
Learning to Spot and Refactor
Inconsistent Method Names

Kui Liu†, Dongsun Kim†, Tegawendé F. Bissyandé†, Taeyoung Kim‡, Kisub Kim†, Anil Koyuncu†,
Suntae Kim‡, Yves Le Traon†

†Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg

{kui.liu, dongsun.kim, tegawende.bissyande, kisub.kim, koyuncu.anil, yves.letraon}@uni.lu
‡Department of Software Engineering, Chonbuk National University, South Korea

{rlaxodud1200, jipsin08}@gmail.com

Abstract—To ensure code readability and facilitate software
maintenance, program methods must be named properly. In
particular, method names must be consistent with the corre-
sponding method implementations. Debugging method names
remains an important topic in the literature, where various
approaches analyze commonalities among method names in a
large dataset to detect inconsistent method names and suggest
better ones. We note that the state-of-the-art does not analyze the
implemented code itself to assess consistency. We thus propose a
novel automated approach to debugging method names based
on the analysis of consistency between method names and
method code. The approach leverages deep feature representation
techniques adapted to the nature of each artifact. Experimental
results on over 2.1 million Java methods show that we can
achieve up to 15 percentage points improvement over the state-
of-the-art, establishing a record performance of 67.9% F1-
measure in identifying inconsistent method names. We further
demonstrate that our approach yields up to 25% accuracy in
suggesting full names, while the state-of-the-art lags far behind
at 1.1% accuracy. Finally, we report on our success in fixing 66
inconsistent method names in a live study on projects in the wild.

“If you have a good name for a method, you don’t need to
look at the body.” — Fowler et al. [1]

I. INTRODUCTION

Names unlock the door to languages. In programming,

names (i.e., identifiers) are pervasive in all program concepts,

such as classes, methods, and variables. Descriptive names

are the intuitive characteristic of objects being identified; thus,

correct naming is essential for ensuring readability and main-

tainability of software programs. As highlighted by a number

of industry experts, including McConnell [2], Beck [3], and

Martin [4], naming is one of the key activities in programming.

Naming is a non-trivial task for program developers. Stud-

ies conducted by Johnson [5], [6] concluded that identifier

naming is the hardest task that programmers must complete.

Indeed, developers often write poor (i.e., inconsistent) names

in programs due to various reasons, such as lacking a good

thesaurus, conflicting styles during collaboration among sev-

eral developers, and improper code cloning [7].

Method names are the intuitive and vital information for de-

velopers to understand the behavior of programs or APIs [8]–

[11]. Therefore, inconsistent method names can make pro-

grams harder to understand and maintain [12]–[18], and may

even lead to software defects [19]–[22]. Poor method names

public boolean containsField(Field f){
return fieldsList.contains(f);}

private ResolvedMember findField(ResolvedType resolvedType,String fieldName){
for(ResolvedMember field : resolvedType.getDeclaredFields()){

if (field.getName().equals(fieldName)){ return field;}}
return null;}

public Field containsField(String name){
for(Iterator e = this.field_vec.iterator(); e.hasNext();){

Field f = (Field) e.next();
if (f.getName().equals(name)){ return f;}}

return null;}

Fig. 1. Motivation examples taken from project AspectJ.

are indeed prone to be defective. For example, the commonly-

used FindBugs [23] static analyzer even enumerates up to ten

bug types related to method identifiers.
Figure 1 provides examples from project AspectJ [24] to

illustrate how inconsistent names can be confusing about the

executable behavior of a method. The name of the first method,

containsField, suggests a question and is consistent with

the method behavior which is about checking whether the

fieldsList contains the target field f. The second method

implements the search of a field in the target dataset and is

thus consistently named findField. The third method is

implemented similarly to the second method findField, but

is named containsField as the first method. This name is

inconsistent and can lead to misunderstanding of API usage.
As a preliminary study on the extent of the inconsistent

method naming problem, we investigated posts by developers

and users on fora and code repositories. We performed a search

using composite conjunctions of “method name” and a cate-

gory of keywords (i.e., inconsistent, consistency, misleading,
inappropriate, incorrect, confusing, wrong, bug and error) to

match relevant questions in StackOverflow [25] and commit

logs in GitHub [26]. As a result, we managed to spot 5,644

questions and 183,901 commits. Figures 2 show some excerpts

of retrieved results.
Additionally, to assess the extent to which developers are

prone to fix method names, we investigated the history of

changes in all 430 projects collected for our experiments:

in 53,731 commits, a method name is changed without any

change to the corresponding body code. We further tracked

future changes and noted that in 16% of the cases, the change

is final (i.e., neither the method body nor the method name

is changed again in later revisions of the project). These

findings suggest that developers are indeed striving to choose

appropriate method names, often to address consistency with

the contexts of their code.

1

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)

1558-1225/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE.2019.00019

(a) From questions in StackOverflow. (b) From commit logs in GitHub.
Fig. 2. Excerpts of spotted issues about inconsistent method names.

To debug method name, Høst and Østvold [27] explored

method naming rules and semantic profiles of method imple-

mentations. Kim et al. [7] relied on a custom code dictionary

to detect inconsistent names. Allamanis et al. introduced the

NATURALIZE framework [28] learning the domain-specific

naming convention from local contexts to improve the stylistic

consistency of code identifiers with n-gram model [29]. Then,

building on this framework, they proposed a log-bilinear

neural probabilistic language model to suggest method and

class names with similar contexts [30]. The researchers lever-

aged attentional neural networks [31] to extract local time-

invariant and long-range topical attention features in a context-

dependent way to suggest names for methods.

Overall, their context information is limited to local identi-

fier sub-tokens and the data types of input and output. While

the state-of-the-art has achieved promising results, a prime

criterion of naming methods has not been considered: the

implementation of methods that is a first-class feature to assess

method naming consistency since method names should be

mere summaries of methods’ behavior [1]. Examples shown

in Figure 1 illustrate the intuition behind our work:

Methods implementing similar behavior in their body code
are likely to be consistently named with similar names, and
vice versa. It should be possible to suggest new names for a
method, in replacement to its inconsistent name, by consid-
ering consistent names of similarly implemented methods.

In this paper, we propose a novel automated approach

to spotting and refactoring inconsistent method names. Our

approach leverages Paragraph Vector [32] and Convolutional

Neural Networks [33] to extract deep representations of

method names and bodies, respectively. Then, given a method

name, we compute two sets of similar names: the first one

corresponds to those that can be identified by the trained model

of method names; the second one, on the other hand, includes

names of methods whose bodies are positively identified as

similar to the body of the input method. If the two sets intersect

to some extent (which is tuned by a threshold parameter), the

method name is identified to be consistent, and inconsistent

otherwise. We further leverage the second set of consistent

names to suggest new names when the input method name is

flagged as inconsistent.

To evaluate our proposed approach, we perform experiments

with 2,116,413 methods of training data and 2,805 methods

with changed names of test data, which are collected from

430 open source Java projects. Our experimental results show

that the approach can achieve an F1-measure of 67.9% in the

identification of inconsistent method names, representing an

improvement of about 15 percentage points over the state-of-

the-art. Furthermore, the approach achieves 34−50% accuracy

on suggesting first sub-tokens and 16−25% accuracy on

suggesting accurate full names for inconsistent method names,

again outperforming the state-of-the-art. Finally, we report

how our approach helped developers in fixing 66 inconsistent

method names in 10 projects during a live study in the wild.

II. BACKGROUND

This section briefly describes three techniques from the

field of neural networks, namely Word2Vec [34], Paragraph

Vector [32] and Convolutional Neural Networks [33]. Our

approach relies on these techniques to achieve two objectives:

(1) embedding tokens from method names and bodies into nu-

merical vector forms, and (2) extracting feature representations

for accurately identifying similar method names and bodies.
1) Paragraph Vector: Paragraph Vector is an unsupervised

algorithm that learns fixed-length feature representations from

variable-length pieces of texts, such as sentences and para-

graphs [32]. This technique was proposed to overcome the lim-

itations of bag-of-words [35] features which are known to (1)

lose the ordering of the words and (2) ignore the word seman-

tics. Recent literature has provided evidence that paragraph

vector outperforms other state-of-the-art techniques [35], [36]

for text representations [32], [37], and can effectively capture

semantic similarities among words and sentences [38]–[42].
In our work, we use Paragraph Vector for training a model

to compute similarities among method names (considering se-

quences of method name sub-tokens as sentences). We expect

this model to take into account not only the lexical similarity

but also the semantic similarity: for example, function names

containsObject and hasObject should be classified as

similar names since both of them describe the functionality of

code implementation to check whether a set contains a specific

object put in argument(s). We detail in later parts of this paper

how method names are processed in our approach to feeding

the Paragraph Vector algorithm.
2) Convolutional Neural Networks (CNNs): CNNs are

biologically-inspired variants of multi-layer artificial neural

networks [33]. Initially developed and proven effectiveness in

the area of image recognition, CNNs have gained popularity

for handling various NLP tasks. For text classification, in

particular, these deep learning models have achieved remark-

able results [43], [44] by managing to capture the semantics

of sentences for relevant similarity computation. Recently, a

number of studies [45]–[51] have provided empirical evidence

2

to support the naturalness of software [52], [53]. Thus, in-

spired by the naturalness hypothesis, we treat source code,

in particular, method bodies, as documents written in natural

language and to which we apply CNNs for code embedding

purpose. The objective is to produce a model that will allow

to accurately identify similar method code. A recent work by

Bui et al. [54] has provided preliminary results showing that

some variants of CNNs are even effective to capture code

semantics so as to allow the accurate classification of code

implementations across programming languages.

In this study, we use LeNet5 [55], a specific implementation

of CNNs, which consists of lower-layers and upper-layers (see

Figure 4 for its architecture). The lower-layers are composed

of alternating convolutional and subsampling layers, which

are local-connected. The upper-layers are fully-connected and

correspond to a traditional MLP (hidden layer + logistic

regression). The input to the first fully-connected layer is the

set of all feature maps at the previous layer.

3) Word2Vec: When feeding tokens of a method body to

CNNs, it is necessary to convert the tokens into numerical

vectors. Otherwise, the size of a CNN’s input layer would

be too large if using one-hot encoding, or interpreting its

output can be distorted if using numeric encoding (i.e., as-

signing a single integer value for each token). The machine

learning community often uses vector representation for word

tokens [32], [43], [56]. This offers two advantages: (1) a large

number of (unique) tokens can be represented as a fixed-width

vector form (dimensionality reduction) and (2) similar tokens

can be located in a vector space so that the similar tokens

can be dealt with CNNs in a similar way. Our approach uses

Word2Vec [34] to embed tokens of method bodies.

Word2Vec [57] is a technique that encodes tokens into n-

dimensional vectors [34], [58]. It is basically a two-layered

neural network dedicated to process token sequences. The

neural network takes a set of token sequences (i.e., sentences)

as inputs and produces a map between a token and a numerical

vector. The technique not only embeds tokens into numerical

vectors but also places semantically similar words in adjacent

locations in the vector space.

III. APPROACH

This section presents our approach to debugging inconsis-

tent method names. As illustrated in Figure 3, it involves two

phases: (1) training and (2) identification & suggestion. In

the training phase, taking as input a large number of methods

from real-world projects, it uses Paragraph Vector for method

names and Word2Vec + CNNs for method bodies to embed

them into numerical vectors (hereafter simply referred to as

vectors), respectively. Eventually, two distinct vector spaces

are produced and will be leveraged in the next phase. The

objective of the training phase is thus to place similar method

names and bodies into adjacent locations in each vector space.

The identification & suggestion phase determines whether a

given method has a name that is consistent with its body code

by comparing the overlap between the set of method names

that are close in the method name vector space and the set of

methods names whose bodies are close in the method body

vector space. When the overlap is ∅, the name is considered

to be inconsistent with the body code and suggested with

alternative consistent names.

Before explaining the details of these two phases, we first

describe an essential step of data processing that adapts to the

settings of code constructs.

A. Data Preprocessing
This step aims at preparing the raw data of a given method

to be fed into the workflow of our approach. We consider

the textual representations of code and transform them into

tokens (i.e., basic data units) which are suitable for the deep

representation learning techniques described in Section II.

Given that method names and bodies have different shapes

(i.e., names are about natural language descriptions while

bodies are focused on code implementations of algorithms),

we propose to use tokenization techniques adapted to each:

• Method name tokenization: Method names are broken

into sub-token sequences based on camel case and un-
derscore naming conventions, and the obtained sub-tokens

are brought to their lowercase form. This strategy has

been proven effective in prior studies [7], [27], [28], [30],

[31], [59]. For example, method names findField and

find_field are tokenized into the same sequence [find,

field], where find and field are respectively the first

and second sub-tokens of the names.
• Method body tokenization: Method bodies are converted

into textual token sequences by following the code parsing

method proposed in our previous study [60]: this method

consists in traversing the abstract syntax tree (AST) of

a method body code with a depth-first search algorithm

to collect two kinds of tokens: AST node types and

raw code tokens. For example, the declaration statement

“int a;” will be converted into a four-token sequence:

[PrimitiveType, int, Variable, a]. Since noisy in-

formation of code (e.g., non-descriptive variable names such

as a, b) can interfere with identifying similar code [61],

all local variables are renamed as the concatenation of

their data type with the string Var. Eventually, the pre-

vious declaration code will be represented by the sequence:

[PrimitiveType, int, Variable, intVar].

B. Training
This phase takes tokens of method names and bodies in a

code corpus to produce two numerical vector spaces that are

leveraged to compute similarities, among method names, on

the one hand, and among method bodies, on the other hand,

for eventually identifying inconsistent names and suggesting

appropriate names. Note that the objective is not to train

a classifier whose output will be some classification label

given a method name or body. Instead, we adopt the idea of

unsupervised learning [62] and lazy learning [63] to embed

method names and bodies.

Token sequences of method names are embedded into

vectors by the paragraph vector technique described in Sec-

tion II-1 since token sequences of method names resemble

sentences describing the methods. In contrast, all tokens in a

3

Method
corpus

[ReturnStatement return contains ……]
[IfStatement if VariableName == ……]
[ReturnStatement return stringVar …]
[IfStatement if Operator ! start ……]
[IfStatement if VariableName <= ……]
[VariableName stringVar Operator +…]
[stringVar MethodName getPackage ……]

Method name
tokenization

Method body
tokenization

Data preprocessing

Token
embedding

(Word2Vec)

Method name
embedding

(Paragraph Vector)

Method body
embedding

(CNNs)

Training Identification and Suggestion

Method
being

identified
Yes

No

Consistent method
name

Inconsistent method
name with suggested

new names

M h d

[update Element Namespaces]
[handle Event]
[check Property Name]
[create Xml Event Reader]
[get Relative Name]
[load Schema]
[next Event]

Method name
vector space

Method body
vector space

inconsistent

[is Property Name]
[check Property Name]
[get Input Stream For Resource]
[create Xml Event Reader]
……

Name vector

Body vector

Fig. 3. Overview of our approach to spotting and refactoring inconsistent method names.

method body are first embedded into vectors using Word2Vec.

The embedded token vectors are then fed to CNNs to embed

the whole method body into a vector, which will be used to

represent each method body as a numerical vector.
1) Token Embedding for Method Bodies: As shown in Fig-

ure 3, tokens of method bodies are embedded into individual

numerical vectors before they can be fed to the CNNs. To that

end, the token embedding model is built as below:

TVB ← EW (TB) (1)

where EW is the token embedding function (i.e.,

Word2Vec [34] in our case) taking as input a training

set of method body token sequences TB . The output is then a

token mapping function TVB : TWB → VBW , where TWB

is a vocabulary of method body tokens, and VBW is the

vector space embedding the tokens in TWB .
After token embedding, a method body is eventually repre-

sented as a two-dimensional numerical vector. Suppose that a

given method body b is represented by a sequence of tokens

Tb = (t1, t2, t3, . . . , tk), where ti ∈ TWB , and Vb is a two-

dimensional numerical vector corresponding to Tb. Then Vb is

inferred as follows:

Vb ← l(Tb,TVB) (2)

where l is a function that transforms a token sequence

of a method body into a two-dimensional numerical vec-

tor based on the mapping function TVB . Thus, Vb =
(v1, v2, v3, . . . , vk) ∈ VB , where vi ← TVB(ti) and VB is

a set of two-dimensional vectors.
Since token sequences of method bodies may have different

lengths (i.e., k could be different for each method body),

the corresponding vectors must be padded to comply with a

fixed-width input layer in CNNs. Our approach follows the

workaround tested by Wang et al. [64] and appends PAD

vectors (i.e., zero vectors) to make all vector sizes consistent

with the size of the longest one (see Section IV-2 for how

to determine the longest one). For example, the left side of

Figure 4 (See Section III-B2 for its description) shows how

a method body is represented by a two-dimensional n × k
numerical vector, where n is the vector size of each token

and k is the size of the longest token sequence of bodies.

Each row represents a vector of an embedded token, and the

last two rows represent the appended zero vectors to make all

two-dimensional vector sizes consistent.
2) Embedding Method Names and Bodies into Vectors:

Vector spaces are built by embedding method names and

bodies into corresponding numerical vectors. For method

…
…

…
…

n k (a two-
dimensional numeric

vector representation of
a method body)

Input layer C1: 3 feature maps

S1: 3 feature maps

C2: 5 feature maps

S2: 5 feature maps

Output
layer

ForStatement
for

Type
Iteration
Variable

iterationVar
Operator

=

0
0

Dense layer

Output is the embedded
vector of method body

…
…

0 0 0 0 00
0 0 0 0 00

Fig. 4. Architecture of CNNs [55] used in our approach to vectorize method
bodies, where C1 and C2 are convolutional layers, and S1 and S2 are
subsampling layers, respectively.

names, we feed the sub-token sequences (i.e., one sequence per

method name) to a paragraph embedding technique. Specifi-

cally, we leverage the paragraph vector with distributed mem-

ory (PV-DM) technique [32], which embeds token sequences

into a vector space as follows:

NVname ← EPV (TN) (3)

where EPV is the paragraph vector embedding function (i.e.,

PV-DM), which takes as input a training set of method name

sub-token sequences TN . The output is a name mapping

function NVname : TN → VN , where VN is an embedded

vector space for method names. This step is similar to classical

word embedding with differences in the mapping relationships.

The paragraph vector embeds a token sequence into a vector,

while Word2Vec embeds a token into a vector.

For method bodies, we need another mapping function,

where the input is a two-dimensional numerical vector for each

method body. The output is a vector corresponding to a body.

This mapping function is obtained by the formula below:

VVbody ← EBV (VB) (4)

where EBV is an embedding function (i.e., CNNs) that takes

the two-dimensional vectors of method bodies (VB) as training

data and produces a mapping function (VVbody). Note that

VB = {Vb1 , Vb2 , Vb3 , . . . , Vbm} is obtained by l (Equation 2),

where Vbi (i ∈ [1,m]) and m is the size of training data.

VVbody is defined as VVbody : VB → V ′
B , where V ′

B is an

embedded vector space of method bodies. Based on VVbody ,

we defined the body mapping function NVbody as:

NVbody : TB → V ′
B (5)

where NVbody is the composition of l and VVbody in Equa-

tions 2 and 4, respectively (i.e., NVbody = (V Vbody ◦ l)(Tb) =
V Vbody(l(Tb))). NVbody takes a token sequence of a method

body and returns an embedded vector representing it.

4

Our approach uses CNNs [33] as the embedding function

EBV in Equation 5. Figure 4 shows the architecture of CNNs

that our approach uses. The input is two-dimensional numeric

vectors of method bodies as stated in Section III-B1. The

two pairs of convolutional and subsampling layers are used to

capture the local features of methods and decrease dimensions

of input data. The network layers from the second subsampling

layer to the subsequent layers are fully connected, which

can combine all local features captured by convolutional and

subsampling layers. We select the output of dense layer as the

vector representations of method bodies, which synthesizes all

local features captured by previous layers.

Note that vectors in the two vector spaces (i.e., VN and

V ′
B) can be indexed by each method name. For a given body

vector of a method, we can immediately find its corresponding

name vector in the name vector space, and vice versa. This

index facilitates the search of corresponding method names

after locating similar method bodies for a given method.

C. Identification & Suggestion
This phase consists of two sub-steps. First, the approach

takes a given method as a query of inconsistency identification.

By leveraging the two vector spaces (i.e., VN and V ′
B) and

the two embedding functions (i.e., NVname and NVbody), it

identifies whether the name of the given method is consistent

with its body. Second, if the name turns out to be inconsistent,

the approach suggests potentially consistent names for it from

the names of similarly implemented methods.

1) Inconsistency Identification: For a given method mi, we

can take a set of adjacent vectors for its name (ni) and body

(bi), respectively (i.e., adj(ni) and adj(bi)). After retrieving

the actual names (i.e., name(∗)) corresponding to vectors in

adj(ni) and adj(bi), we can compute the intersection between

the two name sets as Cfull:

Cfull = name(adj(ni)) ∩ name(adj(bi)) (6)

If Cfull is ∅, we consider bi to be inconsistently named ni.

However, Cfull in Equation 6 is too strict since it relies on

exact matching. In other words, there should exist the same

character sequences between two name sets. For example,

suppose that there is findField in name(adj(ni)) and

findElement in name(adj(bi)) with similar implementa-

tions. This relationship cannot be identified by Cfull even if

they have similar behavior of looking up something.

In the Java naming conventions [65], the first sub-token

often indicates the key behavior of a method [66] (e.g.,

get[...](), contains[...]()). Thus, if the key be-

havior of a given method is similar to those of other methods

with similar bodies, we can regard that the name is consis-

tent. Thus, we relax the condition of consistency. Instead of

comparing the full name, we take the first sub-token of each

name in the two name sets to get the intersection as below:

Crelaxed = first(name(adj(ni))) ∩ first(name(adj(bi)))
(7)

where first(∗) is a function that obtains the first sub-token

set by the same rule of method name tokenization described

in Section III-A. Other subsequent tokens are often highly

Algorithm 1: Inconsistency identification and new names sug-

gestion.

Input: target method (name and body): mi = (ni, bi)
Input: threshold of adjacent vectors: k
Input: set of name vectors obtained from a training set: VN

Input: set of body vectors obtained from a training set: V ′
B

Input: indexes of actual names from all vectors ∀V ∈ VN or V ′
B :

Idxname : V → N
Input: function embedding a name to a vector: NVname

Input: function embedding a body to a vector: NVbody

Output: pair of the consistency determinant of mi (Boolean) and a set of
suggested names: (c, SGn), where SGn is ∅ if c is false.

1 Function identify(mi, VN , V ′
B)

2 // compute name and body vectors of mi.
3 Vn:= NVname(ni);
4 V ′

b := NVbody(bi);
5 // get adjacent name vectors similar to the name vector (Vn) of mi.
6 NameVadj := getTopAdjacent(Vn, VN , k);
7 //get actual names for adjacent name vectors (NameVadj).

8 Names
ni
adj := NameVadj .collect(Idxname(∀V ∈ NameVadj));

9 // get adjacent body vectors similar to the body vector (V ′
b) of mi.

10 BodyVadj := getTopAdjacent(V ′
b , V

′
B , k);

11 // get actual names for adjacent body vectors (BodyVadj).

12 Names
bi
adj := BodyVadj .collect(Idxname(∀V ∈ BodyVadj));

13 // take the first tokens of actual names for adjacent name and body
vectors.

14 fT
ni
adj := Names

ni
adj .collect(tokenizename(∀N ∈ Names

ni
adj).first);

15 fT
bi
adj := Names

bi
adj .collect(tokenizename(∀N ∈ Names

bi
adj).first);

16 if fTni
adj∩ fTbi

adj is ∅ then
17 // mi has an inconsistent name and suggest new names.

18 newNames:= rankNames(Names
bi
adj , BodyVadj);

19 (c, SGn):=(false, newNames);
20 else
21 // mi has a consistent name.
22 (c, SGn):=(true, ∅);

project-specific. Therefore, those subsequent tokens would be

different across projects even if their bodies are highly similar.

Algorithm 1 details the precise routine for checking whether

the name ni of a method is consistent with its body bi
or not. Our approach computes the cosine similarity for a

given method to search for similar methods. After retrieving

the embedded vectors of the name ni and body bi (cf.

lines 3 and 4), the approach looks up the top k adjacent

vectors in the respective vectors spaces for method names

and bodies (cf. lines 6 and 10). Since threshold k can affect

the performance of identification, our evaluation described in

Section V includes an experiment where k values are varied.

After remapping the set of adjacent vectors to sets of the

corresponding method names (cf. lines 8 and 12), the sets are

processed to keep only first sub-tokens (cf. lines 14 and 15),

since our approach uses Crelaxed as specified in Equation 7

to compare the two sets of first tokens, fTni

adj and fT bi
adj (cf.

line 16). If their intersection is ∅, the approach suggests names

for the given method body bi (cf. Section III-C2 for details).

Otherwise, our approach assumes that ni is consistent with bi.

2) Name Suggestion: Our approach suggests new names

for a given method by providing a ranked list of the similar

names (cf. line 18), with four ranking strategies as below:

• R1: This strategy purely relies on the similarities be-

tween method bodies. The names of similar method bodies

(Namesbiadj) are ranked by the similarities to the given

method body (between V ′
b and BodyVadj).

• R2: This strategy first groups the same names in Namesbiadj
since there might be duplicates. It then ranks distinct names

5

based on the size of the associated groups. Ties are broken

based on the similarities between method bodies as R1.

• R3: Similarly to R2, this strategy groups the same names

in Namesbiadj . Then, the strategy computes the average simi-

larity to bi of each group and ranks the groups based on the

average similarity, but the group sizes are not considered.

• R4: To avoid having highly ranked groups with a small

size as per strategy R3, this strategy eventually re-ranks all

groups produced in R3 by downgrading all 1-size groups to

the lowest position.

IV. EXPERIMENTAL SETUP

Empirical validation of the approach is performed through

various experiments. Before describing the results and conclu-

sions, we present the research questions and the data collection

as well as details on the parameter settings in implementation

to facilitate replication.
1) Research Questions: To evaluate the approach, we pro-

pose to investigate the following research questions (RQs):

• RQ1: How effectively does the approach identify incon-
sistent method names?

• RQ2: Can the approach suggest accurate method names?
• RQ3: How does the approach compare with the state-of-

the-art in terms of performance?
• RQ4: To what extent applying the approach in the wild

produces debugging suggestions that are acceptable to
developers?

2) Data Collection: We collect both training and test data

from open source projects from four different communities,

namely Apache, Spring, Hibernate, and Google. We consider

430 Java projects with at least 100 commits, to ensure that

these have been well-maintained.

Training data is constituted by all methods of these

projects, after filtering out noisy data with criteria as below:

• main methods, constructor methods, and example methods1

are ignored since they have the less adverse effect on

program maintenance and understanding, and can pollute

the results of searching for similar methods.
• Empty methods (i.e., abstract or zero-statement methods)

have no implementation and thus are filtered out.
• Methods names without alphabetic letters (e.g., some meth-

ods are named “ ”) are removed as they are undescriptive.

As a result, 2,425,939 methods are collected.
In practice, we further limit the training data to methods

with reasonable size, to avoid the explosion of code tokens

which can degrade performance. The sizes of token sequences

of collected method bodies range from 2 to 60,310. According

to the sizes’ distribution shown in Figure 5, most methods have

less than 100 tokens. We focus on building the training data

with methods containing at most 94 tokens, which is set based

on the upper whisker value2 from the boxplot distribution

of method body token sequence sizes in Figure 5. The sizes

beyond the upper whisker value are considered as outliers [67].

1The package, class or method name includes the keyword “example”,
“sample” or “template”.

2The upper whisker value is determined by 1.5 IQR (interquartile ranges)
where IQR = 3rd Quartile − 1st Quartile, as defined in [67].

0 10 20 30 40 50 60 70 80 90 100
tokens

Fig. 5. Sizes’ distribution of collected method body token sequences.

TABLE I
SIZE OF DATASETS USED IN THE EXPERIMENTS.

Classification # Methods
All collected methods 2,425,939
Methods after filtering (for training) 2,116,413
Methods for testing 2,805

Eventually, 2,116,413 methods are selected to be the training

data, as indicated in Table IV-2. Note that methods in the

training data are not labeled as consistent or inconsistent since

the objective of training is to construct a vector space of

methods with presumable3 consistent names.
Test data is the oracle that we must constitute to assess

the performance of our proposed approach. We build it by

parsing the commit history of our subjects (i.e., 430 projects).

Specifically, we consider:
• Methods whose names have been changed in a commit

without any modification being performed on the body code;
• and the names and body code have become stable after the

change (i.e., no more changes up to the current versions).

The first criterion allows to ensure that the change is really

about fixing method names, and to retrieve their buggy and

fixed versions. Overall, within commit changes, we identified

53,731 methods satisfying this criterion. The second criterion

increases the confidence that the fixed version of the name is

not itself found buggy later on. With this criterion, the number

is reduced to 8,734 methods. We further observe that some

method names are changed due to simple typos (cf. Figure 6).

Such changes can constitute noise in the oracle. Given that our

approach heavily relies on first sub-tokens of method names

to hint at inconsistency, we conservatively ignore all change

cases where this part is not changed. At this stage, the dataset

still includes 4,445 buggy-fixed pairs of method names. The

final selection follows the criterion used for collecting training

data (i.e., no constructor or example methods, etc.). The final

test data includes 2,805 distinct methods.

Commit 70106770ea61a5fe845653a0b793f4934cc00144
-public double inverseCummulativeProbability(final double p){
+public double inverseCumulativeProbability(final double p){

Fig. 6. A typo fix for a method name in Apache commons-math.
.

To ensure that there is no data leakage [68] between training

and test data that will artificially improve the performance of

our approach, we eliminate from the training data all methods

associated to the test data (i.e., there is no the same instance

between 2,116,413 methods in training data and 2,805 methods

in test data).
Our test data include method names for each of which we

have two versions: the buggy name and the fixed one. To build

our oracle, we need two sets, one for the inconsistent class and

the other for the consistent class. We randomly divide our test

data into two sets. In the first set, we consider only the buggy

versions of the method names and label them as inconsistent.

3The majority of the methods in the world have names that are likely to
be consistent with their bodies.

6

In the second set, we consider only the fixed versions and

label them as consistent.

3) Implementation of Neural Network Models: The Para-

graph Vector, Word2Vec, and CNNs models are implemented

with the open source DL4J library [69], which is widely

used across the research and practice in deep learning (800k+

people and 90k+ communities according to data on the Gitter

networking platform [70]). These neural networks must be

tuned with specific parameters. In this study, all parameters are

set following the parameters setting proposed by Kim [43] and

our previous work [60]. Their subjects and models are similar

to ours, and their yielded models were shown to achieve

promising results. Tables II, III, and IV show the parameters

used in our experiment for each model.
TABLE II

PARAMETERS SETTING OF PARAGRAPH VECTOR.

Parameters Values Parameters Values
Min word frequency 1 Size of vector 300
Learning rate 0.025 Window size 2

TABLE III
PARAMETERS SETTING OF WORD2VEC.

Parameters Values Parameters Values
Min word frequency 1 Size of vector 300
Learning rate 1e-2 Window size 4

TABLE IV
PARAMETERS SETTING OF CNNS.

Parameters Values Parameters Values
nodes in hidden layers 1000 learning rate 1e-2
activation (output layer) softmax pooling type max pool
activation (other layers) ReLU
optimization algorithm stochastic gradient descent
loss function mean absolute error

V. EVALUATION

A. RQ1: Effectiveness of Inconsistency Identification

As the first objective of our approach is to identify in-
consistent method names, we examine whether our approach

effectively identifies methods with inconsistent names. We

train the model with the collected training data and apply

it to the separated test data whose collection was described

in Section IV-2. Given that the performance of identification

depends on the threshold value k representing the size of the

sets of adjacent vectors (Lines 6 and 10 in Algorithm 1), we

vary k as 1, 5, and n× 10 with n ∈ [1, 10].

Inconsistent identification is a binary classification since the

test data explained in Section IV-2 are labeled in two classes

(IC: inconsistent, C: consistent). Thus, there are four possible

outcomes: IC classified as IC (i.e, true positive=TP), IC classi-

fied as C (i.e., false negative=FN), C classified as C (i.e., true

negative=TN), and C classified as IC (i.e., false positive=FP).

We compute Precision, Recall, F1-measure and Accuracy for

each class. The precision and recall for the class IC are defined

as
|TP |

|TP |+|FP | and
|TP |

|TP |+|FN | , respectively. Those for the class

C are defined as
|TN |

|TN |+|FN | and
|TN |

|TN |+|FP | , respectively. The

F1-measure of each class is defined as 2 · precision·recall
precision+recall ,

while the Accuracy is defined as
|TP |+|TN |

|TP |+|FP |+|TN |+|FN | .

Table V provides the experimental results on the perfor-

mance. Due to space limitation, we show the metrics for

variations of k up to 40 (instead of 100). Overall, our approach

yields an Accuracy metric ranging from 50.8% to 60.9% (for

the presented results) and an F1-measure up to 67.9% for the

inconsistent class. In particular, The approach achieves the

highest performance when k=1 (i.e., the single most adjacent

vector is considered). The general trend indeed is that the

performance decreases as k is increased.
TABLE V

EVALUATION RESULTS OF INCONSISTENCY IDENTIFICATION.

Evaluation metrics k = 1 k = 5 k = 10 k = 20 k = 30 k = 40

Inconsistent
Precision (%) 56.8 53.7 53.3 53.3 49.9 49.7
Recall (%) 84.5 55.9 46.7 46.7 28.8 33.6
F1-measure (%) 67.9 54.8 49.7 49.7 36.5 40.1

Consistent
Precision (%) 72.0 55.9 54.2 54.2 51.4 51.4
Recall (%) 38.2 53.7 60.7 60.7 72.2 67.4
F1-measure (%) 49.9 54.8 57.3 57.3 60.0 58.3

Accuracy (%) 60.9 54.8 53.8 50.8 50.9 51.1

Since k determines the number of similar methods retrieving

from the vector spaces of names and bodies in the training

data, higher k value increases the probability of non-empty

intersection (i.e., fTni

adj∩ fTbi
adj , cf. line 16 in Algorithm 1).

Thus, the recall of the inconsistent class tends to decrease as

k is getting higher. In contrast, the recall of the consistent
class increases for higher values of k.

Overall, the approach to identifying inconsistent method

names can be tuned to meet the practitioners’ requirements.

When the criteria are to identify as many inconsistent names

as possibles, k should be set to a low value.

B. RQ2: Accuracy in Method Names Suggestion

This experiment aims at evaluating the performance of our

approach in suggesting new names for identified inconsistent

names. The suggested names are ranked by a specifiable

ranking strategy (either R1, R2, R3, or R4 as described in

Section III-C2).

Prior studies compare the first tokens of suggested

names [27], [71], [72] and oracles or token sets without

considering token ordering [31], [73]. To ensure fair and com-

prehensive assessment, we consider three different scenarios

to evaluate the performance of our approach. These scenarios

are defined as follows:

• T1 (Inconsistency avoidance): In this scenario, we evaluate

to what extent the suggested names are different from the

input buggy name ni. The accuracy in this scenario is

computed by 1 − Σi∈icD(n1
i ,ft(BodyVadj))
|ic| , where n1

i is the

first token of ni. ft() collects the first tokens of method

names corresponding to each vector in BodyVadj (similar

body vectors shown at Line 10 in Algorithm 1). D(∗) checks

whether the items in the second argument contain the first

argument (if so, returns 1. Otherwise 0). ic is the set of

inconsistent method names identified by our approach.

• T2 (First-token accuracy): In this scenario, we evaluate

to what extent the suggested names are identical to the

name that developers proposed in debugging changes. We

remind the reader that our test data indeed include pairs

7

of buggy/fixed names extracted from code changes his-

tory (cf. Section IV-2). The accuracy is computed as
Σi∈icD(rn(ni)

1,ft(BodyVadj))
|ic| , where rn(ni)

1 is the first token

of the actual developer-fixed version of the name.

• T3 (Full-name accuracy): In this scenario, we evaluate

to what extent the full name of each suggested name is

identical to the name that developers proposed in debugging

changes. The accuracy in this scenario is computed as
Σi∈icD(rn(ni),fn(BodyVadj))

|ic| , where rn(ni) is the actual fixed

version of the name and fn(∗) retrieves the full names of

methods corresponding to each vector in BodyVadj .

We perform different experiments, varying k. For these ex-

periments, the approach produces new names for all methods

identified as inconsistent (i.e., true positive + false positive).

Thus, the results include the performance of false positives

(i.e., names that are already consistent). We compute the

performance based on the number of suggested names (varying

the threshold value thr). For the ranking strategy R1, k is set

only to 1 or 5 since higher values do not affect the results

when thr = 1 or 5 (note that R1 produces the same number of

suggested names with k). For other ranking strategies, k is set

to 10, 20, 30, and 40 to have large numbers of suggested names

that can be aggregated (as per ranking strategy working).
According to the results for T1 listed in Table VI, our ap-

proach is highly likely to suggest names that are different from

the identified inconsistent names with ranking strategies, even

when k is high (>90% if thr=1 and >60% if thr=5). When

matching the first tokens (cf. results for T2) and the full name (

cf. results for T3), the ranking strategy R4 slightly outperforms

others regardless of the k value, while its accuracy is ≈40%.

thr=5 gives a better probability to find consistent names than

thr=1. k=10 yields the best performance for ranking strategies

R2 and R3 while ranking strategy R4 performs best when k=20

and thr=5 and k=40 and thr=1.

TABLE VI
ACCURACY OF SUGGESTING METHOD NAMES WITH THE FOUR RANKING

STRATEGIES (I.E., R1, R2, R3 AND R4).

Accuracy
(%)

k = thr
R1

k = 10 k = 20 k = 30 k = 40
R2 R3 R4 R2 R3 R4 R2 R3 R4 R2 R3 R4

T1 thr=1 90.0 91.2 91.3 76.1 92.2 92.2 75.9 93.0 92.9 75.8 93.7 93.6 75.9
thr=5 69.0 66.4 66.4 66.1 64.1 64.0 61.8 64.9 64.9 61.3 66.1 66.1 61.5

T2 thr=1 23.4 23.2 23.0 24.1 21.5 21.5 24.1 19.3 19.3 24.0 17.2 17.2 24.2
thr=5 35.7 39.4 39.4 39.7 38.5 38.6 40.8 37.3 37.2 40.6 36.5 36.3 40.1

T3 thr=1 10.7 11.0 10.9 10.9 10.9 10.9 11.1 10.6 10.5 11.3 10.2 10.1 11.5
thr=5 17.0 18.7 19.0 19.2 17.7 17.8 19.5 16.9 16.9 19.4 16.6 16.6 19.2

The best case of each ranking strategy in each row is highlighted as bold.

The results above show that: (1) ranking strategies R2, R3,

and R4 perform better than R1 but they need more candidates,

(2) higher k values do not increase the accuracy of name

suggestion, and (3) more number of suggested names (i.e.,

higher thr values) would improve the accuracy but users of

our approach will need to look up more names.
Note that it is promising that achieving ≈20% and ≈40%

accuracy (for first-token / T2) when looking up only top-1 and

top-5 suggestions, respectively. Suggesting exact first tokens of

method names is challenging since there are a large number of

available words for the first tokens of method names. Finding

the exact full name of a method is even more challenging since

full method names are often very project-specific [52]. Our

approach achieves ≈10% and ≈20% accuracy, respectively

for thr=1 and thr=5.

C. RQ3: Comparison Against the State-of-the-art Techniques
We compare our approach with two state-of-the-art ap-

proaches in the literature which are based on the n-

gram model [74] and the convolutional attention network

(CAN) model [31]. The latter includes two sub-models:

conv attention, which uses only the pre-trained vocabulary,

and copy attention, which can copy tokens of input vectors

(i.e., tokens in a method body). These techniques are selected

since they are the most recent approaches for method name

debugging. Given that the n-gram model approach by Suzuki

et al. [74] cannot suggest full names or even the first token

of methods, we compare against them with respect to the

performance of inconsistent name identification. The CAN

model, on the other hand, does not explicitly identify name

inconsistency. Instead, the model suggests names for any given

method. Thus, in this experiment, we make the CAN model

and our approach suggest names for all test data (2,805 buggy

method names). For both techniques, we use the same training

data described in Section IV-2. It should be noted that while

the tool for the CAN model has been made available by the

authors, we had to replicate the n-gram models approach, in

a best effort way following the details available in [74].

Table VII shows the comparison results with the n-gram

model [74]. While the performance of the n-gram model stays

in a range from 51.5-54.2% for all measures, our approach

outperforms the model when k=1 and 5. With k=1, the im-

provement is up to 33 percentage points. In particular, our app-

roach achieves a higher F1-measure by 15 percentage points.

TABLE VII
COMPARISON RESULTS OF IDENTIFYING INCONSISTENT METHOD NAMES

AGAINST THE N-GRAM MODEL [74].

Evaluation Metrics Our Approach n-gram Modelk = 1 k = 5 k = 10
Precision 56.8% 53.7% 53.3% 53.3%
Recall 84.5% 55.9% 46.7% 51.5%
F1-measure 67.9% 54.8% 49.7% 52.4%
Accuracy 60.9% 54.8% 53.8% 54.2%

To compare our approach against the CAN model [31],

we propose two evaluations. The first follows the evaluation

strategy proposed by the authors themselves in their paper.

The second evaluation is based on our own strategies already

explored for RQ2 (cf. Section V-B).

Table VIII shows the performance based on the per-sub-
token basis metric, which is the evaluation metric used by

the authors originally to present the performance of the CAN

model [31]. This metric estimates to what extent sub-tokens of

method names can be correctly suggested without considering

their order within the method names. We compute precision,

recall, and F1-measure of correctly suggesting sub-tokens.

When applying the per-sub-token basis, our approach out-

performs the CAN model in all configurations, except for

the precision of copy attention with thr=5 (cf. Section V-B).

While the precision of our approach can be higher by up

8

TABLE VIII
COMPARISON OF THE CAN MODEL [31] AND OUR APPROACH BASED ON

THE PER-SUB-TOKEN CRITERION [31].

Precision Recall F1-meansure
thr = 1 thr = 5 thr = 1 thr = 5 thr = 1 thr = 5

conv attention 23.2% 36.5% 8.1% 13.1% 11.7% 18.7%
copy attention 28.4% 67.0% 10.0% 27.5% 14.4% 37.9%
R1 (k = thr) 29.7% 38.6% 27.4% 36.7% 28.5% 37.6%
R2 (k = 10) 30.1% 39.6% 27.6% 37.2% 28.8% 38.3%
R3 (k = 10) 30.2% 39.9% 27.6% 37.6% 28.8% 38.7%
R4 (k = 10) 27.2% 38.6% 25.2% 37.6% 26.2% 38.1%

to 7 percentage points, we achieve substantial performance

improvement in terms of recall and F1-measure, with up to

15 percentage points margin.

Table IX presents the comparison results when applying

the three evaluation strategies of RQ2, described in Sec-

tion V-B. Regardless of the evaluation strategy, our approach

outperforms the CAN models. Notably, our approach achieves

16∼25% accuracy for T3 (i.e., full name suggestion) while

the CAN model is only successful for at most 1.1%. Note

that specific values of accuracy in Table IX are different from

Table VI since, in the experiment for RQ3, our approach

suggests names for all test data.

TABLE IX
COMPARISON OF THE CAN MODEL [31] AND OUR APPROACH BASED ON

THREE EVALUATION SCENARIOS.

Accuracy T1 T2 T3
thr = 1 thr = 5 thr = 1 thr = 5 thr = 1 thr = 5

conv attention 78.4% 27.6% 22.3% 33.6% 0.3% 0.6%
copy attention 77.2% 38.9% 23.5% 44.7% 0.4% 1.1%
R1 (k = thr) 86.9% 69.7% 36.4% 47.2% 16.5% 22.9%
R2 (k = 10) 88.5% 67.5% 34.8% 50.2% 17.0% 25.4%
R3 (k = 10) 88.6% 67.5% 34.7% 50.3% 16.9% 25.5%
R4 (k = 10) 77.0% 67.3% 35.4% 50.5% 16.0% 25.7%

While state-of-the-art techniques directly train a classifier

for identification or a neural network for suggestion by using

a set of training data, our approach first transforms method

names and bodies into vectors by using neural networks

and then searches for similar vectors by computing distances

between them. In that sense, our approach is implemented

based on unsupervised learning. Overall, the results imply that

looking up similar methods in vector spaces is more effective

both for identification and suggestion than other techniques.

D. RQ4: Live Study
To investigate practicability of our approach to debugging

inconsistent method names (RQ4), we conduct a live study on

active software projects: we submit pull requests of renaming

suggestions from our approach, and assess acceptance rates.

For this experiment, we randomly sample 10% of the training

data to be used as test data. Indeed the labeled test data

collected for previous experiments represent cases where de-

velopers debugged the method names. The remaining 90% of

method names now constitute the training data for this phase.

We apply this version of our approach to the target subjects

to identify whether they have inconsistent names (using k=20

as per result of previous experiments). Overall, 4,430 methods

among the 211,642 methods in the test set have been identified

as inconsistent by our approach. Given that we cannot afford to

spam project maintainers with thousands of pull requests, we

randomly select 100 cases of identified inconsistent methods.

We then collect the ranked list of suggested names for each of

the 100 methods: we use thr=5 with ranking strategy R4 since

these parameters show the best performance for full name

suggestion (T3). From each ranked list of suggested names,

we select the top-1 name and prepare a patch that we submit

as a pull request to the relevant project repository.
TABLE X

RESULTS OF LIVE STUDY.

Agree Agree but not fixed Disagree Ignored Total
Merged Approved Improved Cannot Won’t

40 26 4 1 2 9 18 100

As listed in Table X, developers agreed to merge the

pull requests for renaming 40 out of the 100 methods. 26

renaming suggestions have been validated and approved (based

on developers’ reply) by developers, but the pull requests have

not been merged (as of submission date) since some projects

systematically apply unit test and complete review tasks of

external changes before accepting them into the main branch.

Four inconsistent method names have also been fixed after

improving our suggested names. Interestingly, one developer

used our suggestion as a renaming pattern to fix six (6) similar

cases other than the ones submitted in our pull requests.

Furthermore, some developers have welcomed our suggestions

on inconsistent method names and showed interest in applying

even more suggestions from our approach, given that it seems

to provide more meaningful names than their current names.

Note that 39 (56%) out of 70 names agreed by developers

are for public methods while remaining eight and 23 are for

private and protected methods.

We also report on cases where developers did not apply our

suggested name changes. In one case, the developers could
not merge the pull request as it would break the program:

the method is actually an overridden method from another

project. The developer nevertheless agreed that our suggestion

was more intuitive. For other two methods, developers agree

that the suggested names are appropriate but they would not
make the changes as the names are not in line with inner-

project naming conventions. For nine methods, however, the

pull requests are rejected since developers judge the original

method names to be more meaningful than the suggested

ones. The remaining 18 cases are simply ignored: we did not

receive any reply up to the date of submission. We summarize

developers’ feedback as follows:
1) Some method names should follow the naming convention

of specific projects. This is a threat to the validity of our

study since it is implemented in a cross-project context.

2) Some method should be named considering the class

names. E.g., in a class named “XXXBuilder”, the developers

do not want to name a method as “build”, although the

method builds a new “XXXBuilder” object.

VI. DISCUSSION

1) Naming based on Syntactic and Semantic Information:
As stated in Section I, our approach is based on the assump-

tion that similar method implementations might be associated

with similar method names. However, there could be several

9

different definitions of similarity. While our approach relies

on the syntactic similarity of method bodies (although, using

AST tokens), one can use dynamic information (e.g., execu-

tion traces) to compare different method implementations as

experimented for the detection of semantic (i.e., type-4) code

clones [75], [76]. However, obtaining dynamic information is

not scalable. Although we can leverage code-to-code search

techniques [77], it might not precise enough for inconsistent

name detection. Thus, we leverage only static and syntactic

information in our approach and rely on deep learning rep-

resentations that have been shown to be effective capturing

semantics even for code [54], [73].

2) Threats to Validity: A threat to external validity is in the

training data since it is impossible to absolutely ensure that all

methods in training data have consistent names. To address this

threat, we collect training data from the well-maintained open

source projects with high reputation. Although the number of

projects may not be representative of the whole universe, it is

the largest dataset used in published literature about debugging

method names. Our live study further demonstrates that the

training set is sufficient to build a good model. Another threat

to external validity is the typos and abbreviations in method

names that can noise method name embedding and suggestion.

Threats to internal validity include the limitation of parsing

method names since some method names are named without

following camel case or underscore naming convention. It is

challenging to parse this kind of method names. This threat

could be reduced by developing more advanced method name

parse tools with natural language processing. Another threat to

validity is the size of data set for testing since the test data is

no less than 10% for evaluation in recent machine learning and

natural language process literature, where the training and test

data are split from collected data. In our study, test data must

be actual fixed method names to evaluate the performance

of debugging inconsistent method names, but projects used

for training do not have such a high number of fixed method

names to satisfy the requirement of the balanced training and

test data.

VII. RELATED WORK

There have been several empirical studies [66], [78]–[80]

investigating the impact of a naming scheme on program

comprehension, readability, and maintainability. Takang et
al. [12] and Lawrie et al. [14] conducted empirical studies

on code identifiers and concluded that inconsistent names can

make source code harder to understand and maintain. Caprile

and Tonella [81] analyzed function identifiers from the lexical,

syntactical and semantic structure, and reported that identifiers

can be decomposed into fragments and further classified into

several lexical categories. Liblit et al. [13] examined how

human cognition is reflected in naming things of programs.

Several approaches have been presented to detect inconsis-

tent identifiers. Deissenboeck and Pizka [8], and Lawrie et
al. [82] relied on the manual mapping between names and

domain concepts to detect inconsistent identifiers in code.

Binkley et al. [72] developed a tool with part-of-speech tag-

ging to identify field identifiers that violate accepted patterns.

The ultimate goal of debugging names is to automatically

replace inconsistent names into consistent ones rather than just

helping identifier naming. Haiduc et al. [83] used natural lan-

guage summarization techniques and the lexical and structural

context in code to improve code comprehension [84]. Sridhara

et al. [85] designed an automatic technique for summarizing

code with the idioms and structure in a method. Lucia et
al. [86] proposed an IR-based approach to improve program

comprehension with the textual similarity between the code

under development and related artefacts. Høst and Østvold [27]

used method naming rules and semantic profiles of method

implementations to debug method names.

Recently, Allamanis et al. [30], [31] leveraged deep learning

techniques to suggest method names with local contexts,

which are similar to this paper on embedding method names

and bodies. Their work learns method body features from

code sub-tokens, this paper further consider code nodes at

abstract syntax tree level since they can capture code semantic

information [47]. This paper performed various evaluations on

the actual fixed method names which were not done in [30],

[31], with a large sample of 430 projects against the 20/10

projects in their work. In addition, this paper tried various

configurations and strategies and used various indicators for

method name suggestions, which was not exactly the same as

they did. Thus, our conclusions are likely to be more solid

than those in their work. Furthermore, we performed a live

study (not done in their work) and showed the technique has

strong potential to be useful by actually fixing 66 inconsistent

method names in the wild.

VIII. CONCLUSION

Method names are key to readable and maintainable code,

but it is not an easy task to give an appropriate name to a

method. Thus, many methods have inconsistent names, which

can impede the readability and maintainability of programs

and even lead to some defects. To reduce the manual efforts

of resolving inconsistent method names, we propose a novel

approach to debugging inconsistent method names by lever-

aging similar methods with deep learning techniques. Our ex-

perimental results show that the performance of our approach

achieves an F1-measure of 67.9% on identifying inconsistent

method names, improving about 15 percentage points over

the state-of-the-art. On suggesting appropriate first sub-tokens

and full names for inconsistent method names, it achieves

34−50% and 16−25% accuracy respectively, outperforming

the state-of-the-art as well. We further report that our approach

helps developers to fix 66 inconsistent method names in the

wild. The tool and data used in our study are available at

https://github.com/SerVal-DTF/debug-method-name.

ACKNOWLEDGEMENTS

This work is supported by the Fonds National de la

Recherche (FNR), Luxembourg, under projects RECOM-

MEND 15/IS/10449467 and FIXPATTERN C15/IS/9964569.

10

REFERENCES

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
improving the design of existing code. Addison-Wesley Professional,
1999.

[2] S. McConnell, Code complete. Pearson Education, 2004.
[3] K. Beck, Implementation patterns. Pearson Education, 2007.
[4] R. C. Martin, Clean code: a handbook of agile software craftsmanship.

Pearson Education, 2009.
[5] P. Johnson, “Don’t go into programming if you don’t have a

good thesaurus,” https://www.itworld.com/article/2833265/cloud-
computing/don-t-go-into-programming-if-you-don-t-have-a-good-
thesaurus.html, Last Accessed: August 2018.

[6] ——, “Arg! the 9 hardest things programmers have to do,”
http://www.itworld.com/article/2823759/enterprise-software/124383-
Arg-The-9-hardest-things-programmers-have-to-do.html#slide10, Last
Accessed: August 2018.

[7] S. Kim and D. Kim, “Automatic identifier inconsistency detection using
code dictionary,” Empirical Software Engineering, vol. 21, no. 2, pp.
565–604, 2016.

[8] F. Deissenboeck and M. Pizka, “Concise and consistent naming,” Soft-
ware Quality Journal, vol. 14, no. 3, pp. 261–282, 2006.

[9] M. Gethers, T. Savage, M. Di Penta, R. Oliveto, D. Poshyvanyk, and
A. De Lucia, “CodeTopics: which topic am i coding now?” in Pro-
ceedings of the 33rd International Conference on Software Engineering.
ACM, 2011, pp. 1034–1036.

[10] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia,
“Methodbook: Recommending move method refactorings via relational
topic models,” IEEE Transactions on Software Engineering, vol. 40,
no. 7, pp. 671–694, 2014.

[11] F. Deissenboeck and M. Pizka, “Concise and consistent naming: ten
years later,” in Proceedings of the 23rd International Conference on
Program Comprehension. IEEE, 2015, pp. 3–3.

[12] A. A. Takang, P. A. Grubb, and R. D. Macredie, “The effects of
comments and identifier names on program comprehensibility: an ex-
perimental investigation,” J. Prog. Lang., vol. 4, no. 3, pp. 143–167,
1996.

[13] B. Liblit, A. Begel, and E. Sweetser, “Cognitive perspectives on the role
of naming in computer programs,” in Proceedings of the 18th Annual
Workshop of the Psychology of Programming Interest Group. Citeseer,
2006, pp. 53–67.

[14] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name? a
study of identifiers,” in Proceedings of the 14th International Conference
on Program Comprehension. IEEE, 2006, pp. 3–12.

[15] V. Arnaoudova, L. M. Eshkevari, M. Di Penta, R. Oliveto, G. Antoniol,
and Y.-G. Gueheneuc, “Repent: Analyzing the nature of identifier
renamings,” IEEE Transactions on Software Engineering, vol. 40, no. 5,
pp. 502–532, 2014.

[16] V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic antipatterns:
What they are and how developers perceive them,” Empirical Software
Engineering, vol. 21, no. 1, pp. 104–158, 2016.

[17] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2016, pp. 87–98.

[18] J. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names
take longer to comprehend,” in Proceedings of the 24th International
Conference on Software Analysis, Evolution and Reengineering. IEEE,
2017, pp. 217–227.

[19] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Relating identifier
naming flaws and code quality: An empirical study,” in Proceedings of
16th Working Conference on Reverse Engineering. IEEE, 2009, pp.
31–35.

[20] S. L. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “The effect of lexicon
bad smells on concept location in source code,” in Proceedings of the
11th International Working Conference on Source Code Analysis and
Manipulation. IEEE, 2011, pp. 125–134.

[21] S. L. Abebe, V. Arnaoudova, P. Tonella, G. Antoniol, and Y.-G.
Gueheneuc, “Can lexicon bad smells improve fault prediction?” in
Proceedings of the 19th Working Conference on Reverse Engineering.
IEEE, 2012, pp. 235–244.

[22] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini,
“A systematic evaluation of api-misuse detectors,” arXiv preprint
arXiv:1712.00242, 2017.

[23] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM Sigplan
Notices, vol. 39, no. 12, pp. 92–106, 2004.

[24] Eclipse, “Aspectj,” https://github.com/eclipse/org.aspectj, Last Access:
August. 2018.

[25] S. Exchange, “Stack overflow,” https://stackoverflow.com/, Last Access:
August. 2018.

[26] Microsoft, “Github,” https://github.com/, Last Access: August. 2018.
[27] E. W. Høst and B. M. Østvold, “Debugging method names,” in Proceed-

ings of the 23rd European Conference on Object-Oriented Programming.
Springer, 2009, pp. 294–317.

[28] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering. ACM,
2014, pp. 281–293.

[29] P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D. Pietra, and J. C.
Lai, “Class-based n-gram models of natural language,” Computational
Linguistics, vol. 18, no. 4, pp. 467–479, 1992.

[30] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names,” in Proceedings of the 10th Joint Meeting on
Foundations of Software Engineering. ACM, 2015, pp. 38–49.

[31] M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention
network for extreme summarization of source code,” in Proceedings of
the 33nd International Conference on Machine Learning. JMLR.org,
2016, pp. 2091–2100.

[32] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proceedings of the 31th International Conference on
Machine Learning. JMLR.org, 2014, pp. 1188–1196.

[33] M. Matsugu, K. Mori, Y. Mitari, and Y. Kaneda, “Subject independent
facial expression recognition with robust face detection using a convolu-
tional neural network,” Neural Networks, vol. 16, no. 5-6, pp. 555–559,
2003.

[34] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” CoRR, vol. abs/1301.3781, 2013.

[35] G. E. Dahl, R. P. Adams, and H. Larochelle, “Training restricted boltz-
mann machines on word observations,” arXiv preprint arXiv:1202.5695,
2012.

[36] D. Tang, B. Qin, and T. Liu, “Document modeling with gated recurrent
neural network for sentiment classification,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing.
ACL, 2015, pp. 1422–1432.

[37] Q. Ai, L. Yang, J. Guo, and W. B. Croft, “Analysis of the paragraph
vector model for information retrieval,” in Proceedings of the 2016 ACM
International Conference on the Theory of Information Retrieval. ACM,
2016, pp. 133–142.

[38] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From word embed-
dings to document distances,” in Proceedings of the 32nd International
Conference on Machine Learning. JMLR.org, 2015, pp. 957–966.

[39] J. Wieting, M. Bansal, K. Gimpel, and K. Livescu, “Towards universal
paraphrastic sentence embeddings,” arXiv preprint arXiv:1511.08198,
2015.

[40] A. M. Dai, C. Olah, and Q. V. Le, “Document embedding with paragraph
vectors,” arXiv preprint arXiv:1507.07998, 2015.

[41] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani,
V. Zhong, R. Paulus, and R. Socher, “Ask me anything: Dynamic
memory networks for natural language processing,” in Proceedings of
the 33nd International Conference on Machine Learning. JMLR.org,
2016, pp. 1378–1387.

[42] D. Tang, B. Qin, and T. Liu, “Learning semantic representations of users
and products for document level sentiment classification,” in Proceedings
of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), vol. 1. ACL, 2015,
pp. 1014–1023.

[43] Y. Kim, “Convolutional neural networks for sentence classification,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing. ACL, 2014, pp. 1746–1751.

[44] P. Wang, J. Xu, B. Xu, C. Liu, H. Zhang, F. Wang, and H. Hao,
“Semantic clustering and convolutional neural network for short text
categorization,” in Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 2: Short
Papers), vol. 2, 2015, pp. 352–357.

11

[45] H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, and Z. Jin, “Building
program vector representations for deep learning,” in Proceedings of
the 8th International Conference on Knowledge Science, Engineering
and Management. Springer, 2015, pp. 547–553.

[46] M. Allamanis, D. Tarlow, A. Gordon, and Y. Wei, “Bimodal modelling
of source code and natural language,” in Proceedings of the 32nd
International Conference on Machine Learning. JMLR.org, 2015, pp.
2123–2132.

[47] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,”
in Proceedings of the 30th AAAI Conference on Artificial Intelligence.
AAAI, 2016, pp. 1287–1293.

[48] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2016, pp. 631–642.

[49] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in Pro-
ceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering. IEEE, 2017, pp. 135–146.

[50] T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen, “Exploring
api embedding for api usages and applications,” in Proceedings of the
39th International Conference on Software Engineering. IEEE/ACM,
2017, pp. 438–449.

[51] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proceedings of
the 40th International Conference on Software Engineering. ACM,
2018, pp. 933–944.

[52] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Proceedings of the 34th International
Conference on Software Engineering. IEEE, 2012, pp. 837–847.

[53] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey
of machine learning for big code and naturalness,” ACM Computing
Surveys, vol. 51, no. 4, p. 81, 2018.

[54] N. D. Q. Bui, L. Jiang, and Y. Yu, “Cross-language learning for program
classification using bilateral tree-based convolutional neural networks,”
in Proceedings of the Workshops of the The 32nd AAAI Conference on
Artificial Intelligence. AAAI Press, 2018, pp. 758–761.

[55] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[56] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” pp. 1724–1734,
2014.

[57] Google, “Word2vec,” https://code.google.com/archive/p/word2vec/, Last
Accessed: August. 2018.

[58] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composition-
ality,” in Advances in Neural Information Processing Systems 26: 27th
Annual Conference on Neural Information Processing Systems. NIPS,
2013, pp. 3111–3119.

[59] E. W. Høst and B. M. Østvold, “The java programmer’s phrase book,” in
Proceedings of the First International Conference on Software Language
Engineering. Springer, 2008, pp. 322–341.

[60] K. Liu, D. Kim, T. F. Bissyandé, S. Yoo, and Y. L. Traon, “Mining
fix patterns for findbugs violations,” IEEE Transactions on Software
Engineering, 2018.

[61] B. Liang, P. Bian, Y. Zhang, W. Shi, W. You, and Y. Cai, “AntMiner:
mining more bugs by reducing noise interference,” in Proceedings of
the 38th IEEE/ACM International Conference on Software Engineering.
ACM, 2016, pp. 333–344.

[62] T. Hastie, R. Tibshirani, and J. Friedman, “Unsupervised learning,” in
The Elements of Statistical Learning. Springer, 2009, pp. 485–585.

[63] D. W. Aha, Lazy learning. Washington, DC: Springer, 1997.
[64] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features

for defect prediction,” in Proceedings of the 38th International Confer-
ence on Software Engineering. ACM, 2016, pp. 297–308.

[65] Oracle, “Java naming convention,” http://www.oracle.com/technetwork/
java/codeconventions-135099.html, Last Access: August. 2018.

[66] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Mining java class
naming conventions,” in Proceedings of the 27th IEEE International
Conference on Software Maintenance. IEEE, 2011, pp. 93–102.

[67] M. Frigge, D. C. Hoaglin, and B. Iglewicz, “Some implementations of
the boxplot,” The American Statistician, vol. 43, no. 1, pp. 50–54, 1989.

[68] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust you?:
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2016, pp. 1135–1144.

[69] Eclipse, “Deep learning for java,” https://deeplearning4j.org/, Last Ac-
cess: August. 2018.

[70] Gitter, “Deeplearning4j communities,” https://gitter.im/deeplearning4j/
deeplearning4j, Last Access: August. 2018.

[71] A. Thies and C. Roth, “Recommending rename refactorings,” in Pro-
ceedings of the 2nd International Workshop on Recommendation Systems
for Software Engineering. ACM, 2010, pp. 1–5.

[72] D. Binkley, M. Hearn, and D. Lawrie, “Improving identifier informa-
tiveness using part of speech information,” in Proceedings of the 8th
Working Conference on Mining Software Repositories. ACM, 2011,
pp. 203–206.

[73] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learn-
ing distributed representations of code,” in Proceedings of the 46th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, vol. 3. ACM, 2019, pp. 40:1–40:29.

[74] T. Suzuki, K. Sakamoto, F. Ishikawa, and S. Honiden, “An approach
for evaluating and suggesting method names using n-gram models,”
in Proceedings of the 22nd International Conference on Program
Comprehension. ACM, 2014, pp. 271–274.

[75] H. Kim, Y. Jung, S. Kim, and K. Yi, “MeCC: memory comparison-based
clone detector,” in Proceedings of the 33rd International Conference on
Software Engineering. ACM, 2011, pp. 301–310.

[76] F.-H. Su, J. Bell, K. Harvey, S. Sethumadhavan, G. Kaiser, and T. Jebara,
“Code relatives: detecting similarly behaving software,” in Proceedings
of the 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2016, pp. 702–714.

[77] K. Kim, D. Kim, T. F. Bissyande, E. Choi, L. Li, J. Klein, and
Y. Le Traon, “Facoy–a code-to-code search engine,” in Proceedings of
the 40th International Conference on Software Engineering. ACM,
2018.

[78] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Exploring the
influence of identifier names on code quality: An empirical study,” in
Proceedings of the 14th European Conference on Software Maintenance
and Reengineering. IEEE, 2010, pp. 156–165.

[79] S. Butler, “Mining java class identifier naming conventions,” in Pro-
ceedings of the 34th International Conference on Software Engineering.
IEEE, 2012, pp. 1641–1643.

[80] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “INVocD: identifier
name vocabulary dataset,” in Proceedings of the 10th Working Confer-
ence on Mining Software Repositories. IEEE, 2013, pp. 405–408.

[81] B. Caprile and P. Tonella, “Nomen est omen: Analyzing the language
of function identifiers,” in Proceedings of the 6th Working Conference
on Reverse Engineering. IEEE, 1999, pp. 112–122.

[82] D. Lawrie, H. Feild, and D. Binkley, “Syntactic identifier conciseness
and consistency,” in Proceedings of the 6th IEEE International Workshop
on Source Code Analysis and Manipulation. IEEE, 2006, pp. 139–148.

[83] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source code,”
in Proceedings of the 17th Working Conference on Reverse Engineering.
IEEE, 2010, pp. 35–44.

[84] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program compre-
hension with source code summarization,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume
2. ACM, 2010, pp. 223–226.

[85] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically detecting
and describing high level actions within methods,” in Proceedings of the
33rd International Conference on Software Engineering. ACM, 2011,
pp. 101–110.

[86] A. De Lucia, M. Di Penta, and R. Oliveto, “Improving source code
lexicon via traceability and information retrieval,” IEEE Transactions
on Software Engineering, vol. 37, no. 2, pp. 205–227, 2011.

12

