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a b s t r a c t

Automated Program Repair (APR) has attracted significant attention from software engineering re-
search and practice communities in the last decade. Several teams have recorded promising perfor-
mance in fixing real bugs and there is a race in the literature to fix as many bugs as possible from
established benchmarks. Gradually, repair performance of APR tools in the literature has gone from
being evaluated with a metric on the number of generated plausible patches to the number of correct
patches. This evolution is necessary after a study highlighting the overfitting issue in test suite-based
automatic patch generation. Simultaneously, some researchers are also insisting on providing time cost
in the repair scenario as a metric for comparing state-of-the-art systems.

In this paper, we discuss how the latest evaluation metrics of APR systems could be biased. Since
design decisions (both in approach and evaluation setup) are not always fully disclosed, the impact on
repair performance is unknown and computed metrics are often misleading. To reduce notable biases
of design decisions in program repair approaches, we conduct a critical review on the evaluation of
patch generation systems and propose eight evaluation metrics for fairly assessing the performance of
APR tools. Eventually, we show with experimental data on 11 baseline program repair systems that
the proposed metrics allow to highlight some caveats in the literature. We expect wide adoption of
these metrics in the community to contribute to boosting the development of practical, and reliably
performable program repair tools.

© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

In the last decade, Automated Program Repair (APR) (Monper-
us, 2009, 2018) has extensively grown as the prominent research
opic in the software engineering community. APR approaches
ims to alleviate the manual effort involved in fixing software
ugs. Recent approaches in the literature have achieved promis-
ng performance by highlighting the possibility to fix more and
ore real benchmark bugs automatically. As advocated by the

esearch community, APR holds several promises: in production,
t will drastically reduce the time-to-fix delays and limit down-
ime; in a development cycle, APR can help suggest changes to
ccelerate debugging. For the former, repair bots have started
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to show their power in the context of continuous integration
bots (Urli et al., 2018). For the latter, Facebook has recently
reported on the traction that their Getafix (Scott et al., 2019)
fix suggestion tool is getting among developers. In the literature,
there are two distinct repair scenarios: (1) fixing syntactic errors,
.e., cases where the developer code violates some programming
anguage specifications (Gupta et al., 2017; Bhatia and Singh)
nd (2) fixing semantic bugs, i.e., cases where the developer im-
lementation of program behaviour deviates from developer’s
ntention (Mechtaev et al., 2018; Nguyen et al., 2013). The latter
s the scope of the recent race in program repair. We will focus
ur review on the evaluation of such systems.
Since the work of Weimer et al. (2009) ten years ago, the

ssessment of APR approaches in the literature attempts to pro-
ide information on the number of bugs for which APR tool can
enerate a patch that makes the buggy program pass all the
est cases (Weimer et al., 2009; Kim et al., 2013; Martinez and
onperrus, 2016; Le et al., 2016; Xuan et al., 2017; Saha et al.,

017; Jiang et al., 2018). Six years after this seminal work on
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Table 1
Table excerpted from Saha et al. (2019) with the caption ‘‘ Statistics of Patch
Generation by Various Techniques (Correct/Incorrect)’’.
Subject Math Lang Time Chart Closure Total

Hercules 21/7 10/3 3/2 6/3 6/2 46/17
SimFix 14/12 9/4 1/0 4/4 6/2 34/22
CapGen 13/– 5/– 0/– 4/– 0/– 22/–
JAID 1/– 1/– 0/– 2/– 5/– 9/–
Elixir 12/7 8/4 2/1 4/3 0/– 26/15
ssFix 10/16 5/7 0/4 3/4 2/9 20/40
ACS 12/4 3/1 1/0 2/0 0/– 18/5

generate-and-validate patch generation systems, Qi et al. (2015)
and Smith et al. (2015) have concurrently presented empirical
results showing that generated patches can be plausible only:
they can make the programs pass all the test cases but may not
actually fix the bug, due to overfitting on the test suite. Therefore,
researchers have started to focus some effort in automating the
identification of patch correctness (Xiong et al., 2018; Tian et al.,
2020). Eventually, to fairly assess the performance on fixing real
bugs of APR tools, the number of bugs for which a correct (i.e., it is
semantically equivalent to the patch that the program developer
accepts for fixing the bug) patch is generated appeared to be
a more reasonable metric than the mere number of plausible
patches (Xiong et al., 2017). This metric has since then become
standard among researchers, and is now widely accepted in the
literature for evaluating APR tools (Chen et al., 2017; Saha et al.,
2017; Jiang et al., 2018; Wen et al., 2018; Hua et al., 2018; Liu
et al., 2018c; Liu and Zhong, 2018; Liu et al., 2019b,c). Table 1
provides an example of assessment results excerpted from the
paper describing Hercules (Saha et al., 2019), one of the most
recent state-of-the-art works on APR that was tested on the
Defects4J (Just et al., 2014) programs. Based on data reported
in this table, researchers explicitly rank the APR systems, and
use this ranking as a validation of new achievements in program
repair.

Unfortunately, various research experiences in developing and
assessing APR tools have proven that ‘‘this comparison is non-
trivial, and could further be largely biased due to a non-
consideration of important details’’ (Liu et al., 2019a) regarding
approach and evaluation design decisions. Approach design deci-
sions concern the technical implementation details such as the
fault localization configuration in the APR workflow. Evaluation
design decisions include non-implementation choices such as the
execution platform and time out settings. Indeed, recent studies
have suggested that an APR technique can achieve different
performance on fixing bugs when reported executions are repli-
cated under different configuration settings. For instance, in a
recent study, Liu et al. (2019a) have demonstrated how repair
performance comparison in the literature is biased by the use
of diverse fault localization techniques. Nevertheless, the authors
of Liu et al. (2019a) did not provide metrics that the community
should use to improve fairness in comparison.

Besides the number of bugs that an APR approach can fix,
which estimates effectiveness, APR assessment must consider
measuring efficiency of the patch validation process, highlighting
performance in terms of nature, complexity and importance of
bugs, as well as clarifying to what extent the reported perfor-
mance is likely reachable in practitioner settings. The objective of
the paper is thus to propose metrics that limit the biases when
assessing APR tools and when discussing comparison results.

Similar to the ‘‘overfitting’’ and ‘‘fault localization bias’’ studies,
which helped to improve the assessment criteria of APR tools, our
work aims at highlighting other potential biases in approach and
evaluation design decisions when comparing different APR tools
performance. We go beyond prior works by proposing a diverse set
of metrics which limit comparison biases.
Fig. 1. Standard steps in a pipeline of automated program repair.

Our contributions in this paper are twofold:

1. We conduct a critical review on the evaluation of auto-
mated program repair systems. This review is based on
experimental data collected by replicating the execution of
11 APR tools in the literature.

2. We propose bias-limited metrics to be used in conjunction
with the widely-accepted metric ‘‘number of bugs fixed
with correct/plausible patches’’ for evaluating the repair
performance of APR systems. These metrics attempt to
reduce the comparison biases that we exhibit in our critical
review:

• Upper bound Repair Performance metric aims to clearly
provide an indication of the patch generation limitations
when focusing on this part of the APR system (i.e., APR
systems are given with the exact bug-fixing positions
obtained from the ground-truth developers’ patches).

• Fault Localization Sensitiveness metric aims to assess
the impact of the used fault localization on the repair
performance of the APR system.

• Patch Generation Efficiency metrics aim to clarify the
APR efficiency, the effort to yield a plausible/correct
patch.

• Bug Diversity metrics aim at evaluating APR system per-
formance from intrinsic attributes of bugs.

• Benchmark Overfitting metrics aim to clarify the dif-
ference of APR systems performance between in-the-lab
and in-the-wild assessment settings.

2. Background & motivation

Automated program repair workflow, for generate-and-vali-
date systems, includes three basic processes as shown in Fig. 1:
fault localization (FL), which produces a ranked list of suspicious
code locations that must be modified to fix the bug, patch gen-
eration (PG), which implements the change operators that are
applied on the code locations, and patch validation (PV), which
executes the test cases to ensure that the patched program meets
the expected behaviour encoded in the test suite. Each of these
steps is obviously important and may significantly impact repair
performance of generate-and-validate APR systems. For example,
if FL code locations are majoritarily false positives, the APR sys-
tem may generate patches that do never pass test cases. Liu et al.
(2019a) have even recently shown that current FL techniques are
not all equivalent when comparing APR tools to assess their repair
performance.

The current literature trend in APR studies is to evaluates the
performance of APR systems based on the number of successfully
fixed bugs (Jiang et al., 2018; Koyuncu et al., 2020), which deter-
mines whether a generated patch is successful by counting the
number of passing test cases. If a patch can pass all the given test
cases (both previously-passing and previously-failing test cases
on the buggy version), it is regarded as a successful patch. This
criterion was first used by Weimer et al. (2009) in their seminal

work on generate-and-validate APR systems.
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Table 2
Table excerpted from Ghanbari et al. (2019) with the caption ‘‘Average PraPR
time cost (s)’’.
Subjects # Patches Time cost (s)

Chart 2,827.6 157.8
Closure 29,849.9 3,027.3
Lang 544.4 210.2
Math 3,333.2 1,629.2
Mockito 2,601.0 148.8
Time 2,968.2 144.2

Table 3
Defects4J benchmark information.
Subjects # bugs KLoC # test cases Test KLoC # assert

Chart 26 96 2,205 50 9,121
Closure 133 90 7,927 83 8,936
Lang 65 22 2,245 6 13,117
Math 106 85 3,602 19 9,512
Mockito 38 11 1,457 20 1,882
Time 27 28 4,130 53 17,658

∗Data shown in this table are excerpted from Defects4J paper (Just et al., 2014,
2018).

Unfortunately, as later studies have revealed, even if a gen-
rated patch can pass all test cases, it might break a necessary
ehaviour or introduce other faults, which are not covered by
he given test suite (Smith et al., 2015). Moreover, a developer
ay not accept the patch due to several reasons such as coding
onvention (Kim et al., 2013; Monperrus, 2014). All such patches
re often called plausible patches since they require further
nvestigations to ensure that they are correct patches that would
e acceptable to developers. In the literature, correctness is gen-
rally assessed manually by comparing the APR-generated patch
gainst the developer-provided patch available in the benchmark.
Similarly, efficiency of APR tools is being assessed by re-

earchers via measuring time to generate-and-validate patches.
or example, very recently, Ghanbari et al. use time cost criterion
o assess the efficiency of their APR tool (PraPR) (Ghanbari et al.,
019) on real bugs. Table 2 excerpts the average time costs
eported by Ghanbari et al. (2019) for the different Defects4J
ubjects. On average, for each Closure bug, PraPR generated
nd validated 29,849.9 patches. This represents 10 times more
atches than the ones generated and validated by PraPR for each
hart bug. Yet, the time cost for Closure bugs is 20 times more
he time cost for Chart bugs.

When considering the information shown in Table 3 about the
efects4J dataset, the ratios of line of source code (LoC), number
f test cases, line of test code and number of assert statements
mong the subjects, we question their correlation with the PraPR
ime cost for validating patches. Eventually, we postulate that it
ould be biased to assess the efficiency of APR tools by measuring
he average time cost for fixing a diverse set of program bugs. This
ias is further exacerbated by the non-linear correlations with
xecution platform configuration settings for RAM, CPU, etc.
Additionally, it should be noted that different evaluation sce-

arios set different time constraints to their approaches for gen-
rating a valid patch that can make the patched buggy program
ass all given tests successfully. Such constraints constitute biases
hen comparing APR tools. To sum up, considering the limita-
ion of the current assessment criteria for APR systems in the
iterature, it is necessary to introduce solid evaluation metrics for
nabling fair comparisons among APR systems, and thus re-focus
he advancement of APR techniques on aspects beyond super-
icial enumeration of bugs that are being fixed under different
ettings. We propose such metrics following a critical review of
he evaluation of patch generation systems, taking into account
oth qualitative and quantitative concerns.
 a
Table 4
List of the reviewed APR tools in this study.
jGenProg (Martinez and Monperrus, 2016), jKali (Martinez and
Monperrus, 2016), jMutRepair (Martinez and Monperrus,
2016), HDRepair (Le et al., 2016), Nopol (Xuan et al., 2017),
ELIXIR (Saha et al., 2017), JAID (Chen et al., 2017), ssFix (Xin
and Reiss, 2017), CapGen (Wen et al., 2018), SketchFix (Hua
et al., 2018), ACS (Xiong et al., 2017), SimFix (Jiang et al.,
2018), SOFix (Liu and Zhong, 2018), LSRepair (Liu et al.,
2018c), kPAR (Liu et al., 2019a), FixMiner (Koyuncu et al.,
2020), AVATAR (Liu et al., 2019b), TBar (Liu et al., 2019c),
PraPR (Ghanbari et al., 2019), ARJA (Yuan and Banzhaf, 2018),
Hercules (Saha et al., 2019), VFix (Xu et al., 2019).

3. Critical review of design decisions

Monperrus maintains a living review of program repair ap-
proaches and tools in the software engineering community (Mon-
perrus, 2009). This review is however focused on discussing the
novel heuristics and techniques applied for patch generations,
and further summarizes empirical findings. We follow this review
to systematically identify all relevant Java APR works (listed in
Table 4). We then propose to perform a review of assessment
methodologies in the related literature. We focus in this work on
generate-and-validate approaches, which are fairly popular in the
program repair community. In this study, our metric definitions
follow the summaries of the findings which we have made: most
APR systems follow the same classical procedures for evaluating
APR performance, which is mainly focused the raw numbers of
plausibly/correctly fixed bugs and the execution costs. Our review
explores various potential biases that could be overlooked by
researchers when evaluating APR approaches. We mainly stress
on the impact of these biases on the reported performance and
propose adequate metrics to help in reporting results that would
help cross-comparison for various approaches. To that end, our
review investigates the following research questions:

• RQ1: Which biases may carry the approach design decisions
in terms of repair performance assessment? With this re-
search question we consider how to reduce the performance
comparison biases that are due to technical workflow im-
plementation differences, notably in the fault localization
step.

• RQ2: Which biases may carry the evaluation setups in terms of
repair efficiency measurement? With this research question
we consider how to reduce the performance biases caused
by diverse execution configurations (e.g., time limitation
setting) and the environment (e.g., execution platform) for
assessing effectiveness of APR systems?

• RQ3: Which biases are overlooked when the performance com-
parison ignores the nature of the bugs? With this research
question we consider how to encourage meaningful ad-
vancements in APR by highlighting the need for deep com-
parison of repair performance based on actual nature of bugs
that are addressed.

• RQ4: Which biases do the current benchmarks carry? With
this research question, we highlight how the construction
of the benchmark may mislead the interpretation of the
recorded performance when considering an APR real-world
usage potential.

In the remainder of this section, experimental data on the met-
ics are provided for 11 APR systems from the literature: jGen-
rog, jMutRepair, jKali, Nopol, ARJA, ACS, SimFix, kPAR, FixMiner,
VATAR and TBar, since their source code is publicly available,
nd they are executable with a few modifications on their fault
ocalization settings. Our experiments on repairing Java programs

re based on the Defects4J benchmark (Just et al., 2014). We use
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this benchmark since all considered tools have been assessed on
it by their authors, thus offering a reference for checking that the
results of tool replications are in line with results reported by the
authors.

3.1. RQ1: APR pipeline implementation biases

As introduced in the previous sections, the APR pipeline im-
plementation can carry biases. We focus in this work on the
fault localization step. Although Liu et al. (2019a) experimentally
pointed out the issues that exist with current evaluation sce-
narios, they do not discuss the metrics that APR authors should
compute towards enabling a fair comparison of repair perfor-
mance. We investigate the first research question by defining two
metrics that (1) evaluate the actual performance that a given
APR’s patch generation component can achieve when the exact
bug-fixing positions are given; and (2) estimate the impact on
repair performance of the false positives induced by the APR’s
implementation of a given fault localization technique. Note that,
all data for this research question are from our previous empirical
study (Liu et al., 2020) on the efficiency of APR tools.

3.1.1. Upper bound repair performance
We evaluate the upper bound performance of an APR tool with

an assumption: all exact bug-fixing positions are provided and
given as input to the APR system in order to focus on assess-
ing the effectiveness of the patch generation component. This
metric eliminates the bias due to fault localization performance
(which is generally undisclosed or overlooked in the literature).
As demonstrated in a recent study (Liu et al., 2019a), comparison
tables (such as Table 1) reported in several research papers are
misleading: a given APR tool may be outperforming all others
because of an improved bug localization, and not due to the
detailed sophisticated heuristics proposed for patch generation.

The Upper bound Repair Performance (UbRP) metric is com-
puted as the number of bugs for which a valid patch can be
generated. This metric can be computed with either plausible or
correct patches:

UbRP : A → Z∗ (1)

where A is a set of APR tools and UbRP(apr ∈ A) gives a non-
negative integer value (∈ Z∗) (i.e., # of correctly fixed bugs).
Such metric is first proposed as the repair performance of APR
tools with perfect fault localization in our previous study (Liu
et al., 2019a) and has been adopted in the community (Liu et al.,
2019b,c; Lutellier et al., 2020; Chen et al., 2020; Lutellier et al.;
Chen et al., 2019).

This work is first to report the repair performance of 11
state-of-the-art APR tools in terms of UbRP scores, which are
provided in Table 5 that lists the results by their publishing time.
TBar outperforms the state-of-the-art tools by correctly fixing 54
bugs. Overall, the comparison data in Table 5 allow clarifying the
advancements that the Upper bound Repair Performance of APR
tools has been significantly improved as time goes by.

3.1.2. Fault localization sensitiveness
To fix bugs in the wild, APR systems rely on fault localization

(FL) techniques to spot identify buggy code locations (Liu et al.,
2019a; Xiong et al., 2017; Xuan et al., 2017). The accuracy of
such localization can impact the overall repair performance since
change operations are generally applied on (or around) the sus-
pected code locations (Liu et al., 2019a). To estimate the impact
of fault localization on APR tools within a benchmark dataset,
we propose to compute a fault localization sensitiveness (Senfl)
metric which takes as reference the correctness of patches with
normal FL settings and the aforementioned Upper bound Repair
Table 5
Upper bound Repair Performance (i.e., # bugs that are correctly fixed when the
exact bug-fixing positions are provided).
Subject Chart Closure Lang Math Mockito Time Total

jGenProg 1 1 0 4 0 0 6
jMutRepair 1 2 0 2 0 0 5
jKali 0 2 0 0 0 0 2
Nopol 0 N/A 1 1 0 0 2
ACS 2 0 2 11 0 1 16
ARJA 1 4 1 5 0 0 11
kPAR 6 13 4 7 0 3 33
SimFix 4 7 5 12 0 1 29
FixMiner 7 6 4 12 2 3 34
AVATAR 6 9 5 6 2 2 30
TBar 10 15 10 13 3 3 54

Table 6
Fault localization sensitiveness of each APR tool.
Subjects RPpn RP UbRP ′ UbRP Sen

jGenProg 9 20 2 6 39.2%
jMutRepair 12 22 0 5 27.3%
jKali 13 25 1 2 51%
Nopol 29 31 1 2 71.8%
ACS 2 22 0 16 4.5%
ARJA 46 58 6 11 66.9%
kPAR 29 63 19 33 51.8%
SimFix 26 68 6 29 29.5%
FixMiner 16 33 22 34 56.6%
AVATAR 21 57 11 30 36.8%
TBar 27 72 29 54 45.6%

Performance metric. Eq. (2) defines the formula for computing the
sensitiveness (Sen) metric:

Sen : A × FL → [0, 1]
RP : A × FL → Z∗

Sen(apr ∈ A, fl ∈ FL) =

(
RPpn(apr, fl)
RP(apr, fl)

+
UbRP ′(apr)
UbRP(apr)

)
/2

(2)

where RP is the number of fixed bugs for the given APR (apr ∈ A)
and FL tools. In RP , the number of correctly fixed bugs is denoted
as RPc , while RPpn represents the number of plausibly fixed bugs
by modifying the code on non-buggy positions. UbRP ′ denotes
the number of bugs that can be correctly fixed when APR tools
are given with bug-fixing positions, but APR tools fail to correctly
fix them because of the false positives of fault localization in the
normal APR pipeline.

The Fault Localization Sensitiveness for an APR tool is there-
fore measured with the ratio of plausibly fixed bugs by mod-
ifying the code on non-buggy positions, and the percentage of
bugs which could be correctly fixed when the exact bug posi-
tions are available but cannot be correctly fixed by the APR tool
with its normal fault localization configuration. Table 6 provides
data about the fault localization sensitiveness of 11 APR tools. If
considering the fault localization sensitiveness, ACS outperforms
state-of-the-art APR tools with 22.8 to 67.3 percentage points
margin, which is followed by jMutRepair and SimFix.

There are two scenarios that may explain the good perfor-
mance of ACS and SimFix. (1) Either its patch generation system
is effective even in the presence of false positive buggy locations.
Or (2) the fault localization technique used by ACS and SimFix is
more effective. Our review of the work finds that ACS leverages
the predicating switching (Zhang et al., 2006) to improve the
performance of fault localization, while SimFix uses a differ-
ent version of GZoltar from other tools, and leverages test case
purification (Xuan and Monperrus, 2014) to improve the fault
localization accuracy. Although both of them propose advanced
technologies to search donor code for patch generation, it would
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be difficult to assess whether it is fault localization or the patch
generation that makes ACS and SimFix less affected to potential
noise in fault. Hence the importance of comparison APR tools with
the Upper bound Repair Performance metric.

By comparing the state-of-the-art APR tools based on the ‘‘Upper
bound repair Performance’’ and ‘‘Fault Localization Sensitiveness’’
metrics, we are able to highlight that the sophisticated patch gener-
ation heuristics that the authors described thoroughly cannot clearly
take the credit on overall performance improvement.

Reducing or eliminating the bias caused by fault localization
techniques is necessary to fairly assess the repair performance
of APR systems. It would be fair to compare the performance on
fixing real bugs for different APR tools with the same fault local-
ization setting. However, it is impossible to ensure that all differ-
ent APR tools would use the same fault localization technique.
Even when different APR tools use the same fault localization
framework, there are still various versions available. For example,
GZoltar (Campos et al., 2012) is widely used in the state-of-the-
art APR systems for Java bugs, but these APR systems did use the
different released versions1 of GZoltar. Therefore, it is difficult to
eliminate the bias caused by various fault localization techniques.
However, our proposed metrics can help estimate this bias by APR
authors themselves.

3.2. RQ2: APR efficiency assessment biases

The intention of researchers proposing APR systems is to con-
tribute to reducing manual debugging effort by fixing bugs auto-
matically. Therefore, if the patch generation is highly expensive in
terms of time or computing resources, it may deter development
teams. It is thus important to measure repair efficiency. Currently,
this is widely assessed in the literature based on the time-to-
validate generated patch candidates. This assessment is implicit
when APR authors set time limitation constraints. Table 7 report
time limitation settings for fixing a single bug as reported by dif-
ferent APR system evaluations in the literature: once a plausible
patch is generated within the time limit, the repair process will
stop this bug; otherwise the repair process will only abandon its
attempt to fix the bug when the time runs out.

Given the diversity in computing capacities of the different
execution platforms, the time limitation setting for patch vali-
dation constitutes an undiscussed bias when present comparison
results: for example, 3 h may or may not be enough to validate
all generated patches for a given bug depending on the platform.
This bias is ignored to the point where the same researchers
may select different time limitations for their different tools and
still attempt to compare the overall repair performance metrics.
For example, ACS (Xiong et al., 2017) and SimFix (Jiang et al.,
2018), although they have been developed and studied by the
same research group, are evaluated with different time limitation
settings on different platforms and yet compared on the same
equal ground (cf. Table 1).

In order to highlight the biases that time cost information
carry, we run two simple experiments to measure the CPU run
time occupied by the processes for compiling and for running
all test cases for the Defects4J buggy programs. To that end,
we use the standard commands provided in the Defects4J setup
(i.e., ‘‘defects4j compile’’ and ‘‘defects4j test’’) on two
different machines: Machine-1 (OS X El Capitan Version 10.11.6
with 2.5 GHz Intel Core i7, 16 GB 1600 MHz DDR3 RAM) and
Machine-2 (macOS Mojave Version 10.14.1 with 2.9 GHz Intel
Core i9, 32 GB 2400 MHz DDR4 RAM).

1 https://github.com/GZoltar/gzoltar/releases.
Fig. 2. Time cost of compiling each Defects4J bug on two different machines.

Fig. 3. Time cost of testing each Defects4J bug on two different machines.

As shown in Figs. 2 and 3, Machine-1 will take significantly2

more time than Machine-2 to compile and test each buggy pro-
gram irrespectively of the project. Additionally, the time cost
for compiling and testing different bugs do not equate. Thus,
time limitations could lead to biases in the assessment of repair
performance by the same APR system for different bugs.

Finally, Table 8 summarizes information on the variety of
experimental platforms that can be found in the literature de-
scribing assessment results of several APR systems targeting Java
program bugs. These information is often provided when re-
viewer report time cost details. Such a practice is prevalent in
the systems community where all operating system details must
be disclosed in the assessment of performance overhead. Un-
fortunately, while in the system programming community this
overhead is computed in a fine-grained manner, focusing on the
target functionality, in APR, several layers are considered together
leading to potential biases.

Overall, overlooking platform configurations variations when
implementing constraints in repair delay, or when reporting
time-to-validate costs may lead to comparison biases. Thus, to
limit this pervasive bias in the literature we propose a generic
APR Patch Generation Efficiency metric which simply considers, for
a given bug, the number of patch candidates (NPC)3 generated by
an APR system when the first valid patch is found. We recall that
a generate patch may be of one of the following categories (w.r.t.
to the buggy program):

1. Nonsensical patch. Such a patch cannot even make the
patched buggy program successfully compile (Kim et al.,
2013; Monperrus, 2014).

2 We have performed the MWW test to ensure that the difference of median
values is statically significant for each distribution pair.
3 The NPC score was initially proposed by Qi et al. (2013) to measure the

performance of fault localization techniques with APR tools.
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Table 7
Time limitation settings of APR tools.
APR Tool Time limitation

setting
APR Tool Time limitation

setting

jGenProg (Martinez and Monperrus, 2016) 3 h SimFix (Jiang et al., 2018) 5 h
jKali (Martinez and Monperrus, 2016) 3 h SOFix (Liu and Zhong, 2018) 3 h
jMutRepair (Martinez and Monperrus, 2016) 3 h LSRepair (Liu et al., 2018c) 3 h
HDRepair (Le et al., 2016) 1.5 h kPAR (Liu et al., 2019a) 3 h
Nopol (Xuan et al., 2017) 5 h FixMiner (Koyuncu et al., 2020) 3 h
ELIXIR (Saha et al., 2017) 1.5 h Avatar (Liu et al., 2019b) 3 h
JAID (Chen et al., 2017) ? >35 ha TBar (Liu et al., 2019c) 3 h
ssFix (Xin and Reiss, 2017) 2 h PraPR (Ghanbari et al., 2019) ? <1 hc

CapGen (Wen et al., 2018) 1.5 h ARJA (Yuan and Banzhaf, 2018) 115 h
SketchFix (Hua et al., 2018) –b Hercules (Saha et al., 2019) 5 h
ACS (Xiong et al., 2017) 0.5 h VFix (Xu et al., 2019) 3 h

∗h: hour. The time limitation setting of JAID and SketchFix is not clearly specified in their papers.
aThe time limitation of JAID must be bigger than 35 h as it costs 2228.6 min to fix bug Lang-24 in Defects4J (Chen et al., 2017).
bSketchFix does not set the time limitation since it fixes bugs by mutating the top 50 suspicious statements generated by the fault
localization technique.
cPraPR does not clearly specify its time limitation setting which should be less than 1 h, as it can validate 35,521 candidate patches
within an hour (Ghanbari et al., 2019).
Table 8
Platform information of running APR tools.
APR tool Platform information

jGenProg
N/AjKali

jMutRepair

HDRepair a machine with one 2.4 GHz Intel Core i5-2435M CPU and 8 GB memory.

Nopol a PC with an Intel Core i7 3.60 GHz CPU and a Debian 7.5 operating system.

ELIXIR an Ubuntu 14.04 LTS operating system with 2 Core of Intel(R) Core(TM) i7-4790 CPU of 3.60 GHz and 4 GB memory.

JAID a cloud infrastructure with Ubuntu 14.04 system, one core of an Intel Xeon Processor E5-2630 v2, 8 GB of RAM

ssFix a PC with 8 AMD Phenom(tm) II processors and 8G RAM.

CapGen a CentOS server with 2x Intel Xeon E5-2450 Core CPU@2.1 GHz and 192 GB physical memory.

SketchFix a platform with 4-core Intel Core i7-6700 CPU (3.40 GHz) and 16 Gigabyte RAMon Ubuntu Linux 16.04.

ACS an Ubuntu virtual machine with i7 4790K 4.0 GHz CPU and 8 G memory.

SimFix a 64-bit Linux server with two Intel(R) Xeon CPUs and 128 GB RAM. Each bug is assigned with 2 CPU cores and 8 GB RAM.

SOFix a Ubuntu server with 2.00 GHzIntel Xeon E5-2620 CPU and 16 GBs of memory.

LSRepair

a HPC computing system with 24 Intel Xeon E5-2680 v3 cores with 2. GHz per core and 3 TB RAM.
kPAR
FixMiner
Avatar
TBar

PraPR a Dell workstation with Ubuntu16.04.4 LTS, IntelXeon CPU E5-2697 v4@2.30 GHzand 98 GB RAM.

ARJA an Intel Xeon E5-2680 V4 2.4 GHz processor with 20 GB memory.

Hercules a cluster of Ubuntu Virtual Machines with double core 3.6 GHz processor and 4 GBmemory.

VFix an Intel Core i5 3.20 GHz CPU and 4 GB memory.
∗ ‘‘N/A’’ means the related platform information for running Astor (Martinez and Monperrus, 2016) (including jGenProg, jKali and jMutRepair)
is not clearly specified.
2. In-plausible patch. Such a patch makes the patched buggy
program successfully compile, but fails to pass some test
cases in the available test suite.

3. Valid patch. Such a patch makes the patched program
successfully pass all test cases in the test suites (Qi et al.,
2015). A correct patch is a valid patch that actually fixes the
bug (Qi et al., 2015) (i.e., is not simply overfitted to the test
suite). Correctness is generally determined manually (Xiong
et al., 2017; Liu et al., 2020, 2019b,c; Jiang et al., 2018; Wen
et al., 2018).

The validation of nonsensical patches only costs the time to
run compilation processes. Other patches are more expensive to
validate since the patched program must be tested against all test
cases in the test suite. Therefore, we refine the proposed NPC-
score metric into two sub-metrics that compute the numbers of
nonsensical and in-plausible patches that are generated before a
valid patch. These are defined as:

NPC : A × B → Z∗

Nnp : A × B → Z∗

Nip : A × B → Z∗

(3)

where NPC represents the number of patch candidates generated
when the first valid patch is found by the given APR tool apr ∈ A
for the bug b ∈ B. A and B represent a set of APR tools under con-
sideration and a set of bugs fixed by the APR tools, respectively.
While Nnp and Nip return the number of nonsensical/in-plausible
patches when the first valid patch, respectively. NPC = Nnp+Nip+

Nv , and Nv represents the first valid patch.
The repair efficiency of APR tools has been detailed present in

our previous study (Liu et al., 2020) in terms of the NPC scores.
In this work, we further recall the importance of repair efficiency
of APR tools with the average NPC scores that are not presented
before. Table 9 reports the NPC , N and N scores for 11 APR
np ip
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Table 9
Average NPC , Nnp and Nip scores when the first valid patch is found.

Subject Nnp Nip NPC

jGenProg 16/175 20/493 37/669
jMutRepair 1/3 9/31 11/35
jKali 0/6 2/36 3/43
Nopol 0 0 1/1
ACS 3/10 3/5 7/16
ARJA 4/24 26/117 31/142
kPAR 31/389 39/481 71/871
SimFix 0 284/1167 285/1168
FixMiner 117/564 136/190 254/755
AVATAR 37/333 16/145 54/479
TBar 41/374 35/445 77/820

∗In each column, we provide x/y numbers: x is the number of generated patches
when buggy code positions are provided for APR tools; y is the number of
generated patches with the normal fault localization setting. Note that the APR
tools presented in this Table can be re-executed successfully that are different
from Tables 7 and 8.

tools to correctly fix the bugs that they eventually manage to
address. The APR tools that rely on fix patterns (i.e., SimFix, kPAR,
FixMiner, AVATAR and TBar) seem to generate more patch trials
than other APR tools. While SimFix does not generate any non-
sensical patches for each bug: the employed heuristics for donor
code search appears to be effective. However, in the absence of
such a metric, the authors could not better highlight this aspect
in their evaluation.

Repair efficiency comparisons can be biased by APR execution
platform settings (e.g., time limitation settings or computing capa-
bility details machines). Computing the number of eventually-useless
patches that must be validated before a valid patch is found stands
as a platform-independent and reliable metric for comparison.

3.3. RQ3: APR bug and patch diversity biases

After reviewing recent APR assessment studies in the litera-
ture, we note that the evaluation of repair performance of APR
systems is mainly based on effectiveness (in the form of numbers
of fixed bugs) and efficiency (in terms of time costs) comparisons.
Although, we have proposed metrics to relieve these assessments
from related biases, we further note that the intrinsic attributes
(e.g., category, complexity or priority) of bugs is not considered
when comparing the performance of different approaches.

For example, some APR tools target specific bugs: Nopol (Xuan
et al., 2017) and ACS (Xiong et al., 2017) have been proposed
to address conditional statements-related bugs, NPEfix (Durieux
et al., 2017) is focused on null pointer exception bugs while Gene-
sis targets fixing three classes of defects (namely, null pointer, out
of bounds, and class cast) (Long et al., 2017). On the other hand,
several state-of-the-art APR systems do not target any specific
bug type. Consequently, comparing focused APR systems with
broad APR systems could lead to biased conclusions. Instead, as
Monperrus (Monperrus, 2014) claimed since 2014, the classes of
bugs that can be addressed by an APR system may also reflect its
repair performance.

In this section, we present the assessing metrics for APR sys-
tems from intrinsic attributes of bugs and discuss the importance
of evaluating APR systems with them. Note that, to eliminate the
differences of repairing results between re-executing the APRs
and their original executions caused by fault localization bias (Liu
et al., 2019a), in this section, the data about the correctly fixed
bugs for each APR tool are directly excerpted from their published
research papers.
Fig. 4. Overlaps in # of Bugs that are correctly fixed by kPAR, SimFix and TBar.
Developer represents the benchmark universe of developer-fixed bugs.

Fig. 5. Overlaps in # of Repair actions that are used by kPAR, SimFix and TBar
to correctly fixed bugs. Developer represents the repair actions used for all
developer-provided benchmark patches.

3.3.1. Effectiveness in applying diverse repair patterns
The literature reports several studies (Liu et al., 2019b; Rolim

et al.; Liu et al., 2018a) on mining fix patterns to implement
state-of-the-art program repair tools. Eventually, the APR purpose
should be to include several repair patterns in order to potentially
fix a large set of bugs. In this section, we consider the three
APR tools (i.e., kPAR, TBar and SimFix) as examples to present
the differences of fixing effectiveness in applying diverse repair
patterns. The three APR tools are selected with the following
reasons: (1) kPAR (Liu et al., 2019a) is the Java implementation
of PAR (Kim et al., 2013) that is the first-proposed fix pattern
based APR tool, (2) TBar (Liu et al., 2019c) summarizes the fix
patterns released in the literature, and (3) SimFix (Jiang et al.,
2018) is a heuristic-based APR tools with code change patterns
(i.e., fix patterns) and achieves the fixing performant outperform-
ing the state-of-the-art APR tools. For example, the fix pattern
‘‘Replacement (Method Invocation, Method Invocation)’’
in SimFix presents replacing the buggy method invocation with
the correct one (Jiang et al., 2018), which is illustrated as ‘‘Method
Replace’’ pattern in PAR (Kim et al., 2013) and ‘‘Mutate Method
Invocation Expression’’ pattern in TBar (Liu et al., 2019c).
This fix pattern is consistent with the repair pattern ‘‘Wrong
Method Reference (wrongMethod)’’ in the dissertation work of
Defects4J bugs (Sobreira et al., 2018).

Consider the common comparison scenario depicted in Fig. 4:
such a Venn diagram is typically used in the literature (Jiang et al.,
2018) to highlight the repair achievement reached by a given
state-of-the-art technique in terms of the number of bugs that
it can exclusively fix compared to its competitors. Based on the
displayed data, it seems that SimFix and TBar are largely disjoint
in the bugs that they can repair successfully. Nevertheless this
comparison can be biased given that the reason behind this lim-
ited overlapping may not be related to the bug types themselves
but rather on extra-factors already reported in previous sections.
For example, although two bugs are of the same types (e.g., Null
pointer exception), an APR tool may validate an overfitted patch
for one of them and generate a correct one for the other.

To limit the bias in overlooking the nature of the bugs, we
propose as an effectiveness metric to count the number of repair
actions that the APR tool covers. To that end, we consider the
repair actions as enumerated by Sobreira et al. (2018) in their
dissection study of Defects4J bugs and patches. Indeed, we ap-

proximate in this metric the nature of bugs with the properties



8 K. Liu, L. Li, A. Koyuncu et al. / The Journal of Systems & Software 171 (2021) 110817
Fig. 6. Repair patterns implemented by Developers (i.e., Benchmark patches), kPAR, TBar and SimFix. The x-axes represent repair pattern taxonomies excerpted from
is from Sobreira et al. (2018). The y-axes represent the number of Defects4J bugs in taxonomies.
of the patches that are applied on them. The following equation
represents this metric:

Nra : A × PT → Z∗ (4)

where PT is a set of repair patterns defined by Sobreira et al.
(2018) and Nra(apr ∈ A, pt ∈ PT ) returns the number of repair
actions belonging to pt , which is implemented by apr .

Fig. 5 presents the Venn diagram highlighting the overlapping
in the application of diverse repair actions. The displayed data
now shows that kPAR, SimFix and TBar are largely similar in the
implemented repair operations. The adoption of such a metric
will call for more qualifications of the over-performance reported
by APR authors.

Eventually, we provide in Fig. 6 the distribution of repair pat-
terns4 used by TBar, SimFix and kPAR for the different bugs in the
benchmark. With such a representation, it is easy to note which
patterns each APR tool is able to successfully use as operator
for generating correct patches: although human developers use
the same patterns as APR tools, they are able to fix significantly
more bugs with these patterns, raising the acute issue for APR to
find the appropriate fix ingredients (i.e., donor code problem). For
example, fixing a wrong method reference (i.e., wrongMethodRef )
requires identifying the right method to be used instead. While
developers can readily identify such a method, APR tools are still
experimenting with heuristics to find method candidates either
within the same file (TBar) or in the same project (SimFix).

4 Following the dissection of Defects4J patches by Sobreira et al. (2018).
3.3.2. Effectiveness in addressing more or less complex bugs
Besides the nature of the bugs that are fixed, APR evaluation

should qualify the complexity of the correctly fixed bugs. Com-
plexity however is a relative concept depending on the subjects.
In this work, we propose to simply approximate complexity with
the number of code statements that are impacted by the APR change
operations to correctly fix a bug, which is also used to assess the
importance of APR-fixed bugs in the literature (Motwani et al.,
2018). It should be noted that, in practice, a statement might span
across several lines while the code in one line might encompass
several statements (depending on code formatting conventions).
We further define the ‘‘impacted statements’’ as the statements
that are used to fix a bug in terms of modifying the code with one
of four code change actions (i.e., ‘‘Update’’, ‘‘Delete’’, ‘‘Insert’’,
and ‘‘Move’’) (Falleri et al., 2014; Liu et al., 2018b). This metric can
be defined as:

Nstmt : A × N → Z∗ (5)

where Nstmt (apr, n) takes an APR tool (apr ∈ A) and a number of
impacted statements (n ∈ N. e.g., n = 1, 2 or more), and gives
the number of successful patches (e.g., zero or positive integer
values) generated by the tool.

Fig. 7 illustrates the distribution of numbers of impacted state-
ments (identified with a code differencing tool, GumTree (Falleri
et al., 2014)) for the 395 Defects4J bugs by considering the devel-
oper patches. Almost half of the bugs can be fixed by mutating
only 1 or 2 statements. Nevertheless, APR tools should attempt
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Fig. 7. Complexity Distribution of 395 Defects4J Bugs.

Table 10
Complexity of Defects4J Bugs Fixed by APR tools.
# of impacted
statements

1 2 3 4 5 6 7 8 9 10 >10

# bugs 107 74 39 39 21 15 19 15 11 6 49
jGenProg 2 2 1 0 0 0 0 0 0 0 0
jKali 0 0 1 0 0 0 0 0 0 0 0
jMutRepair 3 0 0 0 0 0 0 0 0 0 0
HDRepair 3 2 1 0 0 0 0 0 0 0 0
Nopol 2 1 1 1 0 0 0 0 0 0 0
ELIXIR 24 1 1 0 0 0 0 0 0 0 0
JAID 19 4 2 0 0 0 0 0 0 0 0
ssFix 16 2 1 0 0 0 0 1 0 0 0
CapGen 20 1 0 0 0 0 0 0 0 0 0
SketchFix 17 0 2 0 0 0 0 0 0 0 0
ACS 5 6 1 4 0 0 1 1 0 0 0
SimFix 20 8 2 0 0 0 1 1 1 0 1
SOFix 22 0 1 0 0 0 0 0 0 0 0
LSRepair 11 3 3 1 0 0 0 0 1 0 0
kPAR 15 1 2 0 0 0 0 0 0 0 0
FixMiner 23 2 0 0 0 0 0 0 0 0 0
AVATAR 17 1 2 3 0 0 1 3 0 0 0
TBar 29 4 2 3 0 0 1 3 0 0 1
PraPR 37 1 3 0 0 0 1 1 0 0 0
ARJA 5 10 1 1 0 1 0 0 0 0 0
Hercules 30 11 1 5 0 0 1 1 0 0 0
VFix 4 2 2 2 0 0 0 1 0 0 1

to cover bugs of varying complexity. In Table 10, we report com-
plexity details of the bugs that are correctly fixed by 22 APR tools,
respectively. All the 22 APR systems can mainly fix bugs with low
complexity (i.e., with one, two or three statements impacted).

3.3.3. Effectiveness in addressing more or less important bugs
In addition to diversity and complexity of fixed bugs, we

nvestigate the importance of the bugs that APR tools manage to
orrectly fix. We define importance as the extent to which the bug
revents correct functioning of the program. We estimate it via
he program functionalities that are broken due to bug. In this
tudy we approximate functionalities with test cases available
n the test suite. Indeed, as postulated by Weimer et al. (2009),
est cases encode the functionality requirements of the program
i.e., the expected behaviours). If a bug makes the program fail to
ass more or less test cases than others, we can estimate that it
hould have more or less priority to be fixed. This metric defines
s:

test : A × N → Z∗ (6)

where Ntest (apr, n) returns the number of successful patches gen-
erated by an APR tool (apr ∈ A) for bugs with n failing test
cases.

Table 11 presents the distribution of failing test cases for
the bugs that are correctly fixed by 22 APR tools. Most De-
fects4J bugs indeed concern a single test case. However, the
data shows that current APR tools are not performing well on
bugs that concern several test cases. While the state-of-the-art
SimFix approach, which implements sophisticated heuristics for

fix ingredient search, manages to fix significantly more complex
Table 11
Importance of fixed Defects4J bugs — Importance is approximated by the number
of failing program test cases.
# of failed
test cases

1 2 3 4 5 6 7 8 9 10 >10

# bugs 251 72 23 12 5 5 7 8 2 2 8
jGenProg 5 0 0 0 0 0 0 0 0 0 0
jKali 1 0 0 0 0 0 0 0 0 0 0
jMutRepair 3 0 0 0 0 0 0 0 0 0 0
HDRepair 5 1 0 0 0 0 0 0 0 0 0
Nopol 5 0 0 0 0 0 0 0 0 0 0
ELIXIR 25 0 0 0 0 0 0 0 0 0 1
JAID 19 4 0 0 1 0 0 0 0 0 1
ssFix 18 0 1 0 0 0 1 0 0 0 0
CapGen 20 0 0 0 0 0 0 0 0 0 1
SketchFix 16 2 1 0 0 0 0 0 0 0 0
ACS 13 3 0 2 0 0 0 0 0 0 0
SimFix 24 7 1 1 0 0 1 0 0 0 0
SOFix 21 0 0 0 0 0 0 0 0 0 2
LSRepair 18 0 0 0 0 0 0 0 0 0 1
kPAR 13 4 0 0 0 0 0 0 0 0 1
FixMiner 19 3 0 0 0 0 0 0 0 0 3
AVATAR 14 8 1 1 0 0 1 0 0 0 2
TBar 26 11 1 2 0 0 1 0 0 0 2
PraPR 31 6 2 0 1 0 1 0 0 0 2
ARJA 14 4 0 0 0 0 0 0 0 0 0
Hercules 34 7 2 2 0 1 1 1 0 0 1
VFix 3 3 0 2 0 0 0 1 0 0 3

bugs than the kPAR baseline (cf. Table 10), these bugs are not of
more importance (i.e., they relate to a single test case) than those
fixed by the baseline APR tool. This may suggest that the applied
change operators are still focused on solving single functional
issues.

Repair effectiveness measurements can be biased if APR assess-
ment overlooks the nature, complexity and importance of the bugs
that different tools can address. Comparison among the state-of-
the-art tools should strive to clarify the bug properties in order to
highlight the power of the implemented repair patterns.

3.4. RQ4: APR benchmark biases

Although generate-and-validate APR research has been initi-
ated a decade ago, the current benchmarks have been proposed
mid-way: Defects4J (Just et al., 2014), the widely used bench-
mark for Java bugs was released in 2014, while IntroClass and
ManyBugs benchmarks (Le Goues et al., 2015) for C program
bugs were published in 2015. The former is a collection of real-
world project bugs, while the latter are collected from students’
programs development as part of their curriculum work which
reduces confidence on their relevance as real-world bugs.

Given the limitation of publicly available and reliable bench-
marks of real bugs for evaluating APR systems, several APR sys-
tems may be overfitting to the available benchmarks, there-
fore lacking generalizability on program bug targets. Neverthe-
less, benchmark providers must put more effort to make their
dataset readily useable (cf. discussion on Section 4) to attract APR
researchers.

Bias with processed bugs. By investigating the Defects4J dataset,
which is widely used in the Java APR literature, we note that
the benchmark authors have taken steps to curate the buggy
programs in a state where fault localization and program repair
tools can be applied. In this study, we summarize the curation of
test suites into three categories: (1) to include the bug-triggering
test cases which are often added after a user-reported bug is fixed
by a developer, (2) to rewrite previous test cases to focus on the
spotted buggy lines, and (3) to insert assertions in program source
code in order to ensure that test cases properly reveal the bugs.
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Table 12
Future test cases in benchmark dataset.
Benchmark # Bugs # bugs integrated

with future test cases

Defects4J 395 381
Bugs.jara 1130 (1151) 1064
Bears 251 232

aBugs.jar contains 21 duplicated bugs which are already contained in the
remaining 1130 bugs.

Eventually, Defects4J is a clean research dataset which may not
represent the types of buggy programs APR tools will be applied
on in real-world development settings (Koyuncu et al., 2019).

Table 12 provides details on the number of benchmark bugs
n Defects4J (Just et al., 2014), Bugs.jar (Saha et al., 2018) and
ears (Madeiral et al., 2019) that are associated with bug-trigger-
ng test cases that have been added/updated after the bug is
eported. For such bugs, it seems a test generation process would
ave been necessary before any classical generate-and-validate
PR tool can be applied. We thus propose as final metrics that
PR assessment should report the Numbers of correctly fixed bugs
mong the benchmark subsets of ‘‘unprocessed’’ and ‘‘processed’’
ugs. For the implementation of this metric, ‘‘processed’’ and
‘unprocessed’’ bugs are real-world buggy programs for which
enchmark authors did or did not perform any curation task,
espectively. Curation task in this study is evaluated through the
uture test cases (i.e., bug-triggering test cases) that are added or
pdated with aforementioned three curation categories, as such
est cases were not available at the time of the bug is reported
nd have thus been inserted into the benchmark dataset by their
uthors. The metrics are defined as follows:

nfut : A → Z∗ (7)

fut : A → Z∗ (8)

here Nnfut (apr) and Nfut (apr) return the number of successful
atches generated by an APR tool (apr ∈ A) when future test cases
re provided or not, respectively.
For example, 381 of Defects4J bugs are patched and validated

ith future test cases. We have performed experiments where
e dropped such test cases from the test suites to align with
ractitioner settings: kPAR, SimFix and TBar, with each its normal
ault localization technique, can only fix 3, 2 and 6 bugs with correct
atches, respectively. This finding suggests that the state-of-the-
rt may have not yet improved the applicability of program repair
o real-world practitioner settings.

Although APR benchmarks are often built from real-world project
ata, many bugs are actually processed leading to a bias in vali-
ating that APR tools are ready for production environments. APR
ssessment should therefore explicitly differentiate experiments that
re valid in-the-lab from those that would approximate in-the-wild
erformance. This can be done by dividing the considering subsets
f processed vs unprocessed bug artefacts (i.e., buggy program code
nd available test cases).

. Discussion

.1. Benchmark overfitting

While Defects4J has become a de-facto benchmark for Java
PR, the generalizability of APR tools beyond its bugs must
e questioned. Fortunately, in recent years, more benchmark
atasets are being built and released for the community. Saha
t al. (2018) collected 1158 bugs from 8 Java open source projects
o build benchmark bugs.jar. Madeiral et al. (2019) collected
51 bugs from 72 Java open source projects to build bench-
ark Bears, the largest benchmark of reproducible Java pro-
ram bugs with respect to project diversity (the closest bench-
ark is Defects4J and Bugs.jar, which cover only six and eight
rojects, respectively). For C programs, two new benchmarks,
BGBench (Bohme et al., 2017) and Codeflaws (Tan et al., 2017),
re built by collecting bugs from real-world programs.
While preparing the experiments for our study, we attempted

o use the Bugs.jar and Bears benchmark. Unfortunately, we failed
o evaluate three APR systems on them despite committing re-
ources for adapting the pipeline of the three APR systems to such
enchmarks. There are mainly two reasons for our failure:

1. It is difficult to compile all bugs in the two benchmarks
with a single version of JDK and maven. The bugs have
indeed been collected from different versions of programs
that are configured with different incompatible versions.
This limits the usability of the whole benchmark as re-
searchers must assess each bug independently on different
execution environments.

2. Because the studied APR systems were specifically im-
plemented for assessment with Defects4J, many pipeline
scripts are mapped on Defects4J configurations. Thus, it is
difficult to reuse other benchmarks without an invasive
reorganization of the APR toolkit code.

In contrast, Defects4J provides a friendly interface for its users
or compiling and running test suites in a single execution en-
ironment. To date, Defects4J has been widely used in the test
nd repair community for Java programs, while Bugs.jar, which
s much larger and more comprehensive in terms of artefacts
e.g., bug reports) was only used by the benchmark authors them-
elves for their APR assessment (Saha et al., 2017). Eventually,
he community must work together on building diverse and
eadily-useable benchmarks.

.2. Findings and future work

The computed metrics for kPAR, SimFix, and TBar have re-
ealed a number of avenues for APR research towards improving
erformance. As previously presented in Fig. 5, 15 repair actions
hat are necessary to fix some Defects4J bugs are neither imple-
ented in the SimFix state-of-the-art nor in the TBar and kPAR
aseline APR systems. Future research on APR should consider
nvestigating the addition of such associated change operations
n their patch generation systems.

We further note that despite being able to apply the required
epair actions, SimFix, TBar, and kPAR still fail to fix 303 bugs.
his is indicative that, beyond the repair actions, APR research
eeds to further focus on improving the patch generator ability
o search for corner code, or to efficiently rank patch candidates.

.3. Threats to validity

Although the proposed metrics are generic, our study on their
mportance carries some threats to validity. First, as a threat to
xternal validity, we only considered three APR systems target-
ing Java program bugs. Nevertheless, we minimized this threat
y considering a variety of criteria and under the constraint
hat many APR systems proposed in the literature are not re-
roducible (e.g., some are not even open source): we consider
arly and recent APR systems (spanning seven years of research).
ne is a state-of-the-art (with sophisticated heuristics) while
thers are baselines (with naive pattern match and transform
ngines). One implements few fix patterns while another is more
omprehensive.
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As a threat to internal validity, we have rerun the experiments
by reconfiguring the setup scripts of the different APR tools so
that they work on our execution platforms. We minimize the
associated threat by ensuring that our results match the ones
reported by the authors in their original papers.

As threats to construct validity, we have used patch prop-
erties as proxies to qualify bugs. Actually, we could have used
bug report details. Nevertheless, the Defects4J benchmark bug
reports were limited, which would make the findings limited
subsequently.

Finally, a general threat to validity is that the metrics, which
compute numbers, maybe too generic. For APR assessment, each
produced metric needs to have a qualitative discussion. For exam-
ple, with respect to the complexity metric, we have investigated
the case of TBar, which manages to correctly fix some bugs by
applying change operations to multiple statements (i.e., >two
statements). By carefully checking such bugs, we have noted that
all of them are fixed by simply deleting the buggy statements.
Thus, the metric by itself is not comprehensively explaining the
performance of the APR system. It is the sum of all metrics that
provide an overview of reliable performance comparisons.

5. Related work

5.1. Evaluation criteria in APR

While it is widely used in the APR literature (Weimer et al.,
2009; Le Goues et al., 2012b,a; Nguyen et al., 2013), simply
counting the number of fixed bugs cannot accurately assess the
actual effectiveness of APR tools since a generated patch could
be nonsensical (Kim et al., 2013; Monperrus, 2014) even if it
can pass all the given test cases. Fundamentally, test cases can
reflect specific aspects of a program so that passing all the given
test cases may not imply to satisfy the required functionality of
the program. The nonsensical patch would have negative impacts
on software maintainability as well (Fry et al., 2012). This issue
in evaluating APR tools is called ‘overfitting’ (Smith et al., 2015;
Monperrus, 2014). After this discussion, most studies report both
the numbers of plausible (fixed but overfitting with test cases)
and correct patches.

In most APR studies, the upper bound of time cost has been
arbitrarily specified while it could be one of the key performance
criteria as we discussed in Section 3.2. Some APR tools based on
evolutionary algorithms (Weimer et al., 2009; Le Goues et al.,
2012a) used the number of generations that the tools can take at
most. Other studies employ a wall-clock time bound, (e.g., run-
ning an APR tool at most three hours and assuming the tool
cannot find a working patch until the time bound). Determining
the time bound is currently a rule of thumb and experiment
environments vary with different studies (e.g., a study runs a
tool on an in-house computing resource (Weimer et al., 2009) or
another study adopts cloud-computing resources (Le Goues et al.,
2012a)). Thus, it is necessary to create a baseline experimental
environment and time bound criterion in the community.

5.2. Criticism on evaluation methods in software engineering

As many novel techniques have been proposed in the litera-
ture of software engineering, several researchers tried to rethink
the current evaluation method is correct to assess existing tech-
niques. While the APR community actively publish critical re-
views (Monperrus, 2014; Wang et al., 2019), other disciplines also
pay attention to the correctness of evaluation methods. Campos
et al. (2018) pointed out that the choice of evolutionary algo-
rithm has not been properly evaluated in test suite generation
and empirically evaluated existing techniques on 13 different
algorithms. Lee et al. (2018) criticized that the current practice
of assessing IRBL (Information Retrieval-based Bug Localization)
tools is biased since the authors often use outdated subjects
and incorrect experiment setup. Razzaq et al. (2018) reviewed
feature localization techniques (FLT) and pointed out that most
FLT studies did not clearly specify the experimental setup. Thus,
the authors suggested guidelines of empirical evaluation methods
for FLT.

6. Conclusion

Numbers of Plausible/Correct patches and time costs have
been used to evaluate the repair performance of APR systems.
However, since design decisions (both in approach and evaluation
setup) are rarely fully disclosed in the assessment description,
their impact on repair performance is overlooked, leading to
misleading comparison results. Through a critical review of Java
APR literature, we identify notable biases of design decisions and
evaluation settings in program repair assessment. We then pro-
pose eight evaluation metrics for fairly assessing the performance
of APR tools. Eventually, we show with experimental data on two
baseline program repair systems as well as on a state-of-the-
art APR system that the proposed metrics allow to highlighting
some caveats in the literature. We expect wide adoption of the
proposed metrics to contribute to boosting the development of
practical, and reliably performing program repair tools.
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