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Abstract—Properly benchmarking Automated Program Re-
pair (APR) systems should contribute to the development and
adoption of the research outputs by practitioners. To that end,
the research community must ensure that it reaches significant
milestones by reliably comparing state-of-the-art tools for a
better understanding of their strengths and weaknesses. In this
work, we identify and investigate a practical bias caused by the
fault localization (FL) step in a repair pipeline. We propose to
highlight the different fault localization configurations used in
the literature, and their impact on APR systems when applied
to the Defects4J benchmark. Then, we explore the performance
variations that can be achieved by “tweaking” the FL step.
Eventually, we expect to create a new momentum for (1) full
disclosure of APR experimental procedures with respect to FL,
(2) realistic expectations of repairing bugs in Defects4J, as well
as (3) reliable performance comparison among the state-of-the-
art APR systems, and against the baseline performance results
of our thoroughly assessed kPAR repair tool. Our main findings
include: (a) only a subset of Defects4J bugs can be currently
localized by commonly-used FL techniques; (b) current practice
of comparing state-of-the-art APR systems (i.e., counting the
number of fixed bugs) is potentially misleading due to the bias of
FL configurations; and (c) APR authors do not properly qualify
their performance achievement with respect to the different
tuning parameters implemented in APR systems.

Index Terms—Automated Program Repair, Spectrum-based
Fault Localization, Benchmarking, Empirical Assessment, Bias.

I. INTRODUCTION

Automated program repair (APR) holds the promise of

reducing manual debugging effort by automatically generating

patches for defects identified in a program. In production, APR

will drastically reduce time-to-fix delays and limit downtime.

In a development cycle, APR can help suggest changes to

accelerate debugging. In the literature, there are two distinct

repair scenarios: (1) fixing syntactic errors, i.e., cases where

code violates some programming language specifications [1],

[2] and (2) fixing semantic bugs, i.e., cases where imple-

mentation of program behaviour deviates from developer’s

intention [3], [4]. The latter requires Fault Localization (FL)

through execution of test cases. It is the scope of this paper.

Once a fault is arosen, most recent APR systems follow the

same basic pipeline as shown in Figure 1: (1) fault localization

(FL), (2) patch candidate generation, and (3) patch validation.

The FL step identifies an entity in a program as the potential

fault location. In patch generation, given a fault location, the

APR system modifies the program, i.e., creates a patch. The

last step assesses whether the patch actually fixes the defect.

If the patch is not regarded as a valid patch, the second and

last steps are repeated until a valid patch is generated or the

termination condition is satisfied. To increase the chances of

finding a valid patch, the process is iterated over all suspicious

code locations ranked by FL tools.
In the repair pipeline, APR systems generally focus on the

patch generation step, but tend to use similar strategies for fault

localization and patch validation. To the best of our knowl-

edge, most of the current state-of-the-art APR approaches [4]–

[20] leverage test suites to perform fault localization and

patch validation. For fault localization, the systems rely on

a testing framework such as GZoltar [21], and a spectrum-

based fault localization formula [22]–[24], such as Ochiai [25].

Eventually, bug fixing performance is measured by counting

the number of bugs for which the system can generate a patch

that passes all test cases. Such patches are claimed to be valid.
Nevertheless, given the growing interest in APR among

software engineers, it is important to ensure that the research

outputs are relevant and well assessed in terms of reliable

performance for practitioners. In this respect, the APR research

community has already started to reflect on the acceptabil-
ity [7], [26] and correctness [27], [28] of the patches generated

by APR tools. Researchers [27], [29]–[32] raised the concern

of overfitting patches: those are generated patches that can

pass the validating test cases, but may actually not be the

semantically-correct patches for repairing the defect.
Since then, assessment of APR approaches in the literature

attempts to provide information on the number of generated

patches that are plausible (i.e., they make the programs pass all

the test cases) and the number of patches that are correct (i.e.,

they are equivalent to the patches that were actually submitted

by the program developers). Table I provides an example

of assessment results excerpted from the paper describing

SimFix [33], one of the most recent state-of-the-art works on

TABLE I
TABLE EXCERPTED FROM [33] WITH THE CAPTION “Correct patches

generated by different techniques”.

Proj. SimFix jGP jKali Nopol ACS HDR ssFix ELIXIR JAID
Chart 4 0 0 1 2 -(2) 3 4 2(4)

Closure 6 0 0 0 0 -(7) 2 0 5(9)

Math 14 5 1 1 12 -(7) 10 12 1/(7)

Lang 9 0 0 3 3 -(6) 5 8 1/(5)

Time 1 0 0 0 1 -(1) 0 2 0/(0)

Total 34 5 1 5 18 13(23) 20 26 9/(25)
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Fig. 1. Standard steps in a pipeline of Automated Program Repair.

APR that was tested on the Defects4J [34] programs. Based

on data reported in this table, researchers explicitly rank the

APR systems, and use this ranking as a validation of new

achievements in program repair.
Unfortunately, our own experience in developing and assess-

ing APR tools has proven that this comparison is non-trivial,

and could further be largely biased due to a non-consideration

of important details regarding the FL step. Indeed, recall that

an APR technique cannot attempt to generate the correct patch

unless the FL step can successfully identify the target buggy

code locations in a program. Thus, FL accuracy across repair

pipelines can impact, either by boosting or degrading, the

performance of an APR system.
For example, SimFix [33] and ACS [19], although they have

been developed by the same research group, are evaluated

on different versions of a fault localization technique without

discussing the impact of such a change in the experimental

configuration. As another example bias, while most APR tech-

niques simply integrate off-the-shelf fault localization tools

in the repair pipelines, in some experiments, such as for

HDRepair [13], its authors make the assumption that the buggy

method is known. Unfortunately, this assumption gives an

important advantage as the list of suspicious code statements is

limited and likely to include the buggy statement, thus leading

to overestimation of the performance.

Similar to the “overfitting” study, which helped to improve
the assessment criteria of APR tools, our work aims at
highlighting the potential biases in comparing different APR
approaches without any consideration of implementation
variations of the FL step.

Overall, our investigation into the relationship between fault

localization performance and APR tool performance seeks to

provide answers to the following research questions (RQs):

RQ1 How do APR systems leverage FL techniques? We first

investigate FL techniques used in APR systems in the

literature. This reveals which FL tool and formula are

integrated for each APR system. We examine implemen-

tation details of each APR system, and/or directly ask

the authors of the technique to clarify FL configuration,

e.g., which level of detection granularity is considered,

and how many suspicious locations are considered.

RQ2 How many bugs from a common APR benchmark are
actually localizable? After aggregating APR performance

data reported in the literature, we note that 246 bugs (in

benchmark Defects4J) have not yet been fixed by any

state-of-the-art APR tool. Given that researchers scarcely

discuss the reasons behind repair misses, we assess, with

this research question, our intuition that FL is possibly

one of the challenging steps in the repair pipeline.

RQ3 To what extent APR performance can vary by adapting
different FL configurations? We implement and make

publicly available kPAR, a straightforward fix pattern-

based APR system, and record its performance under

various configurations to serve as a comparable baseline

for future research.

Eventually, we make the following contributions:

• We expose a hidden bias throughout the comparison of

APR tools in the literature, and present more reliable

performance comparisons for current state-of-the-art.

• We build and make publicly available an easy-to-

configure fault localization toolkit that can be adopted

in APR pipelines for Java programs.

• We provide a refined benchmark for evaluating the per-

formance of APR systems with respect to those bugs that

can actually be localized.

• We implement and make publicly available a baseline

APR system with its different performance metrics for

different FL configurations.

Our replication package, including kPAR, is available at:

https://github.com/SerVal-DTF/FL-VS-APR

II. BACKGROUND

We recall how fault localization is important in an APR

pipeline, and describe how current APR systems are assessed.

A. Fault Localization in Automated Program Repair

In APR systems, fault localization (FL) is not only the first

step but also seriously affects the performance of the systems.

Given a buggy program (with its passing and failing test cases),

an FL tool is leveraged during the FL step to identify the

suspicious buggy code locations as described in Figure 1. The

granularity of suspicious locations can be a file, method, or

line. Ideally, the location should be both precise and accurate.

If the precision is low (e.g., the granularity is broad such as

file), the patch generation step needs to explore a large space

of candidate patches. If the accuracy is low (e.g., the FL step

provides a wrong fault location), the subsequent step generates

patches for the non-faulty program entity.

Spectrum-based fault localization (SBFL, also referred to as

coverage-based fault localization) [22]–[24] is one of the most

popular FL techniques used in APR systems. This technique

applies a ranking metric to detect faulty code locations by

leveraging the execution traces of test cases to calculate

the likelihood (based on suspiciousness scores) of program

entities to be faulty. The ranking metric is applied to calculate

suspiciousness scores for program entities (such as program

statements as well as code lines [42]).

In the APR literature [19], [33], [35], [38], [39], Ochiai [25]

is widely used as the ranking metric of SBFL. Many empirical
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TABLE II
NUMBER OF BUGS REPORTED HAVING BEEN FIXED BY DIFFERENT APR TOOLS. APR systems are ordered by year of publication.

Proj. jGenProg [35] jKali [35] jMutRepair [35] HDRepair [13] Nopol [18] ACS [19] ELIXIR [36] JAID [15] ssFix [37] CapGen [38] SketchFix [39] FixMiner [40] LSRepair [41] SimFix [33]

Chart 0/7 0/6 1/4 0/2 1/6 2/2 4/7 2/4 3/7 4/4 6/8 5/8 3/8 4/8
Closure 0/0 0/0 0/0 0/7 0/0 0/0 0/0 5/11 2/11 0/0 3/5 5/5 0/0 6/8
Lang 0/0 0/0 0/1 2/6 3/7 3/4 8/12 1/8 5/12 5/5 3/4 2/3 8/14 9/13
Math 5/18 1/14 2/11 4/7 1/21 12/16 12/19 1/8 10/26 12/16 7/8 12/14 7/14 14/26
Mockito 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 0/0
Time 0/2 0/2 0/1 0/1 0/1 1/1 2/3 0/0 0/4 0/0 0/1 1/1 0/0 1/1

Total 5/27 1/22 3/17 6/23 5/35 18/23 26/41 9/31 20/60 21/25 19/26 25/31 19/37 34/56

P(%) 18.52 4.55 17.65 26.09 14.29 78.26 63.41 29.03 33.33 84.00 73.08 80.65 51.35 60.71

† In each column, we provide x/y numbers: x is the number of correctly fixed bugs; y is the number of bugs for which a plausible patch is generated by the APR tool (i.e., a patch that
makes the program pass all test cases). The same as other similar tables.

studies [23], [43], [44] have indeed shown that Ochiai is

one of the most effective techniques in localizing the root

cause of faults in object-oriented programs. Ochiai computes

suspiciousness score of a given source code statement s
following the formula of Equation 1:

Sochiai(s) =
failed(s)√

(failed(s) + passed(s)) ∗ (failed(s) + failed(¬s)
(1)

where failed(s) and passed(s) denote respectively the num-

ber of failing and passing tests that executed statement s, while

failed(¬s) is the number of failing tests that do not execute

statement s. In practice, FL tools eventually report a ranked

list of statements associated with the suspiciousness scores.

B. APR Performance Assessment
The current practice of APR studies often evaluates the per-

formance of APR systems based on the number of successfully

fixed bugs [33], [40]. We can determine whether a generated

patch is successful by counting the number of passing test

cases. If a patch can pass all the given test cases (both passing

and failing cases given for the buggy version), it is regarded

as a successful patch.
However, the number of passing test cases may not correctly

assess the effectiveness of generated patches. Even if a gener-

ated patch can pass all test cases, it might break a necessary

behavior or introduce other faults, which are not covered by

the given test suite [27]. Moreover, a developer may not accept

the patch due to several reasons such as coding convention [7],

[26]. These patches are often called plausible patches since it

needs further investigations to check whether they are correct
patches acceptable to developers. In the literature, correctness
is assessed manually by comparing the generated against the

developer-provided patch available in the benchmark.
Similarly, selecting a FL technique could be another issue

since it can make the performance assessment biased. Our

investigations will use Table II as a starting point to highlight

the problem of FL bias. This table shows the number of fixed

bugs out of the bugs in the Defects4J [34] benchmark, which

are reported by the authors of the current state-of-the-art APR

tools in the literature. The results of jGenProg, jKali and Nopol

are extracted from the experimental data reported by Martinez

et al. [45]. The results of other tools are collected from data

reported by papers’ authors in the literature.

III. EXPERIMENTAL SETUP

Our experiments are based on common tool-support and

processes used in the literature. We clarify the experiment

design in this section as the basis for understanding the

implementation and the conclusions that we draw.

A. Definition of Fault Locality

Although state-of-the-art fault localization tools identify

suspicious code lines, this information spans across other code

entities such as methods and files, which can be sufficient for

APR mutations. Thus, to compute the performance of fault

localization techniques on a benchmark, we consider different

granularities of fault locality at the file, method and line levels

similar to the fault locality defined by Lucia et al. [46]:

• File: At this level, we consider that the faulty code is

accurately localized if an FL tool reports any line from the

buggy code file as suspicious.

• Method: At this level, we consider that the faulty code is

accurately localized if any code line in the buggy method

is reported by an FL tool as suspicious.

• Line: At this level, we consider that the faulty code is

accurately localized if suspicious code lines reported by an

FL tool contain any of the buggy code lines.

B. Identification of Correct Fault Locality

Our objective is to identify which reported suspicious code

position is correct, following the above three levels of fault

locality granularity. In practice, FL tools produce a ranked list

of suspicious lines while ground truth data include several

code lines as buggy lines as well. At a given granularity

level, if the bug is localized (i.e., there is a match between

the suspicious code line and the ground truth fault locations),

we record the associated position of the correct fault locality

within the ranked list of suspicious code locations. Since a bug

position could span over several lines, methods, and even over

several files, the bug is considered to be correctly localized by

an FL tool as long as any reported suspicious code line can

match the ground truth bug locations with the corresponding

granularity.

Concretely, we first use the following defintion of bug

locations. The locations of a bug in a faulty program are

defined as a bug position set: BPos = {bPos1, bPos2, . . . ,

bPosn}, (n >= 1), where bPosi is a tuple of (fName,

Methods, Lines). For each location, fName, Methods, and

Lines are a file name, a set of methods, and a list of line

numbers, respectively, of a bug location. Methods could be

∅ if the bug is not located in any method in a program. This

kind of bugs can be related to a Type Declaration [47] or

Field Declaration [48] in Java code. Math-12 in the Defects4J

dataset is an example, which is fixed by inserting an interface

Serializable into the type declaration [49].

We then check whether a ranked list of suspicious lines by

an FL tool can identify bug locations based on the following
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definition. Let SuspL = {suspL1, suspL2, . . . , suspLm} be

a list of suspicious lines that are reported by an FL tool and or-

dered by suspiciousness scores. suspLi is a tuple of (fName,

lineNum, rIdx), where lineNum is the line number of the

code in a file (i.e., fName) that is suspected to be the bug

location, and rIdx is the index (i.e., rank) of the line within

SuspL. If a suspicious line suspLi (i ∈ [1,m]) matches

any bug location (BPos) at a given granularity before other

suspicious lines, it is considered that the FL tool successfully

identifies a bug location at the given granularity. Otherwise, if

there is no suspicious line matching a bug location at a given

granularity, the fault is considered as non-localizable at this

fault locality granularity.

C. Dataset and Automatic Testing Toolset

Our study requires execution of fault localization on a

reliable dataset. In this work, we select the Defects4J [34]

dataset as it includes test cases for buggy Java programs with

the associated developer fixes. This dataset has furthermore

been used by all recent state-of-the-art APR systems targeting

Java programs. Table III summarizes statistics on the number

of bugs and test cases available in the version 1.2.0 [50] of

Defects4J that we use in this paper.

TABLE III
DEFECTS4J DATASET INFORMATION.

Project Chart Closure Lang Math Mockito Time Total

# of bugs 26 133 65 106 38 27 395
# of test cases 2,205 7,927 2,245 3,602 1,457 4,130 21,566

# of test cases are excerpted from the Defects4J paper [34] and [51].

Overall, the dataset includes 395 bugs and 22,954 test cases.

To automate the execution of these test cases for each bug,

we rely on the GZoltar [21], [52] framework for automatic

debugging of Java applications. GZoltar executes the test

cases and produces coverage matrices providing information

on which test cases passed, which failed, which statements

were executed when running each test case, etc. Based on

this information, FL techniques can be applied for ranking

suspicious code locations which are likely to be the faulty

code. For the purpose of our study, we have implemented on-

top of GZoltar 41 common ranking metrics [22], [23] for fault

localization. Given that Gzoltar has been used by several APR

tools in the literature, we expect that our easy-to-configure

fault localization toolkit will serve the research community to

parameterize fault localization in an APR pipeline.

Our experiments further considered two different versions of

GZoltar. The first one is the GZoltar version 0.1.1, which is al-

ready used in state-of-the-art APR systems, such as Astor [35],

FixMiner [40], ACS [19], ssFix [37] and CapGen [38] among

others. On the other hand, the GZoltar version 1.6.0 is used in

SimFix [33] since it was recently shown to be effective [42].

D. Implementation of a Baseline APR System

Ideally, we should consider exploring an existing APR

system for drawing our reference performance. Unfortunately,

we face several challenges: (1) only a few research groups

openly release the code or even implementation details of

their APR systems; (2) repair steps are often tightly cou-

pled together in implementation, which requires substantial

engineering effort for experimental adaptation; (3) proposed

approaches generally mix several contributions which are hard

to isolate.

We, therefore, propose to implement and share a baseline

repair system based on a state-of-the-art publication on Java

program repair. We select PAR [7] for its simplicity and the

straightforward replication that can be carried out on the basis

of details from the relevant research report. We build kPAR,

which leverages patterns that have been learned from the com-

monalities among 60,000 human-written patches. Six common

patterns from the initial version of PAR has been implemented

in kPAR. We further record the performance of kPAR in repair

scenarios involving four different configurations of the fault

localization step.

IV. STUDY RESULTS

We now provide key findings for the related questions that

are investigated in this work.

A. Integration of FL Tools in APR Pipelines

To characterize how FL tools are integrated into APR

pipelines, we carefully assess evaluation reports in the litera-

ture and investigate the source code (when it is available) of

14 state-of-the-art APR systems which have been evaluated

on the Defects4J benchmark. Table IV enumerates the studied

tools along with the information collected. We focus on the

testing framework that is used and its version, the FL ranking

metric that is considered to compute the suspiciousness scores,

the granularity of fault locality that authors focused on, and

the extra information that authors use to supplement FL.

Among the 14 APR tools that are investigated, 10 lever-

age GZoltar as the automated testing toolset in the repair

pipeline. Except for SimFix, which uses a recent version of the

framework, all others use earlier versions (8 tools use version

0.1.1, while Nopol uses an even older version, i.e., 0.0.1).

Thus, unless otherwise stated, the experiments in this work

are performed on the widely used version 0.1.1 of GZoltar.

Eleven out of the 14 APR tools are explicitly known to

rely on Ochiai for computing the suspiciousness scores in

the fault localization process. This popularity of Ochiai is

backed up by empirical evidence on its effectiveness to help

localize faults in object-oriented programs as highlighted by

several fault localization studies [23], [43], [44], [55]. A

recent work by Pearson et al. [42] has even shown that

Ochiai outperforms current state-of-the-art ranking metrics,

or at least offers similar performance measures. In the latter

part of this study, we replicate their work to ensure that our

implementation of the ranking techniques is reliable. It should

also be noted that although ELIXIR and SketchFix do not

report the test framework that they use, they explicitly mention

using Ochiai for fault localization.

With respect to the granularity of fault locality, only LSRe-

pair [41] focuses on the method-level granularity to detect and

fix bugs. Other APR systems require information on bugs at

the line level to proceed with patch generation. Considering
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TABLE IV
FAULT LOCALIZATION (FL) TECHNIQUES INTEGRATED INTO STATE-OF-THE-ART APR TOOLS.

jGP jKali jMutRepair HDRepair Nopol ACS ELIXIR JAID ssFix CapGen SketchFix FixMiner LSRepair SimFix
FL testing framework GZoltar GZoltar GZoltar ? GZoltar GZoltar ? ? GZoltar GZoltar ? GZoltar GZoltar GZoltar

Framework version 0.1.1 0.1.1 0.1.1 ? 0.0.10 0.1.1 ? ? 0.1.1 0.1.1 ? 0.1.1 0.1.1 1.6.0

FL ranking metric Ochiai Ochiai Ochiai ? Ochiai Ochiai Ochiai ? ? Ochiai Ochiai Ochiai Ochiai Ochiai

Granularity of fault locality line line line line line line line line line line line line method line

Supplementary
information

∅ ∅ ∅ Faulty method
is known

∅ Predicate
switching [53]

? ?
Statements in

crashed stack trace
? ? ∅ ∅ Test Case

Purification [54]

∗ The unspecified/unconfirmed information of an APR tools is marked with ‘?’. If an APR tool does not use any supplementary information for FL, the corresponding table cell is marked with ‘∅’.

methods as the granularity of fault locations implies that such

faults that are located outside methods (e.g., type declaration

faults [56]) will not be addressed. However, this granularity

may offer a time advantage: when several statements in a

single method are reported as suspicious locations, LSRepair,

unlike other APR systems, is not required to iteratively try

each location for generating patch candidates. Finally, it should

be noted that FL tools do not offer the same accuracy in

identifying faulty locations at different granularity levels (cf.

Section IV-B), making method level granularity appealing for

limiting unnecessary trials on fault positive locations.

It is further noteworthy that four APR systems leverage

supplementary information to assist the fault localization step

and improve accuracy. The impact of this assistance is unfor-

tunately never discussed when comparing performance among

state-of-the-art repair approaches. Typically:

• HDRepair [13] assumes that the faulty methods are known:

the fault localization step therefore focuses on ranking the

lines inside the method, thus leaving out noisy statements

that other APR tools are considering. This artificially re-

duces the probability to produce overfitting patches for

HDRepair, and even increases the chance to generate a

correct patch before any execution timeout.

• ssFix [37] prioritizes statements from the stack trace of

crashed programs that are executed before those statements

that are ranked by the FL tool.

• ACS [19] uses predicate switching [53] and refines the

suspicious code locations list since the repair is focused on

faulty conditional statements.

• SimFix [54] applies a test case purification approach to

improve the accuracy of FL step before patch generation.

Although these extra steps, which are taken to supplement

FL step, could be justified intuitively, the community needs

to clearly investigate their impact, in order to enable fair

comparisons among the repair techniques themselves. Indeed,

given that APR systems are currently compared with respect

to the number of bugs that are correctly fixed, it is important

that the research community reflects on what are the key

contributions for explaining APR performance: for example,

by counting numbers of correct patches, several programs may

not be repairable by a given APR system simply because the

fault is not accurately localized by the implemented FL step.

RQ1�State-of-the-art APR systems in the literature add
some adaptations to the usual FL process to improve its
accuracy. Unfortunately, researchers have eluded so far
the contribution of this improvement in the overall repair
performance, leading to biased comparisons.

B. Localizability of Defects4J Bugs
In a recent work, Koyuncu et al. [40] have reported that

136 bugs in total from the Defects4J dataset have already

been associated to a plausible patch that was generated by

at least one APR system from the literature. Patches for

83 bugs have even been validated as correct patches by

researchers. Considering this data that we complement with

the performance realized by another recent APR tool, namely

LSRepair, we conclude that ∼62% (246/395) of Defects4J’s

bugs have never seen a plausible patch automatically generated

by the state-of-the-art in APR. Although a recent empirical

study [57] has suggested that current APR systems cannot

repair hard and important bugs, our intuition is that there

might be a more practical issue related to the localizability

of Defects4J defects:

How many faults in the Defects4J benchmark can actually
be localized by current automated fault localization tools?

We consider the most common scenario of fault localization

scenario from the APR literature: GZoltar is used for auto-

mated test execution, and Ochiai for computing suspiciousness

scores. Test execution is performed with the test cases provided

in the Defects4J benchmark. Table V provides quantitative

details on the localizability of bugs at different levels of fault

locality granularity (i.e., file, method and line). Experiments

are performed with two distinct versions of GZoltar.

In this experiment, we consider a bug to be localized as long

as the faulty code is listed among the suspicious statements

reported by this fault localization tools. Considering the most

common configuration in the literature (GZoltar version 0.1.1

and “Line” granularity level), up to 132 (= 395 - 263) bugs

in Defects4J are not localized. The number of bugs that are

not localized decreases to 74 (= 395 - 321) when the coverage

matrices are produced with GZoltar version 1.6.0. This result

suggests that with GZoltar version 1.6.0, APR systems have

an opportunity attempt the fix of 58 more bugs.

TABLE V
NUMBER OF BUGS LOCALIZED∗ WITH OCHIAI/GZOLTAR.

Project # Bugs File Method Line
GZ1 GZ2 GZ1 GZ2 GZ1 GZ2

Chart 26 25 25 22 24 22 24

Closure 133 113 128 78 96 78 95

Lang 65 54 64 32 59 29 57

Math 106 101 105 92 100 91 100

Mockito 38 25 26 22 24 21 23

Time 27 26 26 22 22 22 22

Total 395 344 374 268 325 263 321

∗A bug is counted as localized as long any of the faulty locations appear
in the ranked list of suspicious locations reported by the FL tool. GZ1 and
GZ2 indicate GZoltar 0.1.1 and 1.6.0, respectively. The same abbreviations
are used for GZoltar versions in the following tables. The column GZ1 of
“Line” is highlighted since it is the most common configuration in APR
systems.
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RQ2�One third of bugs in the Defects4J dataset cannot be
localized by the commonly used automated fault localization
tool. Nevertheless, the recent version of GZoltar provides
coverage information that helps localize more than 50 bugs,
which may have never been considered in validation trials
of early APR systems.

Besides Ochiai, we have attempted to localize bugs in the

Defects4J benchmark by using six other ranking metrics to

compute suspiciousness scores. Table VI presents the number

of bugs localized by the different ranking metrics. We consider

the cases where the actual fault location is reported at the

Top-1 position of the suspicious code locations, and among

the Top-10 positions. Results for Top-50, Top-100, Top-200

and all localized are also made available in the replication

package. The results show that fault localization performance

is consistent among the different ranking metrics.

TABLE VI
NUMBER OF BUGS LOCALIZED AT TOP-1 AND TOP-10.

Ranking
Metric

GZ1 GZ2

File Method Line File Method Line
Top-1 Position
Tarantula 171 101 45 169 106 35
Ochiai 173 102 45 172 111 38
DStar2 173 102 45 175 114 40
Barinel 171 101 45 169 107 36
Opt2 175 97 39 179 115 39
Muse 170 98 40 178 118 41
Jaccard 173 102 45 171 112 39

Top-10 Position
Tarantula 240 180 135 242 189 144
Ochiai 244 184 140 242 191 145
DStar2 245 184 139 242 190 142
Barinel 240 180 135 242 190 145
Opt2 237 168 128 239 184 135
Muse 234 169 129 239 186 140
Jaccard 245 184 139 241 188 142

Only 45 bugs can be accurately localized with Ochiai at

the first suspicious line location. 140 and 214 bugs can be

localized at Top-10 and Top-100 positions. Actually, many

APR systems only focus on generating patches iteratively

based on a part of the list of suspicious code locations. For

example, for SketchFix [39], authors explicitly declare to

consider only the top-50 most suspicious statements in the

ranked list, while in ELIXIR [36], up to the top-200 suspicious

locations are considered.

C. Impact of Effective Ranking in Fault Localization

Automated fault localization produces a ranked list of sus-

picious code locations that APR tools must iteratively consider

for patch generation. To assess to what extent effective ranking

(i.e., placing the actually faulty code locations at the top of

the list), we propose to investigate the correlation between the

rank of bug localization in the suspicious lists and the ability

of state-of-the-art systems to be able to repair it.

Table VII summarizes the list of all bugs, from the Defects4J

benchmark, for which a plausible patch has been generated

by one of the 14 state-of-the-art APR systems considered in

this study. For each bug, we indicate the rank of the bug

location within the ranked list of suspicious locations provided

by the fault localization for different localization granularities.

Experiments are done using the Ochiai ranking metric, but

Fig. 2. Distribution of reciprocal positions of actual bug locations among the
ranked list of suspicious locations.

with two versions of GZoltar for computing the test coverage

matrices. The raw data, including for other ranking metrics,

are available in our replication package.

We propose to compute the distributions of positions across

subsets of bugs for checking correlations between the local-

ization ranking positions and the ability of APR systems to

fix the bugs. Thus, we normalize bug localization positions

by computing reciprocal positions based on the following

formula:

Reciprocalpos(bugpos) =

{
0, if bugpos = 0;

1.0
bugpos

, otherwise.
(2)

where bugpos refers to the position of the actual bug location1

in the ranked list of suspicious locations reported by the FL

step. If the bug location can be found in the higher position

of the ranked list, the value of Reciprocalpos is closer to 1.

Similarly, the value of Reciprocalpos trends to 0 when the bug

location is at lower positions in the list of suspicious locations.

This value is set to 0 when the bug cannot be localized by the

FL tool (i.e., bugpos = 0). In addition, for the purpose of our

experiments, we consider three sub-classes of bugs:

• correctly fixed bugs: these are bugs for which a correct patch

has been provided by at least one APR tool.

• overfitting-fixed bugs: these are bugs for which one or more

plausible patch has been generated, although none has been

found to be correct.

• unfixed bugs: these are bugs for which no plausible patch

has ever been generated by any APR system. Due to space

limitation, localization data for these bugs are only available

in the replication package.

Figure 22 shows the distribution of reciprocal positions for

the three classes of bugs at the file, method, line granularity

of fault locality. It clearly appears that correctly-fixed bugs

are more accurately localized than others: i.e., their location

precisions are higher in the ranked list of suspicious locations

by FL tools. On the other hand, unfixed bugs tend to be those

that are poorly localized: even at the file level, FL tool show

low performance in localizing such bugs.

RQ2�APR tools are prone to correctly fix the subset of
Defects4J bugs that can be accurately localized.

We further observe from the data in Table VII that a few

APR systems report patches for some bugs even though they

cannot be localized (at the line level) with the configuration

1If several lines are concerned by the bugs, we consider the first time any
of these lines appear as the bug position (cf. Section II).

2The bug positions before being reciprocated shown in the figure are
localized by GZoltar 0.1.1 with Ochiai.
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TABLE VII
LOCALIZATION POSITIONS (I.E., RANK WITHIN THE SUSPICIOUS LIST) FOR DEFECTS4J BUGS WHICH HAVE BEEN FIXED (CORRECTLY OR PLAUSIBLY) BY

CORRESPONDING APR SYSTEMS.

APR tools GZ1 & Ochiai GZ2 & Ochiai

Bug ID jG
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Chart-1 � � � � � (�) � � � � � � 1 1 28 24 24 28
Chart-3 � � � � 1 1 7 1 1 4
Chart-4 � � 1 1 49 2 2 173
Chart-5 � � � � 1 1 7 12 66 72
Chart-6 � 2 49 49 24 222 224
Chart-7 � � � � 1 2 28 1 2 75
Chart-8 � � � � 0 0 0 1 1 1
Chart-9 � (�) � � 1 1 3 1 2 14
Chart-10 � 1 1 1 1 3 3
Chart-11 � � � � � 1 1 15 1 24 28
Chart-12 � � 1 0 0 801 1092 1093
Chart-13 � � � � � � � 1 1 17 5 35 51
Chart-14 � � 1 1 1 38 996 998
Chart-15 � � 1 26 26 2143 8444 8445
Chart-17 � � 1 2 2 11 12 12
Chart-18 � � 1 1 6 1 1 3
Chart-19 � 1 1 5 37 833 833
Chart-20 � � � 4 0 0 62 62 62
Chart-21 � 2 2 2 1 34 39
Chart-22 � 1 1 1 1 53 58
Chart-24 � � � � � 1 1 2 1 1 3
Chart-25 � � � � � 1 30 47 1325 3668 3913
Chart-26 � � � � � � � 132 132 132 241 14795 15053

Closure-5 � 8 0 0 561 0 0
Closure-7 � 7 0 0 28 0 0
Closure-10 � � 3 56 120 3 67 141
Closure-12 � 154 368 368 393 1085 1085
Closure-14 � � � � 1 2 3 2 3 3
Closure-18 � 90 1495 1527 93 2320 2377
Closure-31 (�) 215 1026 1043 214 1756 1802
Closure-33 � 2 2 289 2 2 318
Closure-38 � 1 1 34 1 1 49
Closure-40 � 9 0 0 104 0 0
Closure-42 � 4 0 0 15 0 0
Closure-51 � 25 25 33 41 41 50
Closure-57 � 1 2 3 1 2 7
Closure-62 � (�) � � � 1 1 1 1 1 4
Closure-63 (�) � � 1 1 1 1 1 4
Closure-68 � 2 2 2 2 2 4
Closure-70 � � � 143 0 0 264 0 0
Closure-73 � � � � � 1 7 10 1 1 16
Closure-79 � 0 0 0 1 37 37
Closure-106 � 0 0 0 3 4 4
Closure-109 � 1 9 9 1 4 4
Closure-111 � 1 0 0 7 0 0
Closure-115 � � 1 1 1 8 8 8
Closure-122 � 1 1 2 1 2 2
Closure-125 � � 4 142 145 5 166 170
Closure-126 � (�) � � 1 1 1 6 6 6

Lang-2 � � 127 127 128 1 1 17
Lang-6 � � � � � 0 0 0 54 73 74
Lang-7 � 373 0 0 1 1 25
Lang-10 � � 114 0 0 1 64 64
Lang-16 � 322 0 0 1 1 27
Lang-21 � � 1 0 0 1 1 2
Lang-24 � � � � 259 618 0 1 14 64
Lang-26 � � 21 0 0 1 112 112
Lang-27 � � � 262 269 0 1 1 56
Lang-29 � 59 59 0 1 1 0
Lang-33 � � � � 14 0 0 1 1 7
Lang-35 � 53 0 0 1 1 2
Lang-38 � (�) 104 0 0 1 3 3
Lang-39 � � � � � � 203 0 0 1 2 27
Lang-40 � 1 1 1 1 1 2
Lang-41 � � 1 5 7 1 5 6
Lang-43 � � � � � � 1 1 1 1 26 29
Lang-44 � � � � 1 5 20 1 1 3
Lang-45 (�) � 1 1 16 1 1 5
Lang-46 � � 1 1 3 1 1 1
Lang-48 � 1 1 2 1 1 2
Lang-50 � 1 9 15 1 8 8
Lang-51 � � � (�) � � � 1 1 0 1 1 0
Lang-52 � 1 1 13 1 3 25
Lang-53 � 1 1 32 1 1 16
Lang-54 � 1 1 2 1 1 4
Lang-55 � (�) � � 1 7 9 1 6 7
Lang-57 � � � � 1 1 1 1 1 1
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Lang-58 � � � � 1 2 8 1 1 20
Lang-59 � � � � � � 1 1 1 1 1 6
Lang-60 � � 1 1 3 1 1 2
Lang-61 � 1 14 19 1 14 21
Lang-62 � 1 1 7 1 1 7
Lang-63 � � 1 1 1 1 1 1

Math-1 � 20 0 0 12 14 14
Math-2 � � � � � 1 11 11 44 44 44
Math-3 � � 1 1 16 1 1 3
Math-4 � 1 1 1 1 3 6
Math-5 � � � � � � � � 1 2 2 1 1 1
Math-6 � � 1 2 205 1 2 177
Math-8 � � � � 1 1 3 1 3 4
Math-10 � 1 1 1 5 5 17
Math-11 � 1 9 9 27 27 29
Math-16 � 1 1 5 1 1 5
Math-20 � � � 1 0 0 1 0 0
Math-22 � � 1 1 1 1 1 1
Math-25 � 0 0 0 0 0 0
Math-28 � � � � � � � 6 6 6 13 13 13
Math-30 � � � � 1 4 9 142 161 161
Math-32 � � � (�) 1 3 3 5 5 6
Math-33 � � � � � � � 2 4 31 2 6 44
Math-34 � � � 1 1 1 1 3 3
Math-35 � � 0 0 0 1 3 5
Math-40 � � � � 1 23 24 24 33 34
Math-41 � � 1 2 6 1 37 49
Math-42 � 1 23 26 3 57 66
Math-49 � � � 3 4 7 5 5 7
Math-50 � � � � � � (�) � � � 1 1 1 1 1 1
Math-53 � � (�) � � � 1 1 1 1 1 2
Math-57 � � � � � � � 1 1 14 1 4 4
Math-58 � � � � � � 6 6 6 223 223 223
Math-59 � � � � � 1 1 1 1 2 2
Math-60 � 21 21 21 283 283 284
Math-61 � 0 0 0 1 1 1
Math-63 � � � � � 1 8 8 1 1 1
Math-65 � � 1 8 9 12 12 15
Math-69 � 1 1 2 1 48 57
Math-70 � � � � � � � � � 1 1 1 1 1 1
Math-71 � � � � 1 1 1 1 1 1
Math-72 � 1 3 4 1 1 1
Math-73 � � � � � � 1 1 1 1 1 1
Math-75 � � � � � 1 2 2 1 1 1
Math-78 � � � � 17 21 32 67 67 109
Math-79 � � � � � 23 23 25 29 29 29
Math-80 � � � � (�) � � � � 1 11 18 1 14 14
Math-81 � � � � � � � � � 1 1 6 1 1 10
Math-82 � � � � � � � (�) � � � � 2 53 60 1 76 84
Math-84 � � � � � 1 13 30 5 18 134
Math-85 � � � � � � (�) � � � � � 1 1 36 11 11 90
Math-87 � 1 99 100 2 109 111
Math-88 � � � 1 1 1 1 1 1
Math-89 � � 1 1 1 1 1 1
Math-90 � 1 1 4 1 1 3
Math-91 � 1 1 2 1 1 1
Math-93 � � 1 1 2 1 1 2
Math-94 � 1 1 21 1 1 21
Math-95 � � � � 2 2 3 8 11 12
Math-97 � � 1 1 1 1 1 1
Math-98 � 1 1 6 1 1 4
Math-99 � � 1 1 1 1 1 4
Math-104 � � 1 0 0 1 0 0
Math-105 � � 1 1 1 1 25 25

Mockito-13 � 30 30 70 74 74 135

Time-4 � � � � � 36 36 208 6 6 31
Time-7 � 48 48 51 10 10 14
Time-11 � � � � � � 4 0 0 51 0 0
Time-14 � 4 4 7 2 2 3
Time-15 � � 1 1 115 1 1 2
Time-17 � 5 5 5 5 5 5
Time-19 � � 5 449 449 104 620 620

∗ � indicates that the bug is correctly fixed and � indicates that the generated patch is plausible but not correct. (�) indicates that a correct patch is generated,
but is not the first plausible patch to be generated”. “0” means that the bug cannot be localized by the corresponding FL tool with the corresponding ranking
metric in the corresponding granularity.
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of Ochiai/GZoltar 0.1.1. There are various justifications to this

phenomenon:

• Improved version of the fault localization step - Chart-
20 cannot be localized with GZoltar 0.1.1 and Ochiai, but is

reported to be fixed by tools such as SimFix and ssFix. Our

investigations show that SimFix has used a recent version

of GZoltar (1.6.0), which is capable of localizing Chart-20
among other bugs that were not localizable. ssFix on the

other hand indeed uses GZoltar 0.1.1 but do not consider

only the results of the FL tool: statements in the stack trace

of crashed programs are also considered as potential fault

locations.

• Targeted localization - HDRepair can fix Lang-6, which is

not localized with Ochiai/GZoltar 0.1.1, because this APR

system assumes that the faulty method is known, and thus

directly ranks the restricted set of statements in this method.

• Coarse-grained repair - LSRepair can fix four bugs which

cannot be localized at the line granularity. This is due to

the fact that LSRepair requires only fault localization at the

method level, which is not a bias per se.

• Non-explicit fault localization process - SketchFix, JAID,

and ELIXIR correctly fix some bugs that are not localized

under the proposed configuration. Unfortunately, besides

the lack of details in their associated research reports, the

source code of these tools was not made available for

further investigation. Chart-8 is another example that is

not localizable by using Ochiai/GZoltar 0.1.1. This specific

un-localizability problem was recently raised by Yuan and

Banzhaf [58] as well as Martinez et al. [45]. Nevertheless,

CapGen, ELIXIR and SketchFix are reported to have fixed

this bug.

RQ3�APR systems do not fully disclose their fault localiza-
tion tuning parameters, thus preventing reliable replication
and comparisons.

Given the bias that can be introduced by unlocalizable

bugs being fixed by specific tweaking, which are not clearly

outlined by the authors, we propose to count the numbers

of bugs that are fixed by APR systems among those bugs

that are known to be localizable. Table IX thus represents

an updated version of Table II where performance can be

compared on the same basis. To illustrate the differences

between the two comparison tables, we compute three scores:

(1) NPFB: number of plausibly-fixed bugs, (2) NCFB: number

of correctly-fixed bugs, and (3) P3C: probability of plausible

patch correctness.

Figures 3(a) and 3(b) illustrate the differences in respec-

tively NPFB and NCFB scores when considering all bugs vs

only localizable bugs. We note that all tools may produce some

plausible patches that are plausible even for non-localizable

bugs. This finding suggests that the test cases in Defects4J

are insufficient since it is possible for APR systems to change

non-faulty code locations and still produce patches that make

the faulty program pass all test cases. On the other hand, five

APR systems cannot produce any correct patches for bugs that

are not localizable. ACS, ELIXIX and SimFix can correctly fix

bugs that are not localized with GZoltar 0.1.1, suggesting extra

impact with an improved version of the fault localization step.

On the other hand, LSRepair can fix bugs that are not localized

at the line level because method level fault localization is

sufficient for its execution.
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Fig. 3. Number of fixed bugs among all bugs vs. localizable bugs.

Finally, Table VIII establishes the re-ranking of APR sys-

tems in terms of the P3C scores when focusing on localizable

bugs. When focusing on localizable bugs, state-of-the-art APR

systems can correctly overall fix fewer bugs than reported in

the literature.

TABLE VIII
ADJUSTED PROBABILITY OF PLAUSIBLE PATCH CORRECTNESS.

All Localizable
P3C Rank Tool P3C Rank

84.0 1 CapGen 81.8 ↓ 2
80.6 2 FixMiner 83.3 ↑ 1
78.3 3 ACS 75.0 ↓ 4
73.1 4 SketchFix 76.2 ↑ 3
63.4 5 ELIXIR 66.7 5
60.7 6 SimFix 63.6 6
51.4 7 LSRepair 45.5 7
33.3 8 ssFix 33.3 8
29.0 9 JAID 26.1 9
26.1 10 HDRepair 22.2 10
18.5 11 jGenProg 19.2 ↓ 12
17.6 12 jMutRepair 20.0 ↑ 11
14.3 13 Nopol 16.1 13
4.5 14 jKali 4.8 14

D. Evaluating kPAR with Specific FL Configurations

kPAR is an open-source APR system that we have built

to provide a baseline for comparisons of different FL config-

urations. We evaluate its performance against the Defects4J

benchmark with the following four different configurations of

the fault localization step:

1) Normal FL gives a ranked list of suspicious code loca-

tions identical as reported by a given FL tool.

2) File Assumption assumes that the faulty code files are

known. Suspicious code locations from Normal FL are

then filtered accordingly. In other words, locations in the

known buggy files are selected and locations in other files

are ignored.

3) Method Assumption assumes that the faulty methods

are known (the same assumption with [13]). Only loca-

tions in the known methods are selected and locations in

other methods are ignored.

4) Line Assumption assumes that the faulty code lines are

known. No fault localization is then used.

These configurations have an order with respect to a poten-

tial size of the search space. Conceptually, the relationships

between them hold P (|Normal FL|) ≤ P (|File Assumption|) ≤
P (|Method Assumption|) ≤ P (|Line Assumption|), if we con-
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TABLE IX
NUMBER OF LOCALIZABLE BUGS (WITH GZOLTAR 0.1.1 AND OCHIAI) FIXED BY DIFFERENT APR TOOLS.

Proj. jGenProg jKali jMutRepair HDRepair Nopol ACS ELIXIR JAID ssFix CapGen SketchFix FixMiner LSRepair SimFix
Chart 0/7 0/6 1/4 0/1 1/6 2/2 3/6 2/4 2/6 3/3 4/6 5/7 3/8 3/6

Closure 0/0 0/0 0/0 0/6 0/0 0/0 0/0 3/8 2/8 0/0 3/4 5/5 0/0 6/6

Lang 0/0 0/0 0/0 0/3 3/5 0/0 3/5 0/3 2/6 3/3 2/2 2/3 4/10 5/8

Math 5/18 1/14 2/11 4/7 1/20 9/13 12/17 1/8 10/25 12/16 7/8 12/14 7/14 13/23

Mockito 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 0/0

Time 0/1 0/1 0/0 0/1 0/0 1/1 2/2 0/0 0/3 0/0 0/1 1/1 0/0 1/1

Total 5/26 1/21 3/15 4/18 5/31 12/16 20/30 6/23 16/48 18/22 16/21 25/30 15/33 28/44

Total∗ (all bugs) 5/27 1/22 3/17 6/23 5/35 18/23 26/41 9/31 20/60 21/25 19/26 25/31 19/37 34/56

P(%) 19.2 4.8 20.0 22.2 16.1 75.0 66.7 26.1 33.3 81.8 76.2 83.3 45.5 63.6

P(%)∗ (all bugs) 18.52 4.55 17.65 26.09 14.29 78.26 63.41 29.03 33.33 84.00 73.08 80.65 51.35 60.71

∗Greyed-out rows are copied from Table II (i.e., numbers reported in the literature) to ease comparison with the numbers of localizable bugs that are fixed.

sider each configuration as producing a set of suspicious

locations, where P (| ∗ |) is the probability that the relevant

fault locations are included in the suspicious list.

To facilitate comparison with existing repair systems, we

leverage the standard GZoltar 0.1.1 and Ochiai in the following

experiments. For each bug, we apply kPAR at most three hours

(wall-clock time); we assume that it fails to fix a given bug

if it takes more than three hours. We set this value according

to the experimental setup of Astor [35]. Table X summarizes

the number of bugs fixed by kPAR with the different FL

configurations.

As shown in Table X, kPAR can fix its maximum number of

bugs when the accurate fault locations are provided (i.e., with

Line Assumption). With this assumption, kPAR can correctly

fix 36 bugs in Defects4J, a record performance in the literature

(not accounting for the bias in the fault localization step).

TABLE X
# OF BUGS FIXED BY KPAR.

FL Configuration Chart (C) Closure (Cl) Lang (L) Math (M) Mockito (Moc) Time (T) Total
Normal FL 3/10 5/9 1/8 7/18 1/2 1/2 18/49

File Assumption 4/7 6/13 1/8 7/15 2/2 2/3 22/48

Method Assumption 4/6 7/16 1/7 7/15 2/2 2/3 23/49

Line Assumption 7/8 11/16 4/9 9/16 2/2 3/4 36/55

Figure 4 further details which bugs are fixed in the different

configurations. First, we note that all bugs fixed with a given

localization configuration are also fixed by any of the relatively

more accurate fault localization configurations. Thus, with the

File Assumption configuration, kPAR can fix not only all bugs

that were already fixed with the Normal FL configuration but

also can now fix four more bugs. By examining the case of

those four bugs, we figure out that, in the case of two bugs

(i.e., Cl-4 and T-19), the faulty locations were ranked very low

in Normal FL, leading to an execution stop due to timeout.

For the remaining two bugs (i.e., C-26 and Moc-29), however,

in Normal FL, kPAR is led to consider first some irrelevant

suspicious statements that made kPAR to generate plausible

patches that are not correct. Given that the repair process stops

when a plausible patch is produced, there is no opportunity

with Normal FL to try all suspicious statements.

C-1, 4, 7, L-59.
Cl-2, 38, 62, 63, 73.

M-15, 33, 58, 70, 75, 85, 89.
Moc-38, T-7.

File_AssumptionNormal_FL

C-26, Cl-4,
Moc-29, T-19. Cl-10

Method_Assumption

C-8,14,19.
Cl-31,38,40,70.
M-4,82, T-26.

L-6,22,24.

Line_Assumption

Fig. 4. Bugs correctly fixed by kPAR with four configurations.

When filtering the set of suspicious locations with

Method Assumption, kPAR can fix one more bug (i.e., Cl-
10), which could not be fixed by other two less confined FL

configurations (i.e., Normal FL and File Assumption) before

the time-out. Finally, when assuming that the fault locations

are known (i.e., Line Assumption), kPAR can further fix 13

bugs. These could not be fixed in other three less confined

configurations. Among the 13 bugs, seven bugs (i.e., C-8, Cl-
40, Cl-70, L-6, L-22, L-24, and T-26) are not even localizable

using Ochiai/GZoltar 0.1.1; two bugs (i.e., Cl-18 and Cl-70)

are not fixed due to execution timeout; one bug (i.e., M-82)

is not fixed in other three configurations since the proposed

plausible patches are incorrect; three bugs (i.e., C-14, C-19 and

M-4) are partially fixed in the other three FL configurations

since they have several faulty code fragments.

RQ3�Accuracy of fault localization has a direct and sub-
stantial impact on the performance of APR repair pipelines.

We examine the bug Chart-14 from the Defects4J dataset,

which involves four fault code locations [59]. If we regard

those as four sub-bugs, each one can be correctly detected

and fixed by kPAR using the Normal FL configuration. How-

ever, if the exact faulty statements are unknown, kPAR (as

current APR tools) iteratively mutates suspicious statements

one by one in the ranked list. Even if any one of them is

correctly fixed, there are still three failed tests, meaning that

the generated patch (even if was a correct patch) will not even

be considered as a plausible patch.

Considering a patch that partially passes some previously-

failing test cases (without introducing new failing test cases)

may nevertheless be harmful as it can prevent the generation of

a fully correct patch. For example, Chart-4 is a single-location

bug that makes 22 test cases fail [60]. Before generating the

correct patch, kPAR had generated patches that made the

program pass subsets of the test cases.

Other bugs, such as Math-72, on the other hand include

multiple faulty locations that fail on the same test case.

Although kPAR could generate correct patches for each faulty

location, the fix process of kPAR prevents a full fix of this

bug. If the test suite can be automatically augmented with

differentiating test cases for each fault location, an APR

system would be more successful as suggested in [30].
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RQ3�APR researchers must investigate the trade-off be-
tween fixing multi-locations bugs versus bugs failing multiple
test cases.

V. DISCUSSION

Our study draws a number of conclusions that we refor-

mulate into guidelines for assessing APR systems. We further

enumerate the associated threats to validity before discussing

the related work.

A. APR Assessment Guidelines

• Full disclosure of FL parameters. Given that many APR

systems do not release their source code, it is important

that the experimental reports clearly indicate the protocol

used for fault localization. Preferably, authors should strive

to assess their performance under a standard and replicable

configuration of fault localization.

• Qualification of APR performance. To ensure that novel

approaches to APR are indeed improving over the state-of-

the-art, authors must qualify the performance gain brought

by the different ingredients of their approaches.

• Patch generation step vs Repair pipeline. There are

two distinct directions of repair benchmarking that APR

researchers should consider. In the first, a novel contribution

to the patch generation problem must be assessed directly

by assuming a perfect fault localization. In the second, for

ensuring realistic assessment w.r.t. industry adoption, the

full pipeline should be tested with no assumptions on fault

localization accuracy.

• Sensitivity of search space. Given that fault localization

produces a ranked list of suspicious locations, it is essential

to characterize whether exact locations are strictly necessary

for the APR approach to generate the correct patches.

For example, an APR system may not focus only on a

suspected location but on the context around this location.

APR approaches may also use heuristics to curate the FL

results.

B. Threats to Validity

A threat to external validity of our study is that we focus

on the localizability of bugs in the Defects4J dataset, which

target Java code and may not include sufficient test cases. This

threat is however limited given that we investigate performance

differences. Threats to internal validation include the use of a

single automatic testing framework, namely GZoltar (Not all

APR systems in the literature use it to localize faults.), and

the selection of the 14 state-of-the-start APR systems. These

threats are mitigated by the fact that we ensured that these

choices are common among the APR literature.

C. Related Work

The software development practice is increasingly accepting

generated patches [61]. Recently, various directions in the

literature have explored to contribute to the advancement of

automated program repair [24], [25], [42], [46], [62]–[65]. We

now discuss the few related studies that attempt to investigate

fault localization in relationship with APR.

Qi et al. [66] have evaluated the effectiveness of FL tools by

using APR performance as a proxy. Their study proposed the

NCP score [66] as the effectiveness metric. The results show

that a specific FL ranking metric (Jaccard [67]) outperforms

other metrics. Our study, however, reveals that the common

technique used in APR is still Ochiai. Yang et al. [68] studied

the usage of FL techniques in APR systems by investigating

two different algorithms of how to interpret the results of

FL techniques: (1) the rank-first algorithm based on suspi-

ciousness rankings of statements, and (2) the suspiciousness-

first algorithm based on suspiciousness scores of statements.

They ran Nopol [18] to compare NCP scores, repair time, and

patch diversity of the two algorithms. The study concludes that

the suspiciousness-first algorithm is more effective for APR

systems. The above two studies, however, do not consider

whether the patches generated by APR tools are correct or

plausible while our study examines how FL techniques affect

the quality of patches generated by APR systems.

The literature also includes work on the impact of the fault

space, although it does not clarify how FL tools affect the

performance of APR systems. Wen et al. [69] investigated the

influence of the fault space on the success of finding correct

patches by the APR tool. The fault space is defined as a

ranked list of suspicious entities in a program. They examined

both plausible and correct patches. However, their work is

limited to evaluating a single APR tool, GenProg [6] and a

single FL technique, Ochiai [25] while our study evaluates

and compares 14 different APR systems. Our study further

considers the exact location of faults and its correlation with

the possibility of generating plausible patches. Finally, our

study targets unveiling biases among APR systems.

To the best of our knowledge, our work is the first time to

systematically study to what extent FL techniques impact the

performance of automated program repair pipeline.

VI. CONCLUSION

The momentum of research in automated program repair is

a decisive opportunity for the software engineering research

community. Every couple of months, a new APR system is

proposed in a race to fix more bugs automatically. Unfortu-

nately, validation of these systems often have only the dataset

in common: important parameters such as the fault localization

settings are eluded, leading to biased comparisons among the

state-of-the-art. Our investigations into these biases call for

new guidelines for assessing and reporting on the performance

of APR systems. In particular, our replication package includes

a full dissection of the Defects4J benchmark in terms of

fault localization, a light-weight and tuneable fault localization

toolkit, as well as a baseline Java APR system to encourage

fair and reproducible experiments.
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and Y. Le Traon, “Fixminer: Mining relevant fix patterns for automated
program repair,” arXiv preprint arXiv:1810.01791, 2018.

[41] K. Liu, K. Anil, K. Kim, D. Kim, and T. F. Bissyandé, “LSRepair: Live
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