (out of 395) can be localized

among the top-10 suspicious statements of SBFL at the time the

bug is reported. In comparison, our IRFL locates 72 bugs under the

same conditions of having no relevant test cases to trigger the bugs.

Table 6: Fault localization performance.

GZoltar + Ochiai (395 bugs) Top-1 Top-10 Top-50 Top-100 Top-200 All

without future tests 5 10 17 17 19 20
with future tests 45 140 198 214 239 263

Fine-grained IR-based fault localization in iFixR is as accurate as

Spectrum-based fault localization in localizing Defects4J bugs. Ad-

ditionally, it does not have the constraint of requiring test cases that

may not be available when the bug is reported.

5.2 RQ2: [Overfitting]

Patch generation attempts to mutate suspected buggy code with

suitable fix patterns. Aside from having adequate patterns or not

(which is out of the scope of our study), a common challenge of

APR lies in the effective selection of buggy statements. In typical

test-based APR, test cases drive the selection of these statements.

The incompleteness of test suites is however currently suspected

to often lead to overfitting of generated patches [94].

We perform patch generation experiments to investigate the

impact of localization bias. We compare our IRFL implementation

against commonly-used SBFL implementations in the literature of

test-based APR. We recall that the patch validation step in these

experiments makes no assumptions about future test cases (i.e.,

all test cases are leveraged as in classical APR pipeline). For each

bug, depending on the rank of the buggy statements in the suspi-

cious statements yielded the fault localization system (either IRFL

or SBFL), the patch generation can produce more or less relevant

patches. Table 7 details the repair performance in relation to the

position of buggy statements in the output of fault localization. Re-

sults are provided in terms of numbers of plausible and correct [69]

patches that can be found by considering top-k statements returned

by the fault localizer.

Table 7: IRFL vs. SBFL impacts on the number of generated

correct/plausible patches for Defects4J bugs.

Lang Math Total

IRFL Top-1 1/4 3/4 4/8
SBFL Top-1 1/4 6/8 7/12

IRFL Top-5 3/6 7/14 10/20
SBFL Top-5 2/7 11/17 13/24

IRFL Top-10 4/9 9/17 13/26
SBFL Top-10 4/11 16/27 20/38

IRFL Top-20 7/12 9/18 16/30
SBFL Top-20 4/11 18/30 22/41

IRFL Top-50 7/15 10/22 17/37
SBFL Top-50 4/13 19/34 23/47

IRFL Top-100 8/18 10/23 18/41
SBFL Top-100 5/14 19/36 24/50

IRFL All 11/19 10/25 21/44
SBFL All 5/14 19/36 24/50

∗ We indicate x/y numbers of patches: x is the number of bugs for which a correct patch is
generated; y is the number of bugs for which a plausible patch is generated.
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Overall, we find that IRFL and SBFL localization information

lead to similar repair performance in terms of the number of fixed

bugs plausibly/correctly. Actually IRFL-supported APR outperforms

SBFL-supported APR on the Lang project bugs and vice-versa for

Math project bugs: overall, 6 bugs that are fixed using IRFL out-

put, cannot be fixed using SBFL output (although assuming the

availability of the bug triggering test cases to run the SBFL tool).

We investigate the cases of plausible patches in both localization

scenarios to characterize the reasons why these patches appear to

only be overfitting the test suites. Table 8 details the overfitting

reasons for the two scenarios.
Table 8: Dissection of reasonswhy patches are plausible∗ but

not correct.

Localization Error Pattern Prioritization Lack of Fix ingredients

w/ IRFL 6 1 16
w/ SBFL 15 1 10

∗A plausible patch passes all test cases, but may not be semantically equivalent to devel-
oper patch (i.e., correct). We consider a plausible patch to be overfitted to the test suite

(1) Among the 23(= 44 − 21) plausible patches that are generated

based on IRFL identified code locations and that are not found

to be correct, 6 are found to be caused by fault localization

errors: these bugs are plausibly fixed by mutating irrelevantly-

suspicious statements that are placed before the actual buggy

statements in the fault localization output list. This phenom-

enon has been recently investigated in the literature as the

problem of fault localization bias [48]. Nevertheless, we note

that patches generated based on SBFL identified code locations

suffer more of fault localization bias: 15 of the 26 (= 50−24)

plausible patches are concerned by this issue.

(2) Pattern prioritization failures may lead to plausible patches:

while a correct patch could have been generated using a specific

pattern at a lower node in the AST, another pattern (leading to

an only plausible patch) was first matched the node during the

iterative search of matching nodes (cf. Section 3.3).

(3) Finally, we note that both configurations yield plausible patches

due to the lack of suitable patterns or due to a failed search for

the adequate donor code (i.e., fix ingredient [44]).

Experiments with the Defects4J dataset suggest that code locations

provided by IR-based fault localization lead less to overfitted patches

than the code locations suggested by Spectrum-based fault localization:

cf. "Localization error" column in Table 8.

5.3 RQ3: [Patch Ordering]

While the previous experiment focused on patch generation, our

final experiment assesses the complete pipeline of iFixR as it was

imagined for meeting the constraints that developers can face in

practice: future test cases, i.e., those which encode the functionality

requirements that are not met by the buggy programs, may not

be available at the time the bug is reported. We thus discard the

future test cases of the Defects4J dataset and generate patches that

must be recommended to developers. The evaluation protocol thus

consists in assessing to what extent correct/plausible patches are

placed in the top of the recommendation list.

5.3.1 Overall performance. Table 9 details the performance of the

patch recommendation by iFixR: we present the number of bugs

for which a correct/plausible patch is generated and presented

among the top-k of the list of recommended patches. In the ab-

sence of future test cases to drive the patch validation process, we

use heuristics (cf. Section 4.2) to re-prioritize the patch candidates

towards ensuring that patches which are recommended first will

eventually be correct (or at least plausible when relevant test cases

are implemented). We present results both for the case where we

do not re-prioritize and the case where we re-prioritize.

Recall that, given that the re-organized benchmark separately

includes the future test cases, we can leverage them to systematize

the assessment of patch plausibility. The correctness (also referred

to as correctness [69]) of patches, however, is still decided manually

by comparing against the actual bug fix provided by developers

and available in the benchmark. Overall, we note that iFixR perfor-

mance is promising as it manages, for 13 bugs, to present a plausible

patch among its top-5 recommended patches per bug. Among those

plausible patches, 8 are eventually found to be correct.

Table 9: Overall performance of iFixR for patch recommen-

dation on the Defects4J benchmark.

Recommendation rank Top-1 Top-5 Top-10 Top-20 All

without patch re-prioritization 3/3 4/5 6/10 6/10 13/27
with patch re-prioritization 3/4 8/13 9/14 10/15 13/27

∗ x/y: x is the number of bugs for which a correct patch is generated; y is the number of
bugs for which a plausible patch is generated.

5.3.2 Comparison with the state-of-the-art test-based APR systems.

To objectively position the performance of iFixR (which does not

require future test cases to localize bugs, generate patches and

present a sorted recommendation list of patches), we count the

number of bugs for which iFixR can propose a correct/plausible

patch. We consider three scenarios with iFixR:

(1) [iFixRtop5] - developers will be provided with only top 5 rec-

ommended patches which have been validated only with re-

gression tests: in this case, iFixR outperforms about half of

the state-of-the-art in terms of numbers bugs fixed with both

plausible or correct patches.

(2) [iFixRall ] - developers are presented with all (i.e., not only

top-5) generated patches validated with regression tests: in this

case, only four (out of sixteen) state-of-the-art APR techniques

outperform iFixR.

(3) [iFixRopt ] - developers are presentedwith all generated patches

which have been validated with augmented test suites (i.e., opti-

mistically with future test cases): with this configuration, iFixR

outperforms all state-of-the-art, except SimFix [20] which uses

sophisticated techniques to improve the fault localization accu-

racy and search for fix ingredients. It should be noted that in

this case, our prioritization strategy is not applied to the gener-

ated patches. iFixRopt represents the reference performance

for our experiment which assesses the prioritization.

Table 10 provides the comparison matrix. Information on state-

of-the-art results are excerpted from their respective publications.

iFixR offers a reasonable performance in patch recommendation

when we consider the number of Defects4J bugs that are successfully

patched among the top-5 (in a scenario where we assume not having

relevant test cases to validate the patch candidates). Performance

results are even comparable to many state-of-the-art test-based APR

tools in the literature.
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Table 10: iFixR vs state-of-the-art APR tools.

APR tool Lang∗ Math∗ Total∗

jGenProg [59] 0/0 5/18 5/18
jKali [59] 0/0 1/14 1/14
jMutRepair [59] 0/1 2/11 2/12
HDRepair [37] 2/6 4/7 6/13
Nopol [93] 3/7 1/21 4/28
ACS [92] 3/4 12/16 15/20
ELIXIR [73] 8/12 12/19 20/31
JAID [13] 1/8 1/8 2/16
ssFix [90] 5/12 10/26 15/38
CapGen [84] 5/5 12/16 17/21
SketchFix [19] 3/4 7/8 10/12
FixMiner [32] 2/3 12/14 14/17
LSRepair [44] 8/14 7/14 15/28
SimFix [20] 9/13 14/26 23/39
kPAR [48] 1/8 7/18 8/26
AVATAR [49] 5/11 6/13 11/24

iFixRopt 11/19 10/25 21/44

iFixRall 6/11 7/16 13/27
iFixRtop5 3/7 5/6 8/13

∗ x/y : x is the number of bugs for which a correct patch is generated; y is the number of bugs
for which a plausible patch is generated.
iFixRopt : the version of iFixR where available test cases are relevant to the bugs.

iFixRall : all recommended patches are considered.
iFixRtop5 : only top 5 recommended patches are considered.

5.3.3 Properties of iFixR’s patches. In Table 11, we characterize

the correct and plausible patches recommended by iFixRtop5. Over-

all, update and insert changes have been successful; most patches

affect a single statement, and impact precisely an expression entity

within a statement.
Table 11: Change properties of iFixR’s correct patches.

Change action #bugs∗ Impacted statement(s) #bugs∗ Granularity #bugs∗

Update 5/7 Single-statement 8/12 Statement 1/2
Insert 3/5 Multiple-statement 0/1 Expression 7/11
Delete 0/1

∗ x/y −→ for x bugs the patches are correct, while for y bugs they are plausible.

5.3.4 Diversity of iFixR’s fixed bugs. Finally, in Table 12we dissect

the nature of the bugs for which iFixRtop5 is able to recommend

a correct or a plausible patch. Priority information about the bug

report is collected from the issue tracking systems, while the root

cause is inferred by analyzing the bug reports and fixes.

Table 12: Dissection of bugs successfully fixed by iFixR.

Patch
Type

Defects4J
Bug ID

Issue ID Root Cause Priority

G L-6 LANG-857 String index out of bounds exception Minor
G L-24 LANG-664 Wrong behavior due missing condition Major
G L-57 LANG-304 Null pointer exception Major
G M-15 MATH-904 Double precision floating point format er-

ror
Major

G M-34 MATH-779 Missing "read only access" to internal list Major
G M-35 MATH-776 Range check Major
G M-57 MATH-546 Wrong variable type truncates double

value
Minor

G M-75 MATH-329 Method signature mismatch Minor
P L-13 LANG-788 Serialization error in primitive types Major
P L-21 LANG-677 Wrong Date Format in comparison Major
P L-45 LANG-419 Range check Minor
P L-58 LANG-300 Number formatting error Major
P M-2 MATH-1021 Integer overflow Major

łGž denotes correct patch and łPž means plausible patch.

Overall, we note that 9 out of the 13 bugs have been marked as

Major issues. 12 different bug types (i.e., root causes) are addressed.

In contrast, R2Fix [43] only focused on 3 simple bug types.

6 DISCUSSION

This study presents the conclusions of our investigation into the

feasibility of generating patches automatically from bug reports.

We set strong constraints on the absence of test cases, which are

used in test-based APR to approximate what the program is actually

supposed to do and when the repair is completed [83]. Our exper-

iments on the widely-used Defects4J bugs eventually show that

patch generation without bug-triggering test cases is promising.

Manually looking at the details of failures and success in gener-

ating patches with iFixR, several insights can be drawn:

Test cases can be buggy: During manual analysis of results, we

noted that iFixR actually fails to generate correct patches for three

bugs (namely, Math-5, Math-59 and Math-65) because even the test

cases were buggy. Figure 7 illustrates the example of bug Math-5

where its patch also updated the relevant test case. This example

supports our endeavor, given that users would find and report bugs

for which the appropriate test cases were never properly written.

// Patched Source Code:

--- a/src/main/java/org/apache/commons/math3/complex/Complex.java

+++ b/src/main/java/org/apache/commons/math3/complex/Complex.java

@@ -304,3 +304,3 @@ public class Complex

if (real == 0.0 && imaginary == 0.0) {

- return NaN;

+ return INF;

}

// Patched Test Case:

--- a/src/test/java/org/apache/commons/math3/complex/ComplexTest.java

+++ b/src/test/java/org/apache/commons/math3/complex/ComplexTest.java

@@ -333,3 +333,3 @@ public class ComplexTest {

public void testReciprocalZero() {

- Assert.assertEquals(Complex.ZERO.reciprocal(), Complex.NaN);

+ Assert.assertEquals(Complex.ZERO.reciprocal(), Complex.INF);

}

Figure 7: Patched source code and test case of fixing Math-5.

Bug reports deservemore interest:With iFixR, we have shown

that bug reports could be handled automatically for a variety of

bugs. This is an opportunity for issue trackers to add a recom-

mendation layer to the bug triaging process by integrating patch

generation techniques. There are, however, several directions to

further investigation, among which: (1) help users write proper bug

reports; and (2) re-investigate IRFL techniques at a finer-grained

level that is suitable for APR.

Prioritization techniquesmust be investigated: In the absence

of complete test suites for validating every single patch candidate, a

recommendation systemmust ensure that patches presented first to

the developers are the most likely to be plausible and even correct.

There are thus two directions of research that are promising: (1)

ensure that fix patterns are properly prioritized to generate good

patches and be able to early-stop for not exploding the search space;

and (2) ensure that candidate patches are effectively re-prioritized.

These investigations must start with a thorough dissection of plau-

sible patches for a deep understanding of plausibility factors.

More sophisticated approaches to triaging and selecting fix

ingredients are necessary: In its current form, iFixR implements

a naïve approach to patch generation, ensuring that the perfor-

mance is tractable. However, the literature already includes novel

APR techniques that implement strategies for selecting donor code

and filters patterns. Integrating such techniques into iFixR may

lead to performance improvement.

More comprehensive benchmarks are needed:Due to bug link-

ing challenges, our experiments were only performed on half of

the Defects4J benchmark. To drive strong research in patch genera-

tion for user-reported bugs, the community must build larger and

reliable benchmarks, potentially even linking several artifacts of

continuous integration (i.e, build logs, past execution traces, etc.).

In the future, we plan to investigate the dataset of Bugs.jar [71].
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Automatic test generation techniques could be used as a sup-

plement:Our study tries to cope radically with the incompleteness

of test suites. In the future, however, we could investigate the use of

automatic test generation techniques to supplement the regression

test cases during patch validation.

7 THREATS TO VALIDITY

Threats to external validity: The bug reports used in this study

may be of low quality (i.e., wrong links for corresponding bugs).

We reduced this threat by focusing only on bugs from the Lang

and Math projects, which kept a single issue tracking system. We

also manually verified the links between the bug reports and the

Defects4J bugs. Table 13 characterizes the bug reports of our dataset

following the criteria enumerated by Zimmermann et al. [100] in

their study of łwhat makes a good bug reportž. Notably, as illus-

trated by the distribution of comments in Figure 8, we note that

the bug reports have been actively discussed before being resolved.

This suggests that they are not trivial cases (cf. [18]).

Table 13: Dissection of bug reports related to Defects4J bugs.

Proj.
Unique

Bug Reports
w/ Patch
Attached

Average
Comments

w/ Stack
Traces

w/
Hints

w/ Code
Blocks

Lang 62 11 4.53 4 62 31
Math 100 23 5.15 5 92 51

Code-related terms such as package/class names found in the summary and description, in
addition to stack traces and code blocks, as separate features referred to as hints.

Figure 8: Distribution of # of comments per bug report.

Another threat to external validity relates to the diversity of the

fix patterns used in this study. iFixR currently may not implement

a reasonable number of relevant fix patterns. We minimize this

threat by surveying the literature and considering patterns from

several pattern-based APR.

Threats to internal validity:Our implementation of fine-grained

IRFL carries some threats: during the search of buggy statements,

we considered top-50 suspicious buggy files from the file-level IRFL

tool, to limit the search space. Different threshold values may lead

to different results. We also considered only 5 statement types as

more bug-prone. This second threat is minimized by the empirical

evidence provided by Liu et al. [47].

Additionally, another internal threat is in our patch generation

steps: iFixR only searches for donor code from the local code files,

which contain the buggy statement. The adequate fix ingredient

may however be located elsewhere.

Threats to construct validity: In this study, we assumed that

patch construction and test case creation are two separated tasks

for developers. This may not be the case in practice. The threat is

however mitigated given that, in any case, we have shown that the

test cases are often unavailable when the bug is reported.

8 RELATED WORK

Fault Localization. A recent study [48] stated, fault localization

is a critical task affecting the effectiveness of automated program

repair. Several techniques have been proposed [67, 80, 88] and they

use different information such as spectrum [5], text [85], slice [58],

and statistics [42]. The first two types of techniques are widely stud-

ies in the community. SBFL techniques [4, 21] are widely adopted

in APR pipelines since they identify bug positions at the statement

level. However, they have limitations on localizing buggy locations

since it highly relies on the test suite [48]. IRFL [41] leverages tex-

tual information in a bug report. It is mainly used to help developers

narrow down suspected buggy files in the absence of relevant test

cases. For the purpose of our study, we have proposed an algorithm

for localizing the faulty code entities at the statement level.

Patch Generation. Patch generation is another key process of

APR pipeline, which is, in other words, a task searching for another

shape of a program (i.e., a patch) in the space of all possible pro-

grams [38, 54]. To improve repair performance, many APR systems

have been explored to address the search space problem by using

different information and approaches: stochastic mutation [39, 83],

synthesis [53, 92, 93], pattern [15, 19, 20, 27, 33, 37, 49, 51, 52, 73],

contract [13, 82], symbolic execution [65], learning [9, 17, 55, 70,

77, 86], and donor code searching [26, 62]. In this paper, patch gen-

eration is implemented with fix patterns presented in the literature

since it may make the generated patches more robust [74].

Patch Validation. The ultimate goal of APR systems is to auto-

matically generate a correct patch that can actually resolve the

program defects rather than satisfying minimal functional con-

straints. At the beginning, patch correctness is evaluated by passing

all test cases [27, 37, 83]. However, these patches could be overfit-

ting [35, 69] and even worse than the bug [76]. Since then, APR

systems are evaluated with the precision of generating correct

patches [20, 49, 84, 92]. Recently, researchers explore automated

frameworks that can identify patch correctness for APR systems au-

tomatically [36, 91]. In this paper, our approach validates generated

patches with regression test suites since fail-inducing test cases are

readily available for most of bugs as described in Section 2.

9 CONCLUSION

In this study, we have investigated the feasibility of automating

patch generation from bug reports. To that end, we implemented

iFixR, an APR pipeline variant adapted to the constraints of test

cases unavailability when users report bugs. The proposed system

revisits the fundamental steps, notably fault localization, patch

generation and patch validation, which are all tightly-dependent to

the positive test cases [83] in a test-based APR system.

Without making any assumptions on the availability of test cases,

we demonstrate, after re-organizing the Defects4J benchmark, that

iFixR can generate and recommend priority correct (and more

plausible) patches for a diverse set of user-reported bugs. The repair

performance of iFixR is even found to be comparable to that of

the majority of test-based APR systems on the Defects4J dataset.

We open source iFixR’s code and release all data of this study to

facilitate replication and encourage further research in this direction

which is promising for practical adoption in the software develop-

ment community: https://github.com/SerVal-DTF/iFixR
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