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Abstract
A significant body of automated program repair research has built approaches under the
redundancy assumption. Patches are then heuristically generated by leveraging repair ingre-
dients (change actions and donor code) that are found in code bases (either the buggy
program itself or big code). For example, common change actions (i.e., fix patterns) are
frequently mined offline and serve as an important ingredient for many patch generation
engines. Although the repetitiveness of code changes has been studied in general, the litera-
ture provides little insight into the relationship between the performance of the repair system
and the source code base where the change actions were mined. Similarly, donor code is
another important repair ingredient to concretize patches guided by abstract patterns. Yet,
little attention has been paid to where such ingredients can actually be found. Through a
large scale empirical study on the execution results of 24 repair systems evaluated on real-
world bugs from Defects4J, we provide a comprehensive view on the distribution of repair
ingredients that are relevant for these bugs. In particular, we show that (1) a half of bugs can-
not be fixed simply because the relevant repair ingredient is not available in the search space
of donor code; (2) bugs that are correctly fixed by literature tools are mostly addressed with
shallow change actions; (3) programs with little history of changes can benefit from min-
ing change actions in other programs; (4) parts of donor code to repair a given bug can be
found separately at different search locations; (5) bug-triggering test cases are a rich source
for donor code search.

Keywords Automated Program Repair · Fix Ingredient · Code Change Action · Donor Code

1 Introduction

Recently, a momentum of automatic program repair (APR) has been growing in the research
community (Britton et al. 2013). The idea of APR is to design algorithms and build code
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transformation pipelines for systematically generating patches that address identified bugs
in software code. Three main categories of approaches have been proposed in the litera-
ture (Gazzola et al. 2017; Monperrus 2018; Goues et al. 2019; Liu et al. 2021): heuristics-
based APR techniques leverage heuristics such as genetic mutation operators (Weimer
et al. 2009) or fix patterns (Liu et al. 2019a); constraint-based APR techniques build
on symbolic analysis and constraint solving (Xiong et al. 2017); learning-aided APR tech-
niques leverage big code data, e.g., to learn transformation patterns (Gupta et al. 2017).

In general, many of the proposed approaches build on the redundancy assumption (Mar-
tinez et al. 2014). Redundant code change actions (e.g., insertion of an If statement) can be
found in the revision history and can be identified as fix patterns (Kim et al. 2013). The
redundancy of code fragments (e.g., identifier tokens such as method names that already
exist in the program.) is essential and it has been leveraged by several APR systems as
donor code, such as the GenProg (Goues et al. 2012; Weimer et al. 2009; Goues et al. 2012)
seminal approach. They together form the repair ingredients.

Extensive empirical evaluations on the redundancy assumptions and approaches have
been presented in the literature (Liu et al. 2018; Pan et al. 2009; Lou et al. 2019; Sobreira
et al. 2018; Martinez and Monperrus 2015; Martinez et al. 2014; Barr et al. 2014), but less
work has focused on exploring or validating the adequate locations for optimizing the search
of repair ingredients. A study of repetitiveness (Nguyen et al. 2013) shows that 70–100%
of small code changes can be found in the revision history. The plastic surgery hypoth-
esis study (Barr et al. 2014) confirms that 43% of changes are graftable from previous
changes. At the line-level, 3–17% of commits include code fragments from previous com-
mits (Martinez et al. 2014). However, these studies commonly explored limited scope and
granularity. Moreover, the studies did not discuss the impact of repair ingredient locality on
the performance of repairing bugs with actual APR techniques.

The redundancy assumption has been leveraged extensively by most program repair
approaches (Weimer et al. 2009; Goues et al. 2012; Jiang et al. 2018; Wen et al. 2018; Saha
et al. 2017; Liu et al. 2018; Liu et al. 2019a; 2019b; Qi et al. 2014; Qi and Reiss 2017),
their design and implementation remain uninformed about a fundamental question: where
are the repair ingredients? For example, should the APR system leverage fix patterns mined
from the buggy program itself? or where is the donor code located for fixing a bug? In addi-
tion, an APR tool cannot fix some bugs even if repair ingredients are available. This raises
another question: how can we search for repair ingredients? Such questions are particularly
acute for generate-and-validate APR systems where defining the location scope of the repair
ingredients can have a substantial impact on the quality of the patch candidates. The search
space in APR patch generation is indeed determined mainly by two types of ingredients: the
change action and the donor code.

Change actions, which are also referred to in the literature as fix templates (Kim et al.
2013), fix patterns (Liu et al. 2019b), abstract modifications (Jiang et al. 2018) or code
transforms (Long et al. 2017), are sequences of high-level instructions formulated in a code
edit script. Such actions generally target Abstract Syntax Tree (AST) nodes, following the
four edite operators that are INSertion, DELetion, UPDate and MOVe. Common examples
of change actions in Java APR examples (Liu et al. 2019a) are “INS CAST checker”, “UPD
If conditional expression exp” or “UPD STATEMENT invocation method meth”. Change
actions are repair ingredients that are often explicitly constructed in heuristics-based APR.
A review of literature approaches reveals three different methodologies to define change
actions: (1) Manual summarization leverages human-written patches (Pan et al. 2009; Kim
et al. 2013) or builds on practitioners’ knowledge (Saha et al. 2017; Durieux et al. 2017;
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Hua et al. 2018; Qi and Reiss 2017) to define common change actions in bug fix patches.
(2) Statistics of actions can also be used to systematically (and blindly) consider the most
frequent code change actions from a dataset of patches (Jiang et al. 2018; Wen et al. 2018).
(3) Automatic inference is also implemented to mine from big-code some change actions
that are more consistent with code contexts or that support different granularities (Long et al.
2017; Liu and Zhong 2018; Liu et al. 2018; Rolim et al. 2018; Koyuncu et al. 2019). To the
best of our knowledge, all state of the art approaches in the literature infer change actions
from a large dataset that even often excludes the buggy program. Our work investigates the
redundancy assumptions of change actions within the buggy program to boost automated
program repair towards the momentum of bug self-healing by exploiting the fix ingredients
from the buggy program itself (Monperrus 2018).

Donor code is the code fragment (e.g., operator, identifier or expression) that is used in
conjunction with the code change action to form the replacement code at the location of the
buggy code. For example, when the change action for a buggy code is “UPD STATEMENT
invocation method meth”, the donor code should be an identifier “new meth” that will
be used to generate the concrete patch replacing “meth” with “new meth”. While clas-
sical pattern-based repair tools such as PAR (Kim et al. 2013) and TBar (Liu et al. 2019a)
explore the buggy file to find the donor code, some recent state-of-the-art systems, such as
SimFix (Jiang et al. 2018) and CapGen (Wen et al. 2018) further explore non-buggy code
files. Unfortunately, so far, the literature does not provide any comprehensive assessment of
the impact of the configuration of donor code search scope on the performance gain.

In this paper, we perform an empirical study on exploring the impact of repair ingredient
retrieval on the performance of 24 APR tools. We first conduct a post-mortem analysis on
where the repair ingredients can be found. Based on the analysis, we explore how the local-
ity of repair ingredients impacts the performance of APR. Although diverse benchmarks of
bugs have been proposed for APR (Durieux et al. 2019), the data of other benchmarks are
not comparable to that of Defects4J in terms of popularity. Therefore, we select Defects4J,
which is regarded as the most commonly used benchmark and has the largest number of
repair results by existing APR tools, for obtaining reliable results.

The main insights of this study are:

1. Availability of Change Actions: For 70% of bugs in Defects4J, the necessary change
actions from the local revision history cannot be discovered. This implies that the size
of a local revision history might not be sufficiently large to avoid searching in external
sources for change actions.

2. Availability of Donor Code: Necessary donor code to fix a bug is available in the
buggy program for a half of the Defects4J benchmark bugs, which is located in the
different scales of search space (even in the bug-triggering test cases). However, it is
necessary to explore external sources to collect donor code to fix the other half of
Defects4J bugs.

3. Impact of Change Actions on the Performance of APR Systems: APR systems tend
to be more effective if a given bug can be fixed with simple change actions (where the
number of change actions < 3 and the depth of change actions < 6). This pushes the
APR community to put more efforts for complicated bugs.

4. Impact of Donor Code Locality on the Performance of APR Systems: APR systems
are generally more effective when donor code is available in the buggy program and
when it is near to the bug location. There should be a higher probability to fix when
exploring a larger search space but it takes more time and cost before finding successful
patches.
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2 Background & Research Questions

Automated program repair consists of three basic steps: fault localization, patch generation
and patch validation. While recent work increasingly investigates fault localization (Qi et al.
2013; Xuan and Monperrus 2014; Yang et al. 2017; Just et al. 2018; Yang et al. 2021) and
patch validation (Koyuncu et al. 2019; Qi et al. 2015; Long and Rinard 2016; Xiong et al.
2018), patch generation approaches (Wen et al. 2018; Liu et al. 2019; Xiong et al. 2017;
Jiang et al. 2018; Le et al. 2016; Liu et al. 2019b; Saha et al. 2017) have been the main
focus of APR research. The overall objective of each approach is to optimize the selection
of relevant repair ingredients in order to generate correct patches (i.e., adequacy of repair
ingredients is key) for the largest number of bugs (i.e., the diversity of repair ingredients
is key). Many approaches rely on specified or mined change actions to guide the patch
generation. For example, GenProg (Weimer et al. 2009; Goues et al. 2012) considers two
genetic operators (mutation and crossover) as the change actions. PAR (Kim et al. 2013) was
subsequently proposed to include common change actions in human-written patches. Since
then, recurrent code change actions (i.e., fix patterns (Liu et al. 2018; Liu et al. 2019b), fix
templates (Liu et al. 2019a; Liu et al. 2018; Saha et al. 2017), code transformations (Long
et al. 2017), etc.) have been widely explored in the APR literature (Wen et al. 2018; Jiang
et al. 2018).

Where are then the repair ingredients? One of the common approaches in the literature
that was initiated by Kim et al. (2013) and later systematically applied, is to mine recur-
rent code change actions from large datasets of program revisions. Nguyen et al. (2013)
investigated the repetitiveness of atomic change actions, but ignored the availability of
complete change actions for a bug fix, which is critical to examine the impact on the per-
formance of APR. The complete change action is associated with complete AST context
path and the corresponding change operations for fixing bugs. For instance, as shown in
Fig. 1, the change action of the Closure-10 bug fix that consists of 3 change operations
(i.e., op1, op2, and op3, UPD-ReturnStatement → UPD-MethodInvocation →
UPD-MethodName) is a complete change action. On the contrary, the atomic change
action denotes the single change operation worked on the leaf AST node without any con-
text (i.e., op3, UPD-MethodName in Fig. 1), which is not accurate enough for change
action selection in program repair (Liu et al. 2019a). Thus, we ask the following research
question about change actions:

– RQ-1: To what extent change actions available and accessible in the buggy program
are relevant to repair it? We revisit the availability of change actions from the buggy
program history for APR. Specifically, we assess not only the availability of change
actions, but also whether they are found (i.e., are they redundant enough to be consid-
ered as candidate change actions?) by APR approaches and the underlying reasons of
the high or low availability of change actions.

Concretely, once a change action is selected, the patch generation requires some donor
code to synthesize the actual replacement code. Common examples of donor code are vari-
ables (e.g., adding a missing NULL pointer check requires to identify which variable to
check) or identifiers (e.g., replacing a wrong API method call requires another method
name). Finding relevant donor code is thus a challenging endeavour in program repair.
Unfortunately, this challenge can be hidden as an engineering detail, and is thus scarcely
discussed in the literature. APR research however must strike a good balance between
efficiency (i.e., the search space must not explode by considering all possibilities) and
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Fig. 1 Example of change action and donor code from the patch of fixing bug Closure-10 in Defecst4J

effectiveness (i.e., the search space must include the relevant donor code to yield correct
patches). For example, Kim et al. (2013), in their implementation of PAR, have focused on
the local buggy file to search for donor code candidates. TBar (Liu et al. 2019a) has followed
on this assumption that the buggy file is enough. Xiong et al. (2017), however, leverage con-
straints to extract donor code from the bug-triggering test cases. SimFix (Jiang et al. 2018)
and CapGen (Wen et al. 2018) leverage all files (including the non-buggy ones). A more
extensive search is performed in LSRepair (Liu et al. 2018) where the authors propose to
perform a live search of large code bases of real-world programs (e.g., GitHub repositories).

Different spaces for donor code search have been explored in the literature, but the com-
munity has not separately investigated the added value of where the donor code is likely
located. In Martinez et al.’s work (Martinez et al. 2014), the granularity of redundancy is
investigated only in two types of scope: local file or whole project. Motivated by Gen-
Prog (Weimer et al. 2009), the plastic surgery hypothesis (Barr et al. 2014) explores the
redundancy of the concrete donor code snippets, and briefly mentions file and package-
level locality. However, the two studies have limitations on the granularity and search space
of donor code, which are not sufficient to figure out the impact of donor code availability
on the repair performance (i.e., number of plausibly or correctly fixed bugs) of APR. To
address this limitation, we consider a more comprehensive granularity and search space of
donor code (cf. Section 3.2) for fixing bugs. The following research question quantifies the
details of the spatial locality of donor code in program repair.

– RQ-2: Where could the donor code be found to generate patches? Heuristics-based,
constraint-based and learning-aided repair approaches explore various advanced meth-
ods to optimize the search and selection of donor code within the buggy file (Liu et al.
2019b; 2019a), non-buggy files (Wen et al. 2018; Jiang et al. 2018), the test cases of
the buggy program (Xiong et al. 2017), and other programs (Liu et al. 2018). For the
first time in the literature, we propose a comprehensive study on Defects4J to clarify
which search scopes are adapted towards an effective program repair system.

Finally, given the lack of focused empirical validation of search strategies for repair
ingredients, we propose to investigate the current APR systems and their yielded patches
that make the program pass all test suites.

– RQ-3: To what extent the locality of repair ingredients impacts the repair per-
formance of APR systems? A number of APR studies have already expressed the
importance of repair ingredients on repair performance (Qi and Reiss 2017; Le et al.
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2016). However, assessment results in the literature often elude the contribution of
the novelty in repair ingredient search. We propose to comprehensively investigate
the impact of the locality of repair ingredients on the repair performance of 24
state-of-the-art APR systems.

3 Definitions

This section clarifies the notions of repair ingredients related to change actions and donor
code presented in this work.

3.1 Change Actions

In this study, we define a change action (cai) as a hierarchical sequence of change operations
({op1, op2, op3, . . . , opn}) presented in a tree structure. The change operations are expected
to be applied to the abstract syntax tree (AST) of the given buggy code. Each operation
can be represented by a tuple of (1) change instruction, (2) code element type where the
operation is applied to, (3) parent operation, and (4) a set of child operations. These can be
defined as:

cai = {op1, op2, op3, . . . , opn},with
opk = (inst, e, opp, {OPc}) (1)

where a change action cai is a set of change operations structured as a tree. In each change
operation opk , the first element denotes a change instruction, which is one of update, insert,
delete, and move (i.e., inst ∈ {UPD, INS,DEL, MOV } which are classical operations
for code differencing tools, e.g., GumTree (Falleri et al. 2014)).

The second element (i.e., e) in opk is the context, determined by the AST node type where
opk could be applied for. For example, e can be ReturnStatement, Expression, and
VariableDeclaration. opp represents the parent operation of the current operation.
opp is Null if the operation is the root node of cai . OPc is a set of child operations of the
current operation. OPc is an empty set if the operation is a leaf node in cai .

Consider the example patch illustrated in Fig. 1 for bug Closure-10 in Defects4J.
This patch implements a unique change action, which consists of three change oper-
ations (i.e., three UPD instructions) applied to three hierarchical code elements:
ReturnStatement, MethodInvocation, and MethodName. It starts with updating
a ReturnStatement of which {OPc} is to update a MethodInvocation element.
The final operation is to replace the buggy MethodName of the MethodInvocation
with another MethodName. Such an abstraction of code change action allows its
application to any other buggy statements having the same AST contexts (i.e.,
ReturnStatement → MethodInvocation → MethodName). In other words, the
abstraction of the change action not only records the change patterns of the bug fix, but also
preserves the AST context surrounding the bug. It discards the specific tokens (e.g., identi-
fiers and operators) in the concrete patch to ensure its applicability for other bugs with the
same AST contexts.

Note that, in this study, multiple changes that share the same root change operation
are regarded as a single change action. Conversely, changes with different root opera-
tions are distinguished as independent change actions. Among all AST node types, only
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{*}Statement1 can be a root operation in a change action. Due to the nested structure of
programs, a given change action may affect several statements. In such a case, the root of a
change action is the parent statement that is nearest to the leaf node. For example, in Fig. 1,
the root of the change action is the ReturnStatement rather than the IfStatement
(which is the super-parent Statement node) or the MethodInvocation (which is not a
Statement node).

To fix a single bug, several change actions can be necessary for some cases. Our study,
of course, explores those cases and investigates how they affect the results of APR systems.
The results are reported in Section 5.

3.2 Donor Code

Donor code is a code element that is used to synthesize (e.g., replace or insert) a patch
candidate. It is represented as:

dcj ∈ Cblank ∪ Cf rag (2)

where Cblank denotes the case where the donor code is not required in a change operation
(e.g., a deletion operation). However, a change action is generally applied by leveraging
a specific donor code in Cf rag , which is a set of code fragments. A code fragment can
be any program element including variables in a program. Code fragments are thus oper-
ators (e.g., +,−, and ∗), identifiers, expressions, statements, and even blocks of code.
As sources, donor code can be identified locally (i.e., within the program where the bug
has been found) or can be mined from external programs (e.g., programs in open-source
projects). For example, the change action shown in Fig. 1 requires a donor code (i.e., the
method name “anyResultsMatch”) for op3 to replace the bug-related element (i.e.,
method name “allResultsMatch”).

In this work, we further categorize the donor code into 7 categories following the location
where it is sourced:

1. Intrinsic Donor Code: such donor code is defined as native tokens in a program lan-
guage specification. These include all operators and program keywords (e.g., basic data
types and control structures).

2. Local-Method Donor Code: the donor code can be retrieved from the method code
where the bug was localized.

3. Local-File Donor Code: the donor code can be retrieved from the file where the bug
was localized. However, in this study, we exclusively consider only donor code that is
within the file but not within the buggy method.

4. Local-Package Donor Code: the donor code can be retrieved from the buggy package
where the buggy file is located. Again, we consider only cases where the donor code is
not in the buggy file.

5. Local-Program Donor Code: the donor code can be found within the buggy program
source code, but not in the buggy package or test code.

6. Local-Test Donor Code: the donor code can only be found within the code of the
bug-triggering test cases.

7. Global Donor Code: the donor code cannot be found in the buggy program nor the test
cases, but could be found in other programs.

1ReturnStatement, IfStatement, etc.
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Table 1 Defects4J dataset information

Chart Closure Lang Math Mockito Time Total

# Bugs 26 133 65 106 38 27 395

Note that a code fragment (including the donor code tokens) might be available at mul-
tiple categories (e.g., from both intrinsic and local-method), we group such fragment into
the smallest category where it can be identified (i.e., the intrinsic donor fragment in the
above example). That is, an APR tool does not need to expand the donor code search into a
larger scope (e.g., local-method in this example) for fixing a bug. In addition, for a bug that
requires multiple donor code fragments (including the donor code tokens), its fragments
could be found at different categories (e.g., one at local-method and another at local-file
level). In such cases, we classify the donor code of the bug into the largest category where
the donor fragments can be found (i.e., the local-file in this example) since an APR system
has to search all donor code in the local-file level.

4 Study Design

4.1 Subjects

To answer our research questions, we conduct a study on the Defects4J dataset (Just et al.
2014). This dataset was selected since it has been leveraged by most APR tools (Le et al.
2016; Xiong et al. 2017; Saha et al. 2017; Qi and Reiss 2017; Martinez and Martin Mon-
perrus. 2016; Xuan et al. 2017; Martinez et al. 2017; Chen et al. 2017; Liu and Zhong
2018; Jiang et al. 2018; Wen et al. 2018; Hua et al. 2018; Liu et al. 2018; Liu et al. 2019b;
2019a; Saha et al. 2019). Defects4J is a curated dataset, where the bugs and their fixes are
clearly isolated from other changes. Table 1 summarizes the number of bugs in the version
1.4.0 (GitHub 2021) of Defects4J.

As subject APR systems, we consider 24 tools from the literature, which are evaluated
on the Defects4J and have been reviewed by peer researchers. When investigating APR
performance, we leverage the reported results by these tools. The column “Repair Results”
in Table 2 indicates the number of bugs fixed by each APR system; the numbers outside
of parentheses are the number of correctly fixed bugs while the numbers in the parentheses
indicate the number of plausibly-fixed bugs. We recall that a plausible patch is a patch that
makes the program pass all test cases. A correct patch is a patch that is equivalent to the
patch provided by developers in the benchmark. Correctness is decided manually by the
authors (Qi et al. 2015).

4.2 Identification of Change Actions

To investigate the availability of change actions in the buggy program history (specifically
for RQ-1), it is necessary to compare the actual patch of a given bug and all available
bug-fixing changes in the revision history2 of the associated program. Defects4J pro-
vides the necessary ground truth information on the actual patches. We then collect other

2The revision history may not be able to explore for some projects but most APR studies (Martinez et al.
2014; Pan et al. 2009; Barr et al. 2014; Nguyen et al. 2013; Liu et al. 2018; Zhong and Su 2015) assume that
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Table 2 APR systems evaluated with Defects4J

APR System Authors Publication Publication Repair

Venue Year Results

HDRepair (Le et al. 2016) Le et al. SANER 2016 6 (23)

jGenProg (Martinez and
Martin Monperrus. 2016)

Martinez and Monperrus ISSTA 2016 5 (27)

jKali (Martinez and Mar-
tin Monperrus. 2016)

Martinez and Monperrus ISSTA 2016 1 (22)

jMutRepair (Martinez and
Martin Monperrus. 2016)

Martinez and Monperrus ISSTA 2016 3 (17)

Nopol (Xuan et al. 2017) Xuan et al. IEEE TSE 2017 5 (35)

ACS (Xiong et al. 2017) Xiong et al. ICSE 2017 18 (23)

ELIXIR (Saha et al. 2017) Saha et al. ASE 2017 26 (41)

JAID (Chen et al. 2017) Chen et al. ASE 2017 9 (31)

ssFix (Qi and Reiss 2017) Xin and Reiss ASE 2017 20 (60)

LSRepair (Liu et al. 2018) Liu et al. APSEC 2018 19 (37)

CapGen (Wen et al. 2018) Wen et al. ICSE 2018 21 (25)

SketchFix (Hua et al. 2018) Hua et al. ICSE 2018 19 (26)

SimFix (Jiang et al. 2018) Jiang et al. ISSTA 2018 34 (56)

ARJA (Yuan and Banzhaf 2018) Yuan and Banzhaf IEEE TSE 2018 18 (59)

SOFix (Liu and Zhong 2018) Liu and Zhong SANER 2018 23 (23)

FixMiner (Koyuncu et al. 2019) Koyuncu et al. EMSE 2019 25 (31)

kPAR (Liu et al. 2019) Liu et al. ICST 2019 18 (49)

AVATAR (Liu et al. 2019b) Liu et al. SANER 2019 27 (53)

TBar (Liu et al. 2019a) Liu et al. ISSTA 2019 43 (81)

PraPR (Ghanbari et al. 2019) Ghanbari et al. ISSTA 2019 43 (148)

Hercules (Saha et al. 2019) Saha et al. ICSE 2019 46 (63)

VFix (Xu et al. 2019) Xu et al. ICSE 2019 12 (15)

GenPat (Jiang et al. 2019) Jiang et al. ASE 2019 16 (42)

ConFix (Kim and Kim 2019) Kim and Kim EMSE 2019 22 (92)

bug-fixing changes by using keyword matching (namely “bug”, “error”, “fault”, “fix”,
“patch” or “repair”); this approach is largely used in the literature (Liu et al. 2018; Le et al.
2016; Zhong and Su 2015; Pan et al. 2009; Mockus and Votta 2000). For each Defects4J
bug, we consider only the subset of history changes that were committed before the bug’s
fix commit. Eventually, all changes (Defects4J patches and other bug-fixing changes) are
processed with the following two steps to identify actual change actions in each change set:

1. For each change, checkout from the repository the buggy version and the fixed version
of the program.

2. Extract the relevant code change actions in the AST tree differencing representation.
We leverage in this study the PatchParser3 open source tool proposed by Liu

the revision history is available. The revision history in our study is also available as Defects4J bugs are all
collected from real-world and large-scale projects.
3https://github.com/AutoProRepair/PatchParser.git

https://github.com/AutoProRepair/PatchParser.git
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et al. (2018). PatchParser builds on the GumTree (Falleri et al. 2014) and provides
a hierarchical structure (which includes the whole code context of the change).

4.3 Donor Code Identification and Search

Identifying the ground truth of donor code To assess the locality of donor code, we first
identify the ground truth of what each bug fix uses as donor code in Defects4J. For practical-
ity of analysis, we leverage the representation provided in the artefact release4 of a previous
study by Sobreira et al. (2018). In our work, the donor code search is conducted in a fine-
grained way, e.g, statements, expressions, method names (the example in Fig. 1), variable
names, data types and so on, which can be directly used to synthesize patch candidates with
change actions in APR systems.

To determine donor code availability, we leverage the code clone detection tech-
nique (Roy et al. 2009) to search a potential code fragment that is matching the donor code
associated to Defects4J patch. Specifically, we employ the tree-based clone detection tech-
nique (i.e., Deckard) proposed by Jiang et al. (2007) to detect type-1 and 2 clones, which
has also been used by existing APR systems (Le et al. 2016; Jiang et al. 2018). Thus, two
types of code clone are employed in this paper:

– Type-1: Identical code fragments except for variations in whitespace, layout and
comments.

– Type-2: Syntactically identical code fragments except for variations in identifiers,
types, whitespace, layout and comments.

4https://github.com/program-repair/defects4j-dissection/blob/master/defects4j-patch.md

https://github.com/program-repair/defects4j-dissection/blob/master/defects4j-patch.md
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Search for Donor Code Given the required donor code for a Defects4J bug-fixing change,
we search for a set of donor code candidates and identify their location categories (cf.
Section 3.2). Algorithm 1 describes the search process. For all code fragments of the
production code in the program (Line 3)5, we first examine whether the donor code is
“intrinsic” (Line 8) or blank. Otherwise, donor code candidates can be found somewhere
in the program where the bug has been found (Line 10). If candidate donor code fragments
are found in the program (Line 10), the algorithm checks whether they are located in the
buggy method (Line 12), buggy file (Line 14), buggy package (Line 16), or another loca-
tion in the production code (Line 18). Since there could be several donor code candidates,
the algorithm takes one that is nearest to the bug location (Line 4) (i.e., in the sequence
of Intrinsic, Method, File, Package, Program, and Global). For example, the
donor code (anyResultsMatch) shown in Fig. 1 can be found in several locations in the
program, with the nearest being located in the same ‘File’.

Besides the production code, our study also scans the bug-triggering test cases for donor
code. This may provide an insight of whether test cases are a valuable source of donor code,
since several state of the art approaches mention them in their implementation details but do
not comprehensively assess the added-value of such an extraction source. This information
is investigated independently against the location information of the production code above.

5 Study Results

We provide experimental data towards answering the relevant research questions of this
study (cf. Section 2). Key insights are further highlighted to inform future development of
APR. In Section 5.1, we focus on answering RQ1 by investigating to what extent change
actions can be found in the buggy program’s commit history (i.e., validating the redundancy
assumption for the Defects4J bug fixes). Section 5.1 also draws a landscape of properties of
change actions horizontally (in terms of quantity per patch) and vertically (in terms of depth
distribution), which provides data for further analysis of Section 5.3. In Section 5.2, we
report on the localization of potential donor code fragments in response to RQ2. Finally we
investigate the relationship between APR performance and the location of repair ingredients
in Section 5.3 and then discuss the performance impact of the location where donor code
can be found (i.e., RQ3).

5.1 RQ-1: Availability of Change Actions

We investigate the availability and complexity of change actions.

Availability of Change Actions The relevant literature of APR generally builds change
action databases by mining code bases that are independent of the buggy program. We pro-
pose to investigate this redundancy assumption of change actions for the Defects4J bugs
to verify whether change actions can be mined from the buggy program itself. Note that,
because we could not associate the benchmark-provided bug fix of Chart-6, Chart-11 and
Chart-26 to a precise commit in the JFreeChart repository, we exclude them.

Figure 2 summarizes the proportion of bugs for which the fixes are implemented with
change actions that are available in the buggy program history. The tag “available” indicates

5In contrast with the mining of code change actions, most APR systems scan only the production code of a
program for donor code.
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Fig. 2 Available results of bugs comprising single and multiple change actions

that all needed change actions can indeed be found in the buggy program history. “Partially
Available” indicates that only some of the required change actions for a given bug can be
retrieved in the buggy program. “Unavailable” indicates that none of the change actions
could be extracted from the program history at the time of fix. “Single” and “Multiple”
labels further help to perceive the proportion of cases where the required change actions set
for a bug was a singleton (i.e., Single) or not (i.e., Multiple).

We observe that among the 167 (=29+138)6 cases where a single change action is
required, only 21% (29/167) of the change actions were available in the history of the associ-
ated program. This puts into perspective the redundancy assumption (Martinez et al. 2014):
the buggy programs in the Defects4J dataset do not have in their history all necessary change
actions to drive the patch generation.

RQ-1.1 Why are change actions not available in the program history ?

Our conjecture is that change actions can be available only if the buggy program has a
long history of code changes. Indeed, statistically the more changes (regardless of bug fixing
or non-bug fixing commits) are performed, the more chances to encounter a recurring repair
action. The distributions of historical commits presented in Fig. 3 are indeed consistent with
the distributions of bugs for which change actions are available in the history of the program
(cf. Fig. 4). Closure presents the largest median number of commits that form the history
of the program before the fix associated to Closure Defects4J bugs. It also has the highest
number of cases where the change action is available in the program history.

The redundancy assumption is constrained by the size of available historical change
data for mining recurrent change actions.

RQ-1.2 Are the available change actionsmost recurrent in the buggy program history?

Change actions are mined in the APR literature (Kim et al. 2013; Le et al. 2016; Wen
et al. 2018; Jiang et al. 2018) based on their frequency. Although our aforementioned sub-
question confirmed that some relevant change actions can be found in the history of a buggy

6This number is different from 169 shown in Fig. 6 since the revisions related to Chart-11 and 26 are not
available to explore as stated in the above paragraphs.
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Fig. 3 Distribution of the number of commits related to bug fixes in each project

program, it is not guaranteed that such a change action could have been considered in a
statistical pattern mining approach.

We investigate the relative redundancy of Defects4J bug fix actions that are available
in the program history. For each relevant change action we compute its ranking in the list
of change actions, which are sorted by their frequency of appearance in the history of the
buggy program changes.

Figure 5 provides the distribution of bugs for which the relevant change action is within
some ranking ranges. Note that when a bug is fixed by multiple change actions, we con-
sider that the least frequent change action limits the likelihood of successful mining. To
reflect this, we always consider the lowest ranking, among the rankings of all needed change
actions, as the final ranking associated to the change actions associated to a bug.

When we consider fully available change actions, we can count only one bug in Defects4J
whose change action is among the top-10 most recurrent in the history of the associated
buggy program. The overall observation is that the relevant change action is actually among
the least recurrent in the buggy program (average frequency ranking of 335 for available
change actions).

Relevant change actions for repairing Defects4J programs are generally far from being
the most frequent change actions in the program’s historical changes. This finding sug-
gests that Defects4J bugs may not be of the most common types in the associated
projects.

Fig. 4 Number of bugs in which necessary change actions are available in the buggy program history
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Fig. 5 Rankings of available change actions from the buggy programs themselves

RQ-1.3 Are the availability of change actions related to their complexity?

Complexity of Change Actions The complexity of bugs is computed in the literature based
on the number of files and lines that are changed by patches. Motwani et al. (2018) have used
such a computing approach to assess the complexity of Defects4J bugs that were success-
fully addressed by APR tools. Their conclusion was that “automated repair is more likely to
patch easy defects than hard ones, reducing its utility”. While this definition is commonly
accepted, it may hide a simple fact that a single line change may actually be a complex
change, depending on the depth of change actions that must be applied. For example, a
fix that requires changing variables and operators simultaneously may be hard to engineer.
Thus, we propose to investigate the complexity of Defects4J fixes in the number of change
actions (e.g., change the condition in a For loop vs change the condition in a For loop and
change the initialization of the iteration variable), as well as a more fine-grained manner
based on the vertical depth of the required change actions (e.g., delete an IfStatement vs
delete a specific sub-expression of the conditional expression in the IfStatement), to further
assess the relationship between the availability of change actions and their complexity.

Figure 6 presents the distribution of the number of change actions within Defects4J bug
fixes. A significant share of Defects4J bugs (i.e., (∼75%=169+86+42

395 )) require three or fewer
change actions to fix them. An example of such a bug is Closure-10 whose fix was presented
in Fig. 1. We also observe that most available change actions mainly have less number of
change actions.

We further define the depth of a change action ca as:

max
∀opj ∈ops(ca)

distance(root (ca, opj )) (3)

where ops(ca) enumerates all change operations of a given change action ca. The depth
reflects to what extent the change action targets a fine-grained entity of the AST graph at
the buggy code location. Figure 7 illustrates the relevant AST of the buggy code of Closure-
10 (cf. Fig. 1). The depth of the relevant change action to apply for this bug is 3 (as denoted
by the path with red circles).

Figure 8 provides the statistical distributions of the depths of change actions for fixing
Defects4J bugs. Note that in this study we consider, for each bug, the maximum of the
depths of different change actions involved in the fix of that bug. We note that only a few
bugs can be fixed with shallow change actions (e.g., directly deleting the buggy statement).
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Fig. 6 Distribution of the numbers of change actions for fixing Defects4J bugs

68.4% (= 65+78+72+55
395 ) of bugs are fixed by targeted change actions going down at depths

4–7 in the AST of the buggy code location, of which depths occupy most available change
actions. This result puts into perspective the reality of the complexity of Defects4J bugs.
If complexity is measured by the challenge of digging into the AST of the buggy code to
identify a specific code element to modify for fixing the bug, then a large proportion of
Defects4J bugs can be said to be complex. This finding validates the assumptions by recent
research efforts (Jiang et al. 2018; Koyuncu et al. 2019) in the literature towards building
approaches that mine fine-grained fix patterns (i.e., that target deeper nodes in an AST
context) to improve repair accuracy.

Defects4J bugs mostly require a limited number of change actions, but often target deep
nodes in the AST sub-tree of the buggy code. And most available change actions present
simple complexity. It requires APR researchers to carefully mine repair ingredients for
generating correct patches.

5.2 RQ-2: Availability of Donor Code

We now focus on exploring the location of donor code to concretize the fix patches.

Locations of Donor Code Fig. 9 illustrates the distributions of bugs associated to locations
where a code fragment was found to be a type-1 or type-2 clone of the necessary donor
code used to generate the bug fix patch. Specifically, the Y-axis counts the number of bugs
that can be fixed by searching for at most local-X (e.g., local-method or local-file) level. It

Fig. 7 The AST of Defects4J
bug Closure-10 impacted by its
change action



  122 Page 16 of 33 Empir Software Eng          (2021) 26:122 

Fig. 8 Distribution of the depths of change actions for fixing Defects4J bugs

appears that the donor code is often intrinsic (i.e., simple programming constructs such as
operators). When the donor code is available in the program it is generally located within
the buggy method or the buggy file. In only a few cases, it is in other parts of the program.

Note that Fig. 9 data includes only cases of 196 bugs where a set of donor code can be
discovered within the production code. For the 199 (= 395 − 196 ∼ 50%) remaining bugs,
the donor code should be searched outside the buggy program (e.g., Chart-6). Unfortunately,
enlarging the search scope for donor code will lead to an explosion of patch candidates,
leading to a poor correctness ratio (Wen et al. 2018) (i.e., increasing probability to generate
plausible but incorrect patches).

Half of Defects4J bugs require some donor code, which are outside the buggy program.
Conversely, for the other half, a donor code fragment is generally located near the buggy
code location.

Repair Potential with Intrinsic Donor Code Our investigation data reveals that 44 bugs
could be actually repaired by using programming language constructs such as operators
as donor code. Such constructs are generally manipulated by simple genetic improvement
operations. Yet, only a single APR system, to date, has been able to fix over 44 bugs in
the Defects4J dataset. Unfortunately, a closer look at Hercules (Saha et al. 2019) patches
reveals that these are not even associated to all the above 44 bugs.
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Fig. 9 Distributions of donor code categories
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Although searching for relevant fix donor code is important, it is noteworthy that state-
of-the-art APR systems still fail to fix some bugs which do not require donor code search
in a big search space.

Availability of Donor Code Following up on the discussion above, which focused on indi-
vidual donor code fragment, we consider all necessary code fragments for fixing a given
bug, and investigate whether they can be retrieved in the same search scope. This dissection
further considers cases where “All” donor code fragment can be found in the buggy pro-
gram (In Fig. 10, 155 + 45 = 196 + 4, where the donor code of 4 bugs is available from the
bug triggering test cases), or only “Partial” donor code fragments can be found in the buggy
program, or the donor code is “Global” (i.e., fully outside the buggy program).

Figure 10’s data reveal that, while a large share of bugs have donor code fragments that
are all available in the “Same locations”, for many bug cases the donor code fragments
are dispersed across different locations, which challenge the possibility for effective repair.
For example, to generate a valid patch for Chart-2, a part of donor code (“minimum =
Math.min(minimum, value);”) can be found in the buggy method, the other part
(“value = intervalXYData.getXValue(series, item);”) can be identi-
fied from the buggy class file but not the buggy method, and the remaining donor code can
be retrieved from the other code files that are not in the buggy package.

Donor code fragments can be dispersed across different locations within the buggy pro-
gram and outside the program. This finding justifies why some state-of-the-art APR
systems, which focus the donor code search to a specific location, manage to only par-
tially fix some of the Defects4J bugs. They could only identify some of the donor code
fragments.

Availability of Donor Code in Bug-Triggering Test Cases Our study has produced data that
suggest that donor code is also available in the bug-triggering test cases for 38 bugs. For 13
bugs, all donor code fragments are in the test cases, while for other 25 bugs only some of
the necessary code fragments can be found in the test cases. The ACS (Xiong et al. 2017)
repair system indeed leverages information in bug triggering test cases for precise condition
synthesis of patches. Our study further validates for the whole research community the
added value of leveraging test cases as a source for donor code search.
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Nevertheless, this finding must be put into perspective in practice. In a recent study,
Koyuncu et al. (2019) discussed the availability of bug-triggering test cases and highlighted
that such test cases are often unavailable at the time that bugs are reported by end-users.
All Defects4J bugs are curated with all relevant test cases (Just et al. 2014). If removing the
future test cases (i.e., bug-triggering test cases provided when submitting patches (Koyuncu
et al. 2019)) from Defects4J bugs, the necessary code fragments only for four bugs can be
retrieved from the test cases. The repair system will therefore fail to find the adequate donor
code. Therefore, when the bug-triggering test cases are unavailable, it will be not actionable
for retrieving the donor code from test cases.

Bug-triggering test cases are an important target for searching donor code, but their
availability could arise a new challenge for donor code searching.

5.3 RQ-3: Impact of Repair Ingredients Locality on APR Performance

We explore the impact of repair ingredient properties required to repair Defects4J buggy
programs (cf. Sections 5.1 and 5.2) on the performance of APR systems in the literature.
In particular, we stress on the quantitative differences between bugs that were eventually
correctly-fixed by at least one APR tool, those that are only plausibly (but incorrectly) fixed
by some APR tools, and those that remain unfixed to date by any APR tool.

RQ-3.1 To what extent the complexity of change actions required for Defects4J bugs
can impact the repair performance of APR systems?

To answer RQ-3.1, we consider a careful review of reported results in the literature.
Hence we focused on Defects4J version that was used by 24 APR systems (listed in Table 2)
for evaluation. Figure 11 provide statistics about the impact of code change actions breadth
on APR performance.

Overall, we note that state-of-the-art APR systems successfully produce correct/plausible
patches for bugs that require few change actions (here, # of change actions < 3). Addition-
ally, the state-of-the-art APR systems can only fix a small number of complex bugs that

Fig. 11 Repairability of APR systems with respect to the number of change actions
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need more change actions. For example, only 7 (=1+2+3+1) out of 55 bugs that need at least
five change actions, can be correctly fixed by at least one of the 24 state-of-the-art APR
systems. In the literature, only Hercules authors claim that it can fix multi-hunk bugs (Saha
et al. 2019) but only 4 bugs that need more than two change actions can be correctly fixed
by Hercules. The only bug that was fixed by 8 change actions is correctly fixed by LSRe-
pair (Liu et al. 2018). However, LSRepair fixes bugs by updating the buggy code at the
method level but not at the statement level as change actions.

Table 3 provides a detailed view of the repairability performance of the different tools
based on the number of change actions.

Interestingly, we find that 5 systems (i.e., ACS, VFix, SimFix, Hercules, and LSRepair)
have the ability to generate correct patches for more “complex” bugs in terms of the number
of change actions. We further assess the corresponding patches generated by these APR
systems (except for VFix which does not come with a public artefact of generated patches).
We found several reasons why the enumerated tools can fix complex bugs:

1. Repeated change actions and adequate test cases: The Time-26 bug that was cor-
rectly patched by Hercules consists of 7 change actions but they can be classified
into two unique change actions (i.e., inserting a parameter of a method invocation
in the ReturnStatement and inserting a parameter of a method invocation in the
VariableDeclarationStatement) with the complete change actions from its
developer patch. In addition, the associated test suite includes 8 independent failed test
cases. Both make it possible for Hercules to repair this bug hunk by hunk.

2. Apply fewer change actions than those of ground truth (i.e., human-written patches) to
generate semantically equivalent patches: Lang-41 and Lang-50 contain 7 and 6 change
actions respectively, but SimFix applies 2 change actions to each one during the bug
fixing. Also, ACS employs 2 change actions for fixing Math-93 whose ground truth
patch is comprised of 5 change actions.

3. Method level change actions: LSRepair fixes Lang-46 consisting of 8 change actions
by performing change operation at the method level.

Figure 12 provides statistics on the relationship between code change actions depth with
repair performance.

Table 3 With respect to the
number of change actions that
each APR system could
implement in a given patch

# change
actions

APR systems

1 All 24 APR Tools

2 16 (GENPAT, ConFix, Vfix, PraPR, TBar, kPAR, ARJA,
Hercules, FixMiner, LSRepair, SimFix, ssFix, ACS,
HDRepair, Nopol, AVATAR)

3 9 (GENPAT, Vfix, PraPR, TBar, Hercules, SimFix, JAID,
ssFix, AVATAR)

4 9 (ConFix, Vfix, TBar, ARJA, Hercules, LSRepair, Cap-
Gen, ACS, AVATAR)

5 ACS

6 Vfix, SimFix

7 SimFix, Hercules

8 LSRepair
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Fig. 12 Relationship between the fix/unfixed bugs and the depths of change actions

The bugs that are correctly fixed by existing APR systems have relatively low depth of
code change actions. For example, ∼77% of correctly fixed bugs can be addressed with
change actions whose depths are lower or equal to 5. Nevertheless, APR systems manage
to generate deeper changes (i.e., that are invasive in the AST tree) that are correct. The
example fix generated by SimFix and illustrated in Fig. 13 puts into perspective the common
criticism that APR fixes simple bugs.

Measurement of complexity in terms of change actions breadth and depth shows that
many correctly fixed bugs by literature tools are indeed among the least complex. Nev-
ertheless, the statistics also show the progress achieved by state-of-the-art APR systems
on repairing complex bugs since some correct patches are relatively complex.

RQ-3.2 How does the locality of donor code for Defects4J bugs impact the perfor-
mance of APR systems?

Figure 14 overviews the statistics about relationship between the donor code locality and
fixed/unfixed bugs. “Same” and “Different” have the same meaning as they are in Fig. 10,
respectively.

Fig. 13 Example of bugs fixed by complex change actions (Lang-58 in Defecst4J)
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Fig. 14 Relationship between donor code locality and fixed/unfixed bugs. CF, PF, UF represent Correctly
Fixed, Plausibly Fixed, and Un-Fixed, respectively

As shown in Fig. 14, the donor code of most (∼84%= 95+11
95+11+11+9 ) correctly fixed bugs is

available from the buggy program. The existing APR systems still can correctly fix 11 and
9 bugs even their donor code is partially available or unavailable from the buggy program,
respectively. Nevertheless, there is a large space to improve their repair performance. For
example, there are 94(=29+31+13+21) bugs cannot be correctly fixed by any APR tool yet,
even though all necessary donor code for fixing them are available from the buggy program.
Additionally, ∼44% =(25+30+9+10+28+73

395 ) of bugs that cannot be correctly fixed simply
because the necessary donor code is not fully available from the buggy program. Therefore,
for the future APR work, practitioners should pay more attention to the bugs of which donor
code is partially available or even unavailable from the buggy programs themselves.

Most APR systems mainly focus on addressing bugs whose donor code is available from
the buggy program. Considering code outside the buggy program can improve the quality
of patch candidates

Feasibility ofMutating Intrinsic Donor Code As presented in Fig. 15, most intrinsic donor
code required by bugs can be correctly fixed by the existing APR systems. There are still 5
plausibly-fixed and 7 un-fixed bugs that cannot be fixed even their necessary donor code is
intrinsic. When donor code are available from a larger search space, APR systems tend to be
unable to fix bugs. For example, if it is necessary to scan at least local packages for donor
code, APR systems can correctly fix only 8 bugs while no system can fix 33 bugs even with
the search space of local packages.

It is feasible to fix bugs by directly mutating the intrinsic donor code, but there still is
a space of improving the repair performance to boost APR by addressing intrinsic code
related bugs.

Trade-off between search space and efficiency As presented in Fig. 9, it is able to find
all necessary donor code for more bug fixes when enlarging the search space from the local
buggy method to the whole buggy program. However, enlarging the search space of donor
code will sharply enlarge the search space of patch candidates that will further increase the
possibility of generating plausible but incorrect patches before the correct ones (Wen et al.
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Fig. 15 Relationship between the fixed/unfixed bugs and the donor code categories

2018). When enlarging the search space from the buggy file to the whole buggy program,
60% (= 25+16

25+16+16+11 ) of the increased bugs, of which donor code are available from the pro-
gram, are served with the type-2 donor code. Nevertheless, the number of patch candidates
generated with type-2 donor code will be increased exponentially as the number of potential
replaceable identifiers in buggy code.

From the aspect of repairability, other 19 (=8+11) bugs can be fixed by existing APR
tools, but the other 19 (=14+5) bugs can be fixed in a plausible but incorrect way. Enlarging
the search space leads to higher cost for APR, but it can impact its efficiency of APR system
by reducing the precision of generated correct patches. The trade-off between fixing more
bugs and correctly fixing more bugs should be taken into account for the selection of donor
code searching space.

When considering a large donor code search space, it is possible to fix more bugs for
APR systems, but the trade-off (Long and Rinard 2016) between the repair performance
in terms of the number of fixing bugs and the efficiency in terms of the time cost or patch
precision should be carefully maintained by practitioners to boost APR.

6 Discussion

6.1 Considering All Commits for Mining Change Actions

In the APR community, bug-fixing related keywords (e.g., “bug”, “error”, “fault”, “fix”,
“patch” and “repair”) have been widely used to explore the characteristics of human
patches (Liu et al. 2018; Nguyen et al. 2013; Barr et al. 2014; Martinez et al. 2014; Zhong
and Su 2015) or mine fix patterns from human patches (Kim et al. 2013; Le et al. 2016; Jiang
et al. 2018; Wen et al. 2018). However, some bug-fixing commits might not be collected by
the keyword searching because of developers inconsistent convention of committing mes-
sages (Zhong and Su 2015). And it is possible to find the change actions from non-bug fixing
commits for fixing bugs. Intuitively, more bugs could be matched with adequate change
actions if considering all historical commits. Therefore, we perform a parallel experiment
considering all commits in the buggy program repository on 395 bugs in the Defects4J
dataset to match change actions for each of the 395 bugs. In the parallel analysis, we con-
sider three statistics of change actions: (1) availability: how many bugs can be matched with
adequate change actions, (2) search space: how many historical commits are considered to
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find the adequate change actions for fixing bugs, and (3) accessibility: how the matched
change actions are ranked with their frequencies. The related results are shown in Table 4.

Indeed, more bugs can be matched with adequate change actions when considering a
big search space of commits (i.e., all commits against bug-fixing related commits). How-
ever, the search space of commits is increased sharply over three times (897/292=3.07X).
It will enlarge the costs on mining adequate change actions for fixing bugs if considering
all commits. Furthermore, the average of frequency ranks is increased from 140 to 324. It
means that the performance of fixing bugs with change actions by considering all commits
will be impacted in two aspects: the increased search space of change actions will reduce
the efficiency of finding the adequate change actions for fixing bugs, and the adequate
change actions are not ranked prioritizedly, which makes more trials with inadequate change
actions (1) to generate more non-sensical patch candidates to reduce the efficiency of fixing
bugs and (2) to increase the possibility of generating plausible patches with the inadequate
change actions to reduce the precision of generated patches.

To sum up, considering all commits for collecting change actions can make more bugs be
matched with adequate change actions than only considering bug-fixing related commits.
However, the efficiency and precision of fixing bugs will be impacted negatively. As stated
in recent studies, efficiency (Liu et al. 2020; Qin et al. 2021) and precision (Xiong et al.
2017; Xiong et al. 2018; Le et al. 2019; Tian et al. 2020) have become the two important
metrics of evaluating the bug-fixing performance of APR systems. Therefore, it would be
reasonable to consider the bug-fixing related commits to collect/mine change actions for
program repair. The availability of change actions increases when including all commits.
However, the search space becomes much larger and the accessibility decreases sharply,
which makes it more difficult to find adequate change actions for fixing a bug.

6.2 Threats to Validity

External validity Our study only considers the Defects4J dataset. All findings might thus
be valid only for this benchmark. Nevertheless, this threat is mitigated by the fact that all
bugs and their patches are collected from six real-world programs. The curated dataset is the
most widely used dataset in the APR community, where the isolated bugs and fixes provide
the ground truth for APR study. Our study relies on the revision history of a buggy program,
it will be a threat when the related revision history is unavailable.

Internal validity Our implementation of collecting bug fix related commits as well as sim-
ilar donor code searching may threaten the validity of some of our conclusions. We mitigate
this threat by reusing common components of patch commit collection from the litera-
ture, and considering the first two types of code clone for similar donor code searching by

Table 4 Comparison of
matching change actions for bugs
with bug-fixing related commits
with all commits

Bug-fixing
related commits

All commits

Number of matched bugs 117 152

Number of commits (on
average)

292 897

Rank of change actions
with frequency (on aver-
age)

140 324
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referencing the donor code searching strategies in the APR tools. The internal threats
include the donor code that is irrelevant to the context of buggy code but not covered by
type-1 & 2. Note that type-3 & 4 clones are possible for fixing bugs, which is somehow
explored by LSRepair (Liu et al. 2018). However, the type-3 & 4 clones are the state-of-the-
art open research questions, it is challenging to evaluate the availability of type-3 & 4 clones
for patch generation. Therefore, such two types of clones are not considered in this study.

Construct validity By construct, to reduce the bias from similar change actions, we only
identify the availability of change actions only when the identical ones can be extracted from
the history. However, this setting may penalize the identification of similar change actions
that might be actionable. We mitigate this threat by selecting the identical identification,
since the similar change actions could bias the exact repair performance of fix pattern based
APR tools after a systematic review on the fix pattern studies in APR commit. In addition,
the combination of change actions and donor code is necessary for patch generation. Our
work investigates the possibility of obtaining the change actions and donor code from the
buggy program with a wide view. The combination could narrow this view, thus it is not
considered in this work.

7 RelatedWork

Bug Fixes In the literature, bug fixes have been widely studied to deepen knowledge for
program repair. Pan et al. (2009), Martinez andMonperrus (2015), and Zhong and Su (2015)
performed empirical investigations on Java program patches, mostly analyzing the repair
actions of patches at the statement level. Liu et al. (2018) further propose a fine-grained
study on 16,450 bug fix commits from seven Java open-source projects to deepen the knowl-
edge. Sobreira et al. (2018) dissertate Defects4J bugs with repair actions to characterize
bugs and patches. Jiang et al. (2019) investigate the difficulty of automated bug fixing on 50
Defects4J bugs through a manual analysis. Our study focuses on the distribution of repair
ingredients for all Defects4J bug fixes and investigates the potential relationship between
them and the repair performance of APR systems in a fully automated manner.

Change Actions Change actions (a.k.a., fix patterns, fix templates, code transformations
etc.) are also broadly studied to boost automated program repair. Weimer et al. (2009) and
Goues et al. (2012) rely on simple change actions of two genetic programming operators
to propose the milestone GenProg. Kim et al. (2013) manually summarize 10 fix templates
from 62,656 human-written patches for program repair. Long et al. (2017) propose to auto-
matically learn code transformations from real-world patches. Yue et al. (2017) manually
obtained 16 fix patterns from 19,275 fixing patches from three real-world projects. Liu et al.
(2018) leverage the deep learning techniques to extract fix patterns from FindBugs viola-
tions (Hovemeyer and Pugh 2004). Liu and Zhong (2018) mine fix patterns from the public
forum of StackOverflow. Wen et al. (2018) and Jiang et al. (2018) also leverage the change
actions extracted from a public dataset of bug fixes (Le et al. 2016) to build their APR sys-
tems. However, none of existing APR systems is proposed to leverage the change actions
extracted from the buggy program itself to proceed the patch generation. Our work pro-
poses to investigate the possibility of collecting change actions from the buggy programs
themselves.

Nguyen et al. (2013) compared the within-project repetitiveness of change actions with
the cross-project one and concluded that the former is generally lower than the latter.
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However, the study is limited by splitting the change actions of a bug fix into multiple
change actions of different sizes (i.e., the tree height defined in Nguyen et al. (2013)). Thus,
the study fails to demonstrate the exact distributions of raw change actions consisting of a
bug fix. Moreover, their work did not explore the reasons for the low availability of change
actions inside the buggy program history. Our work investigates the “available”, “partially
available”, and “unavailable” situations for each bug fix in terms of change actions. In addi-
tion, we explore the underlying reasons of the low availability of change actions and further
measure the impact of change actions on the repair ability of 24 APR systems.

Donor Code The APR community investigates donor code as one of the essential repair
ingredients for program repair. Barr et al. (2014) explored more than 15K commits in 12
open-source projects and discovered that 43% of code changes are graftable. This study
is, however, limited by the line-level granularity. Martinez et al. studied the redundancy
assumption of repair ingredients at line and token granularities (Martinez et al. 2014) but
the study presents only temporal-redundancy (i.e., how many commits contain redundant
changes) rather than spatial redundancy (i.e., where are they?). PAR (Kim et al. 2013) lim-
its the donor code search in the code files that contain the bugs, which is followed by other
state-of-the-art APR systems (e.g., kPAR (Liu et al. 2019), TBar (Liu et al. 2019a) and
Avatar (Liu et al. 2019b)). CapGen (Wen et al. 2018) and SimFix (Jiang et al. 2018) per-
form the fine-grained donor code search from the whole buggy program. ACS (Xiong et al.
2017) is proposed to extract donor code from the bug-triggering test cases with specific
constraints. LSRepair (Liu et al. 2018) even conducts a live search of donor code from real-
world programs. Our work aims at assessing to what extent donor code is distributed in the
buggy program to boost program repair.

8 Conclusion

This paper reports on the result of a systematic study on the need for repair ingredients (i.e.,
change actions and donor code) for bug fixes. It is challenging, on the one hand, to extract
all necessary change actions from the buggy program to fix its bug, when the program does
not have enough commits related to bug fixes. On the other hand, donor code for most
bugs is available from the buggy program, but the trade-off between the search space of
donor code and the repair efficiency of APR systems should be non-trivially maintained by
practitioners. To boost program repair, it is necessary to probe advanced systems to address
difficult bugs with respect to the complicated code change actions, as well as advanced
searching strategies to efficiently find donor code for patch synthesizing.
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