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∗National University of Defense Technology, Changsha, China, {linbo19, wangshangwen13, xgmao}@nudt.edu.cn
†Nanjing University of Aeronautics and Astronautics, Nanjing, China, kui.liu@nuaa.edu.cn
‡State Key Laboratory of Mathematical Engineering and Advanced Computing, Wuxi, China

§University of Luxembourg, Luxembourg, tegawende.bissyande@uni.lu

Abstract—Code comments are key to program comprehension.
When they are not consistent with the code, maintenance is
hindered. Yet developers often forget to update comments along
with their code evolution. With recent advances in neural ma-
chine translation, the research community is contemplating novel
approaches for automatically generating up-to-date comments
following code changes. CUP is such an example state-of-the-art
approach whose promising performance remains however to be
comprehensively assessed. Our study contributes to the literature
by performing an in-depth analysis on the effectiveness of CUP.
Our analysis revealed that the overall effectiveness of CUP is
largely contributed by its success on updating comments via a
single token change (96.6%). Several update failures occur when
CUP ignores some code change information (10.4%) or when it
is otherwise misled by additional information (12.8%). To put in
perspective the achievements of CUP, we implement HEBCUP,
a straightforward heuristic-based approach for code comment
update. Building on our observations on CUP successful and
failure cases, we design heuristics for focusing the update on the
changed code and for performing token-level comment update.
HEBCUP is shown to outperform CUP in terms of Accuracy
by more than 60% while being over three orders of magnitude
(i.e., 1 700 times) faster. Further empirical analysis confirms that
the HEBCUP does not even overfit to the empirical analysis
set. Overall, with this study, we call for more research in
deep learning based comment update towards achieving state-
of-the-art performance that would be unreachable by other less
sophisticated techniques.

Index Terms—Comment Update, Deep Learning, Empirical
Assessment

I. INTRODUCTION

Code comments constitute a key information channel in
software development. They serve to publicize the intention
behind a code fragment, record the design and implementation
choices and provide information about to use the code [1],
[2], [3]. Prior studies have shown that code comments play
a significant role in improving program readability [4], [5]
as well as facilitating the communication between develop-
ers [4], [6], [7], which are essential for ensuring program
comprehension. Although the importance of code comments
for code comprehension has been an important topic in the
early days of software engineering [5], developers often fail
to properly manage them. In particular, code comments are
often forgotten when the code goes through changes [8], [9].
Therefore in practice, many comments are inconsistent or
obsolete (hence bad) with respect to their associated code [8],
[9], [10], [11]. For instance, Fluri et al. [12] empirically

?Shangwen Wang is the corresponding author.

TABLE I: A bad comment example.
Code Change:

public void shouldSucceedWhenAllowedSelfSigned() {
...

− IServiceConnector connector = factory.createConnector(request, service);
+ IApiConnector connector = factory.createConnector(request, api);

... }
Old Comment: gateway does not explicitly trust the service.
New Comment: gateway does not explicitly trust the API.

observed that newly added code is rarely commented and the
percentage of comment changes that are triggered by source
code changes can be rather low in some projects. In a recent
study, Wen et al. [9] further pointed out that a substantial
proportion of code-comment inconsistencies are introduced
following refactoring activities.

Table I overviews the real-world case example of a comment
update in the APIMan project1. A commit changes the type of
the connector being created from being to a Service into being
to an API. Twice in the changed statement a token service
is therefore replaced with api. Initially, however, the project
developers (starting with the one who changed the code) forgot
to update the comment associated with this method, leading
to a case of inconsistent comment. Such bad comment can
have a negative effect on program comprehension and may
hinder maintenance [12], [13], [14]. Indeed, as supported by
an analysis by Tan et al. [8], bad comments tend to introduce
future project bugs. There is thus a dire need to fix bad
comments, as it was later done for the method in Table I,
or reduce the risk of keeping inconsistencies for a very long
period.

Recently, Liu et al. [11] have proposed CUP as an auto-
mated just-in-time comment update technique to cope with
the prevalence of bad comments. Their core idea is that
inconsistencies can be avoided if comments are automatically
updated with each code change. Leveraging neural machine
translation advances and the wealth of big code, CUP was
shown to achieve significant improvements over several base-
lines. In particular, CUP is promising in terms of capability
to reduce developers’ manual efforts for comments update.
While this performance constitutes a literature milestone in
comment update, little is known about where, how and why
the proposed technique works or does not work. We fill this
gap in the literature through a comprehensive assessment that
analyses in-depth the strengths and weaknesses of the state-

1https://github.com/apiman/apiman
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of-the-art CUP technique. This assessment is performed on
a carefully-cleaned dataset. In particular we ensured that the
evaluation dataset does not include comment updates that are
simply about improving language expression and not about the
validity of the comment w.r.t. the code. We mainly find that:

• CUP generates comments by making trivial changes to
existing comments. The vast majority (96.6%) of correct
comments it generates are about modifying a single token.

• CUP generates correct comments when it can borrow the
relevant content directly in the code change. In our exper-
imental dataset such cases represent more than 90% of the
correct comment updates.

• CUP frequently ignores some code change information
while being often misled by other information. Thus, even
when the content for updating a comment is available in the
code change, CUP may fail.

Overall, we empirically showed that CUP generally fails
when the update to the comment is not trivial, thus lim-
iting its actual application scope. Besides this limitation in
effectiveness, our experiments revealed that CUP is resource-
intensive, which constitutes a severe obstacle to adoption
since the practice of software engineering largely adheres
to fast and straightforward approaches [15]. Towards further
pointing out the necessity for sophisticated approaches to
aim for higher levels of performance, we investigate the
possibility of designing a simple but effective approach that
would serve as a reasonable baseline on the task of automated
comment update. We propose HEBCUP in this paper, which is
a heuristic-based comment updater. Based on the findings in
empirically analysing CUP generated comments, our design
strategies are (1) focusing the update on the changed code
and (2) performing token-level comment update. HEBCUP
is a straightforward approach that implements a sequence
of basic heuristics for updating comments based on code
changes. Experimental evaluation results suggest that HEBCUP
significantly outperforms CUP in terms of a variety of metrics
(e.g., Accuracy, percentage of generated comments that are
identical to human-written ones, etc). HEBCUP is furthermore
over 1 700 times faster than CUP. Finally, our post-study ex-
periments show that HEBCUP can generalize well on training
and validation sets, achieving comparable Accuracy (23.8%
and 25.5%, respectively).

To summarize, we make the following contributions:

• We perform comprehensive assessment and in-depth anal-
ysis of the state-of-the-art deep learning based comment
updater. Our analysis findings provide insights into future
work in this direction, highlighting the limitations that must
be addressed towards making automated comment update
research output that is valuable for practitioners.

• We also propose a basic approach to automated comment
update as a baseline for the community. Since the perfor-
mance of HEBCUP (baseline) exceeds that of CUP (state-of-
the-art), we call for more research that will further explore
the power of deep learning for the task of automatically
updating code comments.

II. BACKGROUND

A. Comment UPdater

CUP is a recent-proposed deep learning-based automated
comment updater [11]. Given the pre- and post-change ver-
sions of a code snippet (i.e., Java method) and its associated
pre-change comment, CUP proposes to automatically generate
a consistently-updated comment. CUP implements a generic
neural sequence-to-sequence (seq2seq) model to learn the
comment update patterns. Nonetheless, it presents several
specialized designs for this task: (1) to deal with out-of-
vocabulary (OOV) words, the authors propose a simple but
effective way to tokenize code and comments while also being
able to keep the format information of comments; (2) to
capture relationships between code changes and comments
better, the authors build a unified vocabulary for both code and
comment tokens and integrate a novel co-attention mechanism
to the model for effectively linking and fusing information
in code changes and comments. Evaluation on thousands of
popular Java projects from GitHub demonstrates the effective-
ness of CUP: it can replicate comment updates performed by
developers in a considerable number of cases (16.7%), and
further analyses show that it can reduce developers’ effort in
comment updates.

B. Terminologies

We define several concepts that we refer to in this paper. We
recall here that the state-of-the-art code embedding techniques
[16], [17], [18] as well as CUP [11] are applied at the
sub-token level: i.e., code tokens are broken into sub-token
sequences based on camel case and under-score naming con-
ventions. Prior works have empirically confirmed that doing
so helps to better capture semantic information from source
code [16], [19], [20].
• [Edit distance] (ED) denotes the minimum number of

single-character edit operations required to transform a
string into another one. Here, the considered operations
include insertion, deletion, and replacement. For instance,
the ED between “kitten” and “sitten” is 1 in that replacing
“k” with “s” can fulfill the transformation.

• [Number of changed sub-tokens] (NCS) measures the
number of sub-tokens that are modified before and after
a code (comment) change. In the original study [11], the
authors introduce an approach to convert a code change into
an edit sequence via aligning its two sub-token sequences.
For each aligned sub-token pair, an edit action (ai) is
assigned to indicate how to transfer the old code to the
new one, which can be insert, delete, replace, or equal
(denotes the two sub-tokens are identical). More details can
be found in Section 3.1.2 of the paper [11]. Based on the
obtained edit action sequence, the NCS of a code change
(NCScd)/comment change (NCScm) is defined as the sum
of the numbers of insert, delete, and replace in the sequence.
An example of code change is illustrated in Fig. 1 where
the NCScd is 3 in that there are two inserts and one delete
in the edit action sequence.
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Fig. 1: The edit sequence of a code change.

• [Single token update], a comment update whose changed
content is only about one token.

• [Single sub-token update], a comment update whose
changed content is only about one sub-token. Note that this
type of comment is a sub-type of the above one.

• [Code-indicative update], a comment update whose
changed sub-tokens or tokens can be found from the corre-
sponding code change content.

III. STUDY DESIGN

A. Data Cleaning

To evaluate the performance of CUP, the authors built a
dataset from 1 496 repositories, which contains 85 657, 9 475,
and 9 673 method-comment co-change instances respectively
for training, validation, and test sets [11]. This is a large-
scale, carefully-crafted, and open-sourced dataset, hence, we
choose to reuse it in our study. Nevertheless, as observed by
the authors of CUP, the dataset contains some instances where
the comment updates only optimize the language expression
(i.e., the old and new comments are of the same meaning).
Such cases may bring bias to the evaluation since the comment
update is not actually required. We thus propose to try our
best to remove such cases from the dataset. We design the
following rules to automatically identify three types of syn-
tactic optimizations of the comments, which are changing case
of the word (e.g., “capital” → “Capital”), lexical translation
(e.g., pluralizing a verb or converting a noun into its verb
form), as well as fixing typos:
• [Rule-1]: We compare the lowercase of the modified token

before and after the comment update. If they are identical,
the instance is identified as changing case of the word.

• [Rule-2]: We compare the root format of the modified
token before and after the comment update with the help
of the lemmatization function from NLTK tool2. If they are
identical, the instance is identified as lexical translation.

• [Rule-3]: An instance is considered as fixing typos if it
simultaneously satisfies the following conditions: (1) the edit
distance (ED) between the pre- and post-updated tokens in
the comment is less than or equal to 2; and (2) the post-
updated token in the comment does not occur in the code
change. The first condition is according to our observation
that a typo may happen because both missing a letter and the
order of two consecutive letters is reversed. For instance, in
the linked commit3, developers change the word “defautl”
to “default”, where the ED between the two words is 2.

2https://www.nltk.org/.
3https://github.com/soot-oss/soot/commit/40d52c161164d391a0d3aad1d2

fbc93e8a247dbd

Hence, we set the threshold of ED to be 2 here. The second
condition guarantees that the comment change is not based
on the code change.

An instance is removed from the dataset upon identified as
one of the above three types and thus being disregarded from
our study. Finally, our cleaned dataset contains 80 591, 8 827,
and 9 204 method-comment co-change samples for training,
validation, and test sets with discarding 6 183 instances totally.

Note that there are also some semantic optimizations beyond
syntactic optimization, where the new comments re-organize
the words but express the same meaning as the old one. We do
not target these cases since it is challenging to identify them
automatically.

B. Research Questions

• RQ1. What are the characteristics of the cleaned dataset?
We provide an in-depth analysis of the dataset, to enable the
community to better qualify the performance of automated
comment updaters. For instance, we investigate whether
method-comment co-change instances in the test set are
simpler than those from training and validation sets. Is the
complexity of the comment update strongly related with that
of its corresponding code change? Answering such questions
can not only validate the rationale of the dataset but also
help to better understand the inner correlation between code
change and comment update for guiding the design of our
own approach (see Section V-A). Thus, in the first RQ, we
aim to dissect the characteristics of the dataset.

• RQ2. How well does CUP perform on the cleaned dataset?
This RQ validates whether CUP holds its promising per-
formances on the cleaned dataset. We assess whether the
noisy data significantly influences the performance of CUP.
Based on the results, we go further to check the generality of
CUP (e.g., whether it tends to be more effective on simple
instances than complex ones).

• RQ3. Where and why does CUP work?
• RQ4. Where and why does CUP fail?

These two RQs investigate the strengths and weaknesses of
CUP. These questions are critical in that understanding the
applicable scenario of an approach can better help us apply
it in practice [21].

C. Evaluation Metrics

• Accuracy: the percentage of the test samples where correct
comments are generated at Top-1. Here, correct comments
refer to those that are identical to the ground-truth (i.e.,
written by developers).

• Recall@5: the percentage of the test samples where correct
comments are generated at Top-5.

• AED: the average word-level Edit Distance required to
change the predicted results from CUP into the ground-
truth. This value indicates the distance between the gener-
ated comments and the ground-truth comments: the smaller,
the better.
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(a) NCScd (b) NCScm

Fig. 2: Distributions of NCScd and NCScm on three sets.

• RED: the average of the quotient of word-level ED required
to change the predicted results from CUP into the ground-
truth and word-level ED required to change the original
comment into the ground-truth. This value indicates to what
extent an approach can release developers’ burden from
manual update: the smaller, the better.

IV. STUDY RESULTS

A. RQ1: [Dataset Characteristics]

In the original study [11], the authors split the dataset into
training, validation, and test sets based on the ascending order
of commit creation time within projects: the first 80% commits
are put into the training set while the remaining 20% are split
into the validation and test set randomly.

In this RQ, we first aim to investigate whether this process
creates a balanced dataset by checking if instances of the test
set tend to be simpler than instances from other sets (i.e.,
training and validation). We take NCScd and NCScm as
metrics of complexity. The behind intuition is straightforward:
a code change is more complex if it modifies more tokens and
the same for comment change. We draw the distributions of
these metrics in different datasets in Fig. 2.

From the perspective of code change, we observe similar
distributions of NCScd among three sets: the lower quartiles
are all 4 for the three groups, the medium value for training
set is 11 while those of validation and test sets are both 12,
and the upper quartiles are all around 35.

The same phenomenon can also be observed from the
distributions of NCScm where the lower quartiles and medium
values are 1 and 3 respectively for all three sets. The upper
quartile of the test set (i.e., 6) is a bit higher than those of the
other sets which are both 5.

We further perform a one-sided Mann-Whitney U-Test [22]
on the distributions of three sets and results suggest that there
is no significant difference between test set and the other two
sets on either NCScd or NCScm, with p-values higher than
0.05 under all conditions. Hence, we conclude that our utilized
dataset is balanced, that is, the instances from test set do not
tend to be simpler than those from training and validation sets.

Finding-1 * Training, validation, and test sets in our
dataset tend to possess similar distributions w.r.t NCScd

and NCScm. Therefore, instances from the test set are not
simpler than those from other two sets.

Given that there are two complexity metrics in our study
(i.e., NCScd and NCScm), a following question is whether
these two variables possess correlation. In Fig. 3, we draw the

TABLE II: Effectiveness of CUP on Original and Cleaned
Datasets.

Datasets Accuracy Recall@5 AED RED

Original 16.7% (1 612/9 673) 26.1% 3.54 0.958
Cleaned 15.8% (1 456/9 204) 26.8% 3.62 0.960

scatter plot for cases from validation and test sets, where the
horizontal axis denotes the value of NCScd and the vertical
axis denotes the value of NCScm.

We observe the same phenomenon from these two sub-
figures: the points distribute irregularly. The increase of
NCScd does not necessarily lead to the increase of NCScm

and vice versa. For instance, in the bottom right of Fig. 3a,
there are two point whose x values are larger than 400 with
y values only being 1. Such cases indicate that developers
modify a large amount of sub-tokens in the code change while
only modify 1 sub-token in the corresponding comment. We
thus conclude that NCScd and NCScm possess no monotonic
relationship. That is to say, one cannot predict NCScm based
on NCScd and vice versa.

Note that we have analyzed the situation from training set
and find a similar trend. We do not show the figure in this
paper due to space constraints.

Finding-2 * The numbers of changed sub-tokens in code
changes (NCScd) and in comment updates (NCScm) are
not strongly related with each other.

B. RQ2: [Performance on Cleaned Dataset]
We re-train and re-evaluate CUP on our dataset on a server

with 1660 Ti GPU. Results are listed in Table II.
We observe that the performance of CUP on the cleaned

dataset is comparable with that from the original dataset.
Although the accuracy drops slightly from 16.7% to 15.8%,
the recall@5 increases from 26.1% to 26.8%, which means
more ground-truth are generated in the top-5 candidates. Fur-
thermore, the AED and RED values only experience negligible
changes, e.g., , the AED changes from 3.54 to 3.62, meaning
that the distance between the generated comment and the
ground-truth is enlarged to a little extent.

This observation is in line with the one from the authors
[11] which shows that CUP may also work poorly on the
omitted language expression optimization cases.

Finding-3 * Switching to a cleaned dataset does not result
in significant reduction of performance for CUP.

To deeply understand the effectiveness of CUP, we further
propose to check the generality of CUP, that is, whether CUP
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(a) Cases from test set (b) Cases from validation set
Fig. 3: Scatter plot for cases from test and validation sets on their NCScd and NCScm values.

(a) NCScd (b) NCScm

Fig. 4: Comparison between the correct cases and the whole test set w.r.t NCScd and NCScm.

tends to generate correct comments for cases whose NCScd

and NCScm are small. We compare the values of NCScd and
NCScm from cases where correct comments are generated
with figures from all cases in test set. The distributions are
illustrated in Fig. 4. Note that the dataset Correct is hence a
subset of the dataset Test.

This time, we observe obvious differences within the distri-
butions. From the perspective of NCScd, the medium value
of the correct dataset is 6 while that of the test dataset is 12.
Similarly, from the perspective of NCScm, the upper quartile
of correct dataset is 3, while that is only the medium value of
the test set.

We again perform Mann-Whitney U-Test on the distribu-
tions from correct dataset and test dataset w.r.t NCScd and
NCScm. Results reveal that the differences are significant
with both p-values being less than 0.001. We thus reach the
conclusion that CUP tend to generate correct comments for
simple cases in the test set.

Finding-4 * The performance of CUP does not general-
ize: it is more effective for simple changes, e.g., where the
number of sub-token changes for NCScd is small.

C. RQ3: [Success of CUP ]

So far we have known that CUP tend to make sense for
simple cases measured by NCScd and NCScm. To deeply
understand where and why CUP works, we manually analyze
the 1 456 cases where it generates the correct comments in our
evaluation. Two authors analyzed these cases independently
and cross-checked each other’s results until they reached
consensus. Note that to provide more observations, we also
analyze the results from the granularity of token in this and
the following RQs.

Based on the manual analysis, we find that the success of
CUP is mainly based on two factors which are: (1) the com-
plexity of the comment change and (2) the relation between
the comment change and code change. Specifically, whether

the comment change is single token based or single sub-token
based and whether the sub-tokens of comment change occur in
the corresponding code change can significantly influence the
results of CUP. We summarize our investigation in Table III.
Please note that we have defined these types of comment
updates in Section II-B.
TABLE III: The performance of CUP on different types of
comment updates.

Comment update type # U # CU Accuracy # CIU # C & CIU Proportion
Single token 4426 1406 31.8% 3028 1347 95.8%
Single sub-token 2558 711 27.8% 1639 697 98.0%

All (test set) 9204 1456 15.8% 3639 1362 93.5%

U: update, CU: correct update, CIU: code-indicative update, C & CIU: correct and code-
indicative update, Accuracy: number of CU divided by number of U, Proportion: number of
C & CIU divided by number of CU.

Results reveal a number of findings. First, we find CUP is
far more effective on single token/sub-token updates than on
all cases. Its accuracy reaches 31.8% and 27.8% respectively,
nearly twice as the average value on the whole test set.
Furthermore, it can be calculated that nearly half (48.8% =
711/1 456) of correct comment updates are generated for single
sub-token update and a huge amount (96.6% = 1 406/1 456)
of correct comment updates are generated for single token
update. It should be noted that a single sub-token update is
also a single token update but not vice versa. That is the reason
why the number of the former is less than that of the latter.

Finding-5 * CUP performs better on single token/sub-
token updates than other cases. Single token/sub-token up-
dates occupy a large amount of correct updates generated
by CUP (96.6% and 48.8% respectively).

In the right part of the table, we demonstrate some statistics
about code-indicative updates. There are totally 3 639 code-
indicative updates in the test set while the figures for single
token/sub-token updates are 3 028 and 1 639 respectively. We
note that code-indicative updates are more common in single
token/sub-token updates. For instance, 68.4% (3 028/4 426)
single token updates are code-indicative while the proportion
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TABLE IV: Test sample 1.
Code Change:

public synchronized int requestUpdate() {
this.needUpdate = true;

− return this.version;
+ return this.updateVersion;
}
Old Comment: Request an update of the current cluster metadata info, return
the current version before the update.
New Comment & CUP: Request an update of the current cluster metadata
info, return the current updateVersion before the update.

of all cases in test set is only 39.5% (3 639/9 204).
We do the statistics about the comment updates which are

both code-indicative and correctly generated. We calculate
the proportions of these updates in the correctly generated
updates and list them in the last column. We find this time, no
matter whether being single token/sub-token update or not,
the proportions of code-indicative updates in the correctly
generated cases are all extremely high (figures under all
situations exceeding 90%). This suggests that for most of
the successful cases, the relevant content for performing the
comment update can be found in the corresponding code
change.

Finding-6 * The vast majority of correct comment updates
generated by CUP are code-indicative ones, either single
token/sub-token updates or not.

As shown in the table, among all the 3 639 code-indicative
updates, CUP successfully captures code change information
and generates correct comments for 1 362 cases. To better un-
derstand how CUP succeeds, we perform a case study on the
code change listed in Table IV. With the change updating the
return value of this method, developers update the document
by changing the word token “version” to “updateVersion” to
keep consistent. This is a single token update but not a single
sub-token case since CUP is case-sensitive (the NCScm here
is thus two: inserting “update” and replacing “version” with
“Version”). CUP generates correct comment in this case.

We recall that CUP generally adopts a seq2seq paradigm, in
which the new comment is generated sub-token by sub-token.
When generating the following sub-token, CUP calculates
probabilities for sub-tokens from three sources, which are (1)
the whole vocabularies existing in the training set, (2) the old
comment, and (3) the new method code. We draw in Fig. 5
the attention map of CUP when generating this new comment,
which shows the relationship between the sub-token sources
(vertical axis) and the generated sub-tokens (horizontal axis).
The contribution of each sub-token source is the maximum
weight from its contained sub-tokens. The color scale, shown
on the right of the figure, varies from 0 (white) to 1 (black)
and indicates the contribution of each sub-token source for
generating an output sub-token. We note that under most
conditions, CUP generates the sub-token by referring to the
old comment. Nevertheless, as highlighted, when generating
the two changed sub-tokens, information from new code plays
a more important role. We manually checked the sources of the
maximum weights in the new code for these two sub-tokens

Fig. 5: Attention map for the case from Table IV generated
by CUP.

Fig. 6: Attention map for the case from Table V generated by
CUP.

TABLE V: Test sample 2.
Code Change:

− public RDFParser getParser() {
+ public TupleQueryResultParser getParser() {

return new BigdataSPARQLResultsJSONParser();
}

Old Comment: Returns a new instance of {@link TurtleParser}.
New Comment: Returns a new instance of {@link SPARQLResultsJSON-
Parser}.
CUP: Returns a new instance of {@link TupleQueryResultParser}.

and confirmed that they are indeed the changed sub-tokens
(i.e., “update” and “Version”). This indicates that CUP can
indeed capture the code change information and utilize it for
guiding the generation of new comment.

Finding-7 * CUP can capture code change informa-
tion well for around 37% of code-indicative updates
(1 362/3 639).

D. RQ4: [Failures of CUP ]

To investigate where and why CUP fails, we conduct
another manual analysis. This time there is totally 7 748 cases.
Thus, it is challenging, if not impossible, to analyze all of
these cases manually. We thus randomly sample one thousand
for manual analysis. Again, two authors analyzed them and
checked the results before reporting the following findings.

We find that the major reason for the failure of CUP is
the exclusion of comment update content in the code change,
happening in 70.6% cases (706/1 000) of our manual analysis.
An example is given in Table V. The newly added sub-
tokens in the comment (i.e., SPARQL, Results, and JSON) do
not appear in the code change but in the unchanged part of
the code. However, CUP generates the comment based on
the changed part of the code. We draw the attention map
in Fig. 6. Note that to make clear comparison between the
newly-added code sub-tokens and the oracles (i.e., sub-tokens
that should be appeared in the comment), we split the grid
at the corresponding locations and illustrate the weights of
newly-added sub-tokens and oracles at the left and right sides,
respectively. From the results, the weights of newly-added
code sub-tokens are much higher than those from the oracle
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TABLE VI: Test sample 3.
Code Change:

− public PartBarline getRightBarline ()
+ public PartBarline getRightPartBarline ()
{

return rightBarline;
}

Old Comment: Report the ending Barline.
New Comment: Report the ending PartBarline.
CUP: Report the ending Barline.

Fig. 7: Attention map for the case from Table VI generated
by CUP.

TABLE VII: Test sample 4.
Code Change:

− public boolean isReprUrlDirty(java.lang.CharSequence value) {
+ public boolean isHeadersDirty() {

− return isDirty(17);
+ return isDirty(18);

}
Old Comment: Checks the dirty status of the ‘ReprUrl’ field.
New Comment: Checks the dirty status of the ‘Headers’ field.
CUP: Checks the dirty status of the ‘18’ field.

sub-tokens which are close to zero, leading to the wrong
result outputted by CUP. For instance, when generating the
next sub-token after link, the weight of the newly-added code
Tuple is more than 0.8, much higher than that from the oracle
sub-token SPARQL whose attention weight is almost 0. The
same phenomenon can be observed for the following two sub-
tokens. Such a case indicates that sometimes CUP may over-
emphasize the information from code change while ignoring
the other part of code.

There are also some code-indicative updates that cannot be
generated by CUP. We find mainly two reasons for such situ-
ations. The first is that CUP does not capture the code change
information and still generates the old comment, happening in
10.4% of cases (104/1 000). An example is illustrated in Ta-
ble VI where developers modify the method name, and thus the
comment should be updated consistently. Unfortunately, CUP
does not update it successfully but generates the old comment.
The corresponding attention map in Fig. 7 demonstrates the
generation process of CUP. We note that when it is expected
to generate the sub-token Part, CUP focuses on information
from the old comment which is actually barline, leading to its
failure. Such a case indicates that sometimes the information
from code change can be ignored by CUP.

The second reason is that in 12.8% of cases (128/1 000),
it is also possible for CUP to be misled by the additional
information in the code change. We give an example in
Table VII. In this case, there are two changed sub-tokens
in the new code which are Headers and 18. When updating
the comment, developers only concentrate on the filed name
reflected by the method name so that the parameter 18 is

Fig. 8: Attention map for the case from Table VII generated
by CUP.

useless information. However, CUP does not generate the
correct update. Instead, it includes 18 in its output. The
attention map in Fig. 8 demonstrates the generation process.
The rewarding thing is that CUP does know where to update,
i.e., it modifies the correct sub-token. However, it generates a
wrong sub-token. As we can see, the weight of 18 is much
higher than that of Headers, which is almost 0.

Finding-8 * CUP often fails mainly because (1) it cannot
borrow the relevant content directly in the code change, (2)
code change information is unfortunately ignored (10.4%),
and (3) it is misled by the additional information in the
code change (12.8%).

V. HEURISTIC BASED ALTERNATIVE APPROACH

CUP is a sophisticated DL-based approach that requires
training on a large corpus of high quality method-comment
co-change instances. It is quite time-consuming and resource-
consuming to learn such its final generation model. Further-
more, its inner working is hard to interpret. Specifically, it
sometimes captures the code change information (cf. Fig. 5),
and sometimes exaggerates the role of code change informa-
tion (cf. Fig. 6). In other cases, this information is ignored (cf.
Fig. 7). In this section we investigate whether a simple and
straightforward approach can provide reasonable performance
for code comment update. We refer this approach as HEBCUP,
an heuristic-based comment updater.

The design strategy of HEBCUP is based on our empirical
findings that (1) nearly all correctly generated updates are
code-indicative ones (Finding-6) and (2) more correct com-
ment updates are generated at the token level than the sub-
token level (cf. Table III). We are thus motivated to concentrate
on the changed code as well as perform the comment update
at the token level.

A. Proposed Approach

The pipeline of HEBCUP is demonstrated in Fig. 9. Given
a pair of statements before and after a code change, we first
identify the changed tokens. Then, for each modified token,
we align its sub-tokens to capture the added/deleted/replaced
sub-tokens, after which we construct token-level replacement
pairs (i.e., the mapping relations between old tokens and their
potential new tokens for update) based on the modified sub-
tokens. The intuition is that the changed code token may not
appear in the comment. For instance, if a method name is
changed from getX to getY, its comment may be updated
from “return X” to “return Y”, where the update object cannot
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Fig. 9: Overview of the HEBCUP for comment update.

be found from the code change through token-level analysis.
Hence, directly using the pre- and post-updated code token
for comment update is inappropriate. We are thus motivated
to extract more information via analyzing sub-token level
differences. In case an old token corresponds to several new
tokens, we further assign each candidate a priority. In the
last step, we seek if there is any old token that appears in
the old comment. Upon identification, we update it using its
corresponding new token.
Modified token identification. Given a code pair containing
the old and new statements as input, we tokenize the state-
ments and locate the modified tokens. This is done through
the lexer utilized in CUP.
Sub-token alignment. The inputs of this step are two different
tokens, one from the old code while another from the new code
(getRightBarline and getRightPartBarline in our example).
The step aims to find out the changed sub-tokens and align
these two tokens for the next step.

Algorithm 1 details the process. Given two tokens, we
first compare their first sub-tokens to check if the two sub-
tokens are identical (cf. line 3). If so, the mapping relation
between the two sub-tokens is recorded and we iteratively
compare the rest of the two tokens (cf. lines 4 and 5). If
not, we start from the tail to check if the two last sub-tokens
are identical and perform a similar operation (cf. lines 7 to
9). This iteration process is terminated when (1) there is no
element in the input old/new sub-token list which indicates
an addition/deletion operation or (2) neither the head sub-
tokens nor the tail sub-tokens can be matched which indicates
a replacement operation. Under the former condition, we use
φ to map with the left of the token which still has content
(cf. lines 11 to 16); while under the latter condition, the left
parts of the two tokens are mapped directly (cf. lines 17
to 20). For instance, for the case in Fig. 9, the two tokens
are aligned in the order of get → get, Right → Right,
Barline → Barline, φ → Part. Note that we also restore
the order of the mapping relations based on the original tokens.
Hence, the output of this step is two ordered and aligned sub-
token sequences.
Replacement pair construction. So far we have identified the
modified sub-token in the code (i.e., the different part in the
two input sequences). In this step, we construct token-level

Algorithm 1: Sub-token alignment algorithm.
Input: The old token TO with sub-token sequence sold = { SO1,

SO2, . . . , SOm }.
Input: The new token TN with sub-token sequence snew = {

SN1, SN2, . . . , SNn }.
Output: The map that records how the two sequences are aligned.

1 Function SA(map, sold, snew):
2 /* Align from the head. */
3 if sold.first == snew.first then
4 map.add(sold.first→ snew.first) ;
5 SA(map, sold.removefirst, snew.removefirst) ;

6 /* Align from the tail. */
7 if sold.last == snew.last then
8 map.add(sold.last→ snew.last) ;
9 SA(map, sold.removelast, snew.removelast) ;

10 /* If one of the sequences is null, pad it
with φ to align with the other one. */

11 if sold.length == 0 then
12 map.add(φ→ snew) ;
13 return map ;

14 else if snew.length == 0 then
15 map.add(sold → φ) ;
16 return map ;

17 else
18 /* If no sub-token can be matched, the

left sub-tokens are mapped as a
whole. */

19 map.add(sold → snew) ;
20 return map ;

replacement pairs for comment update, which is to enumerate
all possible old tokens with their potential updates.

Formally, given two aligned sub-token sequences, sto and
stn, with length being l. The replacement pairs rps are:

rps = {< sto[i : j], stn[i : j] >| 1 ≤ i ≤ j ≤ l}

where sto[i : j] denotes the token compromised of the ith
through the jth sub-tokens of sto and the similar for stn[i : j].
Note that we directly ignore φ when connecting sub-tokens to
shape tokens. The output set of this step can thus be considered
as a HashMap where the keys are old tokens and values are
potential new tokens for replacement. Pairs whose keys and
values are identical are not updates and are thus removed.
Replacement pair ranking. A code change may modify
several statements in the method. As a result, in practice,
an old token may possess several candidate new tokens for
replacement. For instance, in a changed method from the
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TABLE VIII: Effectiveness of HEBCUP vs. CUP.
Technique Accuracy Recall@5 AED RED

CUP 15.8% (1 456/9 204) 26.8% 3.62 0.960
HEBCUP 25.6% (2 360/9 204) 27.6% 3.52 0.896

TABLE IX: Efficiency of HEBCUP vs. CUP.
Technique Device Training Time Testing Time

CUP GTX 1660 Ti 8 hours 22 mins
HEBCUP CPU N/A 17 secs

GTX 1660 Ti refers to Nvidia GeForce GTX 1660 Ti. CPU is Intel Core i7 3.0GHz.

linked commit 4, the token read possesses two candidates
which are hasReadPermission and readPermission. We thus,
in this step, sort these candidates according to the number of
sub-tokens they own. The behind intuition is that a token with
more sub-tokens can possess more semantic information and
hence is more likely to appear in the comment for program
comprehension. After this step, the values (new tokens) for the
same keys (old tokens) in the replacement pair set are ranked.
Matching and update. The comment is updated in the last
step. Since NCScd and NCScm are not strongly related
(Finding-2), one cannot infer NCScm from NCScd. Hence,
we traverse tokens in the old comment and if any of them
matches the keys in the replacement pair set, we use the
corresponding values to update it (which means we do not
set a pre-defined threshold of NCScm). The update process
ends after the traversing, therefore, HEBCUP can deal with
both single token updates and multiple token updates. If no
matched token found, HEBCUP outputs the original comment.
B. Evaluation

We compare our HEBCUP against the state-of-the-art CUP
w.r.t. effectiveness and efficiency on our cleaned dataset.
Results on effectiveness are shown in Table VIII. To calculate
recall@5 of HEBCUP, we allow it to try five candidates for
each matched old token. Results reveal that our approach
outperforms CUP on all metrics. Specifically, its accuracy
value reaches 25.6%, exceeding that of CUP by around 62%.
The RED value of HEBCUP decreases to lower than 0.9, which
indicates that it can better help reduce the manual effort.

Results on efficiency are shown in Table IX. We can see
that it takes 8 hours to train CUP and 22 minutes to test on
the cleaned dataset. Since HEBCUP does not need training,
its training time is marked as “N/A”. The time cost of its
testing process is only 17 seconds. This means that HEBCUP
is considerably (more than 1 700 times) faster than CUP.

Compared against CUP, HEBCUP provides better per-
formance in automated comment updates, in terms of all
metrics. HEBCUP is furthermore about 1 700 times more
efficient than CUP, on our cleaned dataset.

VI. DISCUSSION

A. Generalisation of HEBCUP

There is a concern that our designed HEBCUP is overfitting
to the test set where we perform this empirical study. To

4https://github.com/Azure/azure-sdk-for-java/commit/7411f8e0d721f43c4
be9e7e797edc08af5e7093d.

TABLE X: Effectiveness of HEBCUP vs. CUP/ validation set.
Technique Accuracy Recall@5 AED RED

CUP 19.3% (1 702 /8 827) 26.0% 3.58 0.963
HEBCUP 25.5% (2 251/8 827) 27.2% 3.31 0.960

assess its generality, we perform a post-study experiment to
evaluate HEBCUP on other parts of our dataset. Specifically,
we evaluate HEBCUP on the validation set. For comparison,
we also re-train CUP with exchanging the purposes of the
original validation and test sets. Results are shown in Ta-
ble X. We obtain two insights, both of which demonstrate
the generality of HEBCUP. First, HEBCUP still outperforms
CUP with respect to all metrics. Second, the performance of
HEBCUP declines little compared against that on the test set,
even achieving a better AED. Furthermore, we also evaluate
HEBCUP on the training set. The accuracy value can also
reach 23.8% (19 214/80 591), which further indicates that the
performance of HEBCUP is not restricted to the test set. Such
results are consistent with the fact that the proportions of code-
indicative updates are similar among the three sets, which
are 35.3% (28 426/80 591), 39.8% (3 517/8 827), and 39.5%
(3 639/9 204) in training, validation, and test sets respectively.

B. Implications

Simple approaches first. Our study suggests that fast and
straightforward approaches may achieve comparable or even
better performances on the specific software engineering task,
comment update, compared with time-consuming deep learn-
ing techniques. This finding supports a general call by Fu and
Menzies [15] to “try-with-simpler” approaches that capture the
characteristics of the data while incurring limited computing
cost. Nevertheless, we greatly thank Liu et al.’s efforts to
design CUP, without which designing a simple comment
updater in the first place might be difficult.
Long way to go for comment update. Although HEBCUP
achieves significant improvements on CUP, it should be noted
that it still can only work on code-indicative updates. It is
difficult to manually define templates for comments whose
updated contents do not appear within the code change con-
tent. Similarly, despite being general to all cases theoretically,
the vast majority of success cases from CUP, are also code-
indicative ones. Such results indicate that in the future, mining
the relationship between the code comment and the unchanged
part during code change deserves more in-depth analysis.
There is still a long way to go for automatically updating
code comments.

C. Threats to Validity

A threat to external validity is related to the dataset we
used. It is possible that CUP and HEBCUP demonstrate
different performance on code-comment co-change cases that
are excluded in this dataset. Nevertheless, this is mitigated
in that our dataset contains instances from a large scale (i.e.,
1 496) of top-starred GitHub projects.

A threat to internal validity is that we only randomly
select 1 000 failure cases for dissecting the weaknesses of
CUP. Consequently, some findings may be ignored due to
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this reduction. Nonetheless, it is challenging to analyze all the
cases manually and is thus left as our future work.

VII. RELATED WORK
A. Studies on Code Comment

1) Comment Classification: While code comments help
enhance the readability of the code, it is believed that not
all the comments have the same goal and target audience
[2]. Consequently, researchers propose to classify the code
comments for better program comprehension. Haouari et al.
[23] firstly proposed an initial taxonomy via manually defining
four features,while Steidl et al. [3] defined seven different
comment categories and then leveraged machine learning
models for automatic comment classification. More recently,
Pascarella et al. [2] performed a large-scale empirical study
where a hierarchical taxonomy of Java code comments is built.

2) Comment Generation: One way that may help devel-
opers update comments is to generate comments for updated
methods from scratch directly. Sridhara et al. [24] proposed
an automatic approach that generates natural language sum-
marization of the method’s overall actions via manually de-
fined templates. Hu et al. [25] designed an encoder-decoder
model to generate comments by integrating source code with
structure information. LeClair et al. [26] proposed another
data-driven approach that also combines words from code
with code structure. Note that our study subject in this paper,
CUP, focuses on updating on-hand code comments rather than
generating from scratch. It thus can be considered as dealing
with another problem compared with these related works.

3) Inconsistent Comment Detection: Researchers have in-
vestigated the detection of inconsistent comments. Tan et al.
[27] proposed an approach to infer program properties from
source code and generate random tests to check the inferred
properties. Ratol and Robillard [28] designed a rule-based
approach to detect fragile comments, which denotes comments
that become inconsistent during identifier renaming. Zhou
et al. [29] utilized constraint solver to detect defects from
directives of the API documents.

4) Comment Usage: Researchers also pay attention to how
to utilize high-quality comments. Eberhart et al. [30] designed
an automated approach to extract summary descriptions of
subroutines from unstructured code comments. Tan et al.
[31] extracted interrupt related annotations from code and
comments for detecting operating system concurrency bugs.
Farias et al. [32] reduced false positives generated by self-
admitted technical debt (SATD) detection techniques via code
comment analysis.

B. Deep Learning for Program Comprehension

Recently, researchers propose to solve program comprehen-
sion tasks by taking the advantages of big data and deep
learning techniques. Iyer et al. [33] presented the first data-
driven approach for generating high level summaries of source
code. Recently, LeClair et al. [34] obtained the state-of-the-
art performance on this task by separately encoding structure
information and source code sequence. Deshmukh et al. [35]

first proposed to detect duplicate bug reports with Convolu-
tional Neural Networks (CNN) and Long Short Term Memory
(LSTM). He et al. [36] further used a dual-channel CNN
model to represent a bug report pair together. Li et al. [37]
proposed a model mixed with LSTM and pointer network for
code completion. Liu et al. [38] solved this task via capturing
both structure information and long-term dependency of the
input programs.

C. Machine Learning vs. Heuristics
Some retrospective studies discuss whether the advanced

deep learning techniques really outperform traditional ap-
proaches. To generate commit messages, Jiang et al. [39]
adopted a neural machine translation (NMT) technique to
learn from code change diffs, which is indeed technical
sound since it does not require manually defined templates.
Nonetheless, Liu et al. [21] performed an in-depth analysis
on the performance of this technique and found that a simple
approach based on the nearest neighbor algorithm can better
generate commit messages from diffs. Jiang et al. [40] ana-
lyzed where and why the state-of-the-art AST path-based code
representation technique, code2vec [20], works on method
name generation. Based on their findings, they designed a
heuristic which is rather simple but can outperform code2vec
significantly. Similarly, Pecorelli et al. [41] conducted a large-
scale study to compare the performance of heuristic-based
and machine-learning-based techniques for metric-based code
smell detection and found that heuristic techniques perform
better. Our results also demonstrate that a simple approach
may outperform complex neural networks in specific tasks
(e.g., comment update).

VIII. CONCLUSION

With recent advances in deep representation learning tech-
niques, several tasks in software engineering are beeing re-
visited by the community towards implementing automation.
Automated comment updating is one such task. In this paper,
we perform an empirical study on CUP, a recent state-of-the-
art DL-based comment updater. We investigate where and why
it works or fails. Based on our findings, which highlight that
the gaps that research must fill, we propose a simple heuristic-
based method as a baseline for future work. HEBCUP was
found to be both more effective and more efficient than CUP.
Like CUP, however, HEBCUP is not sufficiently effective
beyond simple comments. All data in the study are publicly
available at: https://github.com/Ringbo/HebCup.
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