
SMARTGIFT: Learning to Generate Practical Inputs
for Testing Smart Contracts

Teng Zhou∗, Kui Liu∗†‡, Li Li§, Zhe Liu∗, Jacques Klein¶ Tegawendé F. Bissyandé¶
∗Nanjing University of Aeronautics and Astronautics, Nanjing, China

†
{tengzhou, kui.liu, zhe.liu}@nuaa.edu.cn

Key Laboratory of Safety-Critical Software (Nanjing University of Aeronautics and Astronautics), Nanjing, China

‡State Key Laboratory of Mathematical Engineering and Advanced Computing, Wuxi, China
§Monash University, Melbourne, Australia, li.li@monash.edu

¶Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg

{jacques.klein, tegawende.bissyande}@uni.lu

Abstract—With the boom of Initial Coin Offerings (ICO) in the
financial markets, smart contracts have gained rapid popularity
among consumers. Smart contract vulnerabilities however made
them a prime target to malicious attacks that are leading to huge
losses. The research community is thus applying various software
engineering technologies to smart contracts to address them. In
general, to detect vulnerabilities in smart contracts, mutation
and fuzz based testing approaches have been widely studied and
indeed achieved promising performance on benchmark datasets.
Generating test inputs with mutation approaches essentially relies
on the available test cases in a smart contract program. In
our preliminary study, however, we observed that 56.4% of
218 identified open-source smart contract project repositories
do not provide any test case for validation. Fuzzing test inputs
leads to random values and lacks practical usefulness. Our work
addresses this problem: we propose an approach, SMARTGIFT,
which generates practical inputs for testing smart contracts by
learning from the transaction records of real-world smart con-
tracts. Leveraging a collected set of over 60 thousand transaction
records, SMARTGIFT is able to generate relevant test inputs
for ∼77% smart contract functions, largely outperforming the
traditional fuzzing approach (successful for only 60% functions).
We further demonstrate the practicality of the test inputs by
using them to replace the test inputs of the ContractFuzzer state
of the art smart contract vulnerability detector: with inputs by
SMARTGIFT, ContractFuzzer can now detect 131 of the 154
vulnerabilities in its benchmark.

Index Terms—Test Input Generation, Smart Contract, Deep
Learning.

I. INTRODUCTION

Blockchain [1] technology has attracted a lot of atten-

tion when it achieved a significant milestone with the im-

plementation of decentralized and distributed digital ledgers

for recording transactions of cryptocurrencies [2] (e.g., Bit-

coin [3], Ethereum [4] and Litecoin [5]). In this vein, smart
contracts, which leverage blockchain technology to implement

a computerized transaction protocol that executes the terms of

a contract, are increasingly investigated by the industry and

research communities [6], [7]. Smart contracts are provided

for participants to reduce the need for trusted intermediates

when initiating contracts so as to reduce possible fraud losses,

∗Kui Liu and Zhe Liu are the corresponding authors.

arbitration and enforcement costs, as well as malicious or

accidental exceptions [8].

As a self-executing program without the need for any exter-

nal trusted authority, a smart contract is promising for various

interactions that are related to data-driven transactions [1],

[7]. At the end of 2018, 5-10% of jobs advertised on the

popular Guru1 platform for freelancers were related to smart

contracts and blockchain [9]. While many countries investigate

the actual legal value of smart contracts in court, more and

more developers are devoting their careers to boosting the

application of smart contracts in various domains, such as

finance, gaming, and notary [10]. In Ethereum2, a global,

open-source platform for decentralized applications, over two

million smart contract accounts3 were deployed at the end of

September 2020, counting for a total of more than 110 million

Ether that is worthy of over 37.4 billion US dollars (Ether is

the digital money and the currency of Ethereum apps, and one

Ether was worth more than 340 US dollars at that time).

Security problems in smart contracts can result in tremen-

dous financial losses in the real world. For example, the

notorious “DAO” attack on the reentrancy problem caused

DAO’s investors to lose 3.5 million Ether (at least 60 million

US dollars at that time) in June 2016 [11]. Similarly, the

team behind the Parity Ethereum software client revealed how

a critical code flaw (e.g., the Parity Freeze) resulted in the

freezing of $160 million worth of Ether [12]. These costly

attacks demonstrate that it is essential to improve the quality

of smart contracts before deploying them, especially since they

are immutable once deployed. Unfortunately, it is an extremely

difficult task to develop trustworthy and safe smart contracts

because of the complex semantics of the underlying domain-

specific languages (e.g., Solidity4) as well as the potentially-

breaking changes in their evolution. To address the security

issues that smart contracts can carry in their programs, various

approaches have been proposed in the literature [13], [14],

[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],

1https://www.guru.com
2https://ethereum.org
3https://etherscan.io/accounts
4https://solidity.readthedocs.io

23

2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)

Work licensed under Creative Commons Attribution NonCommercial, No Derivatives 4.0 License. https://creativecommons.org/licenses/by-nc-nd/4.0/
DOI 10.1109/ICSME52107.2021.00009

[26]. A large number of these works build approaches that are

about generating test inputs for further testing smart contracts,

in order to identify potential vulnerabilities before deployment.

In the literature, the generation of test inputs for smart

contracts mainly relies on fuzzing and mutation [27], [28],

[25], [29], [30], [31], [32], [33]. For example, Jiang et al. [34]

proposed to build seed inputs with the valid input domain

and the inputs frequently used by some data types in smart

contracts, to further fuzz inputs for testing ABI of smart con-

tracts. To detect reentrancy vulnerabilities in smart contracts,

ReGuard [35] performs fuzz testing for smart contracts by

iteratively generating random but diverse transactions. More

recently, Ma et al. [36] explored the feedback-directed muta-

tion and the parameter types of smart contract functions to fuzz

test inputs. By analyzing Solidity documents and issues about

smart contracts listed in GitHub and Stack Exchange, Liu et

al. [37] defined 15 mutation operators for test input generation.

Andersta et al. [38] designed ten classes of mutation operators

inspired by real faults in Solidity smart contracts to generate

new test inputs.

The state-of-the-art test case (i.e., input) generation for

smart contracts, however, � is highly dependent on the quality

of existing inputs, and � involves a high level of randomness

that could impact the effectiveness of generated test inputs. In

addition, � the test inputs provided in smart contract test suites

are, most of the time, impractical since they are set with simple

values or are randomly provided by developers. For example,

Figure 1 shows an example of a test for a smart contract

function excerpted from a Decentralized Application (DApp)

named SmartContractSlackDapp5 implementing a lottery via

Slack. In this example, the function placeBets() is tested

by checking whether the pot will be increased successfully

after two players place a bet, where both bets are set with

“minStake”. The value of minStake in the test case is

unfortunately rather unrealistic because of the arbitrary or

random setting. Such a test case does not cover the smaller

(and realistic) bet that would test the minimum limit or the

maximum value that would cause an overflow exception.

Finally, � in our preliminary study, we find that the majority

of smart contract open source projects do not include any test

cases to bootstrap further input generation.

Overall, there is still room for improvement in the current

testing practice of smart contracts. In particular, developers

genuinely need practical inputs for testing their smart con-

tracts. Our intuition is that we can learn from the real-world

transactions that are made on deployed platforms to better

tailor the input space for test case generation. Fortunately,

numerous smart contracts have been deployed on the de-

centralized blockchain platforms (e.g., Ethereum), of which

various actual transactions can provide abundant practical

and actionable inputs for executing smart contracts. Recent

work by Liu et al. [39] on identifying method naming bugs

has shown that similar tasks are independently implemented

and named similarly by different developers. Smart contract

5https://github.com/senacor/SmartContractSlackDapp September, 2020

// Function placeBets excerpted from SmartContractSlackDapp.
function placeBets() public payable sufficientFunds

gameOngoing {
pot += msg.value;
participants.push(msg.sender);
UserPutBets(msg.sender, pot);

}

// Testing code
var minStake = 1000000000000;
...
describe(’placeBets’, function() {

it("should increase pot upon placing a bet", function() {
return lot.placeBets({from:accounts[1], value: minStake
}).then(function() {
return lot.getPot.call();

}).then(function(actual) {
currPot += minStake;
assert.equal(actual, currPot, "bet could not be placed
correctly")});});

it("should increase pot again upon placing another bet",
function() {
return lot.placeBets({from:accounts[2], value: minStake
}).then(function() {
return lot.getPot.call();

}).then(function(actual) {
currPot += minStake;
assert.equal(actual, currPot, "bet could not be placed
correctly")});});});

Fig. 1. Example of a test case excerpted from a lottery DApp.

implementations should therefore share some similarities in

functionalities. Therefore, we build on the hypothesis that
the similar functions of smart contracts can be validated
with similar inputs. In this paper, we propose generating

practical test inputs for newly-written smart contracts by learn-

ing from the successfully-deployed and executed test cases of

smart contracts in the real world. We define a practical input
as a meaningful input for testing: it is a realistic one used
by users in practice, and is likely to offer better coverage
for discovering vulnerabilities.

Our work investigates the aforementioned hypothesis and

builds a learning approach to improve smart contract testing

with better inputs. To that end, we first build a dataset of

smart contract functions with practical inputs by collecting the

transaction records of smart contracts successfully deployed

in the real world. Each function is processed to obtain its

signature that is further used to yield an embedding (i.e., a

numerical vector) with the BERT [40] deep representation

learning technique. Given a new smart contract, all of its

functions will be processed in the same way to extract their

features, which will be used to match similar functions from

the collected dataset. The practical inputs of the matched

similar functions are considered to derive the test inputs for

the functions of the smart contract under test. Finally, we

implement a prototype tool named SMARTGIFT (Generating

practical Inputs For Testing Smart contracts) to generate

practical inputs for testing smart contracts. We also perform

a detailed evaluation about the effectiveness of our approach.

The experimental data is publicly available at: https://github.
com/chaoweilanmaohahaha/SmartGift

This paper makes the following contributions:

1) We conduct an investigation on the availability of test

cases in open-source smart contract projects. Our main

24

finding is that test cases are rare, which is a concern

about their validation before (immutable) deployment.

2) We present an approach to generate practical inputs for

testing smart contracts by learning from concrete inputs

of functions. These inputs are extracted from the trans-

action records of executed real-world smart contracts.

3) We implement a prototype tool, SMARTGIFT, which

is evaluated through three experiments that build on

66,528 transaction records, 145 smart contract functions,

and 154 vulnerable smart contracts. � The experimental

results show that the test inputs derived from other smart

contracts by SMARTGIFT are realistic to test ∼77%

functions in the smart contracts under test. � Test inputs

from SMARTGIFT are capable of uncovering issues in

smart contracts by covering relevant corner cases in the

programs. � Finally, SMARTGIFT was able to generate

inputs that led to the detection of 131 (out of 154)

benchmark vulnerabilities with ContractFuzzer [34].

II. BACKGROUND AND MOTIVATION

Before introducing how to generate test inputs, this section

presents some basic knowledge of smart contracts and a

preliminary study that motivates this work.

A. Smart Contract

The “Smart Contract” concept was popularized by Nick

Szabo [8]. In the industry, a smart contract is a self-executing

contract with the terms of the agreement between customer

and seller being directly written into pieces of code, without

the need for a central authority, legal system, or external en-

forcement mechanism. The code and the agreements contained

therein exist across a distributed, decentralized blockchain

network. The code controls the execution, and transactions

are trackable. Different from the scripts used in Bitcoin, the

programming language of smart contracts is Turing-completed,

which means users can achieve more complex goals and logics

such as crowdfunding, gaming, etc.

The procedure of developing smart contracts is different

from the development of programs with commonly used

programming languages (e.g., C, C++, Java, Python). After

writing and compiling a smart contract to the bytecode, it

will be deployed to the distributed, decentralized blockchain

network. Once a smart contract is deployed on the blockchain,

it cannot be modified anymore even though it has a fatal

vulnerability that could be exploited by attacking incidents

until the contract is destructed. The interaction between smart

contracts is proceeded with their transactions that carry the

function name and parameters in its data area. Solidity is

the most popular programming language for developing smart

contracts, its grammar is similar to Javascript.

Solidity was firstly proposed in 2014, and was developed

by the Ethereum project’s Solidity team for developing smart

contracts. As a new proposed programming language, Solidity

has been evolving with 78 versions from v0.1.2 to v0.7.3 in

recent 5 years. The fast update rate of Solidity could be one

of the reasons that its smart contracts could be unreliable. It

TABLE I
SMART CONTRACT REPOSITORIES W/O TEST CASE.

Repositories # Repositories without Test Case
218 123

TABLE II
A SURVEY ABOUT 11 CONTRACT PROJECTS.

Contract Name # Test Files LoC of Test Code
FBT 1 377
CT 3 233
MT 5 758
ENS 6 318

GMSW 6 597
ERCF 6 1,792
RNTS 6 1,079

VT 7 939
BNK 13 7,405
MR 15 3,190
HPN 53 32,819

thus needs to test smart contracts with effective and practical

test inputs to detect the potential defects before deploying.

B. Preliminary Study

As a preliminary study on investigating to what extent the

test cases are prevalent in smart contracts, we resort to the

open-source smart contract projects hosted on GitHub.

1) Test Cases in Real-World Smart Contracts: We first

assess how many real-world smart contracts are provided

with/without test suites for their validation. We collect smart

contracts from GitHub by searching with the keyword “smart
contract”6. We first select the top-500 Best Match repositories.

After checking these repositories manually, 218 repositories

are indeed related to smart contracts written with Solidity7.

Overall, as presented in Table I, we observe that ∼56.4%

(=123/218) smart contracts are not attached to any test case.

It indicates that, on the one hand, smart contracts should be

tested for their robustness. It is in line with the traditional

normal programs (e.g., C or Java programs), although they

are the new-emerged decentralized applications. On the other

hand, a lot of smart contract projects are not validated with

any test suite, which means they cannot find the potential

vulnerable issues that could make smart contracts unreliable.

We further closely look at the test cases provided in smart

contract projects. We select a benchmark dataset, built by

Wustholz et al. [27] for testing smart contracts, which includes

17 projects that are popular projects carefully picked from the

Ethereum community and Github. Six of them do not contain

any test cases, the remaining 11 projects shown in Table II are

considered in this investigation. The data presented in Table II,

and in particular the relatively high number of lines of code

to write tests, suggest that the testing of smart contracts is

indeed a non-trivial activity that requires developer manpower.

After checking the code of all the test cases in the 11 projects

manually, we conclude several observations presented below:

6The searching was conducted on November 30, 2020.
7Solidity is the most used language to specify smart contracts. We thus

restrict our search to Solidity.
8https://github.com/ConsenSys/Tokens

25

it (‘‘milestones tests‘‘, function (){
return ModumToken.deployed().then(function (instance) {
}).then(function (retVal) {

return utils.testMint(contract, accounts, 0, 1001,
1000)

}).then(function (retVal) {
return utils.testVote(contract, accounts, 900000,

1001, 1000, 0, true, false, 900000);
}).then(function (retVal) {

return utils.testVote(contract, accounts, 3000000,
1001, 1000, 0, true, false, 3900000);

}).then(function (retVal) {
return utils.testVote(contract, accounts, 3000000,

1001, 1000, 0, true, false, 6900000);
}).then(function (retVal) {

return utils.testVote(contract, accounts, 3000000,
1001, 1000, 0, true, false, 9900000);

}).then(function (retVal) {
return utils.testTokens(contract, accounts, 0, 9900000

+ 2001, 9900000, 1001);
}).catch((err) => {throw new Error(err) });

});

Fig. 2. Manually Specified Seeds in the Smart Contract8.

it(‘creation: should succeed in creating over 2ˆ256 - 1 (max
) tokens‘, async () => {

// 2ˆ256 - 1
const HST2 = await EIP20Abstraction.new(

‘11579208923731619542357098500868790785326998466564056
40564039457584007913129639935‘,

‘Simon Bucks‘, 1, ‘SBX‘, { from: accounts[0] });
const totalSupply = await HST2.totalSupply();
const match = totalSupply.equals(

‘1.157920893731619542357098500868790785326998466564056
40564039457584007913129639935e+77‘);

assert(match, ‘result is not correct‘);
});

Fig. 3. Boundary Case Checked in the Smart Contract9.

(1) All of these 11 projects have tests with manually-specified

inputs. Manual specification (exemplified in Figure 2)

requires that developers have a comprehensive understand-

ing and consideration for all potential cases, which will

spend high costs. The specification could be insufficient

(e.g., some practical cases are not considered) that would

limit the scale of testing and increase the testing costs.

(2) Checking the boundary conditions of the code logic is

considered by most smart contract developers. For exam-

ple, some test cases are designed to detect the numerical

overflow (shown in Figure 3). However, some developers

failed to consider such validation for their contracts.

(3) Developers prefer to test “normal” scenarios with various

test cases. Only few developers consider corner cases.

2) Similarity of Real-World Execution Inputs: Execution

inputs represent the parameter values of Smart contract trans-

actions executed in real-world use case scenarios. Since our

hypothesis is that we can leverage inputs from one smart

contract to drive the generation of inputs of others (which

have fewer test cases), we propose to investigate the actual

similarity of execution inputs of smart contracts in the wild.

To that end, we consider the transaction records from Ether-

scan10, the Ethereum Blockchain Explorer. Collection details

are provided in Section IV-B. We are indeed able to confirm

that a large proportion (∼60% cases, cf. Section V-A) of inputs

(excluding addresses) are the same across smart contracts.

9https://github.com/ScJa/ercfund
10https://etherscan.io/

To sum up, while test cases for validating smart contracts
are important in development, many development teams
fail to ensure test suites are available for their smart
contract programs. Additionally, the manual efforts for test
specifications generally yield inputs with limited potential
to inefficiently and ineffectively uncover potential issues in
smart contracts. We hypothesize that the generation of test
inputs for new-developed smart contracts could be benefitted
from past transactions in the real world. To mitigate the
challenge in building test suites for smart contracts, we pro-
pose to automatically generate practical (i.e., meaningful)
test inputs for smart contracts by learning from real-world
cases.

III. SMARTGIFT - GENERATING INPUTS FOR TESTING

SMART CONTRACTS

In this paper, we propose an approach to automatically gen-

erating practical test inputs for smart contracts by leveraging

a deep representation learning technique to learn the inputs

of similar executing functions from the transaction records of

real-world smart contracts.

SMARTGIFT consists of three basic steps: data pre-

processing, representation embedding, and test input genera-

tion, as presented in Figure 4. The functions in smart contracts

are processed by extracting their signatures that are further

tokenized to feed a representation embedding model (i.e.,

in this case BERT [40]). With the embedded representation,

SMARTGIFT is capable of selecting the similar functions by

calculating the similarities between the embedded signatures,

that will finally be used to generate the test inputs for the

functions of given smart contracts.

A. Data Pre-processing

This phase aims at preparing the raw data of the given

functions in smart contracts to be fed into the workflow of

SMARTGIFT. A function in a smart contract is represented

with a function name, parameter declaration(s) and executable

body code. Previous works (e.g., [39]) have shown that the

combination of the function name and the parameters can be

a good approximation of the summarized semantic description

of each function. In this paper, we consider the combina-

tion of the function name and the parameter types as the

signature of each function. For example, the function shown

in Figure 5 could be represented with a function signature

“updateTokenPrice, uint”, where the function name

is “updateTokenPrice” and the parameter type is “uint”.

Developers have different habits on the naming convention

of functions, which could impact the representation learning of

function signatures. To resolve this problem, we tokenize the

function signature with the camel case and underscore naming

conventions, that are widely used to split code identifiers

in the literature. Additionally, all tokens of signatures are

converted into lowercase letters. Concretely, when we meet

the camel-case like “updateTokenPrice” shown in Figure

5, we split it into a token sequence: [update, token,
price]. Finally, a function signature is thus represented as

26

Function
signatures

Fig. 4. The overview of SMARTGIFT.

function updateTokenPrice(uint _newTokenPrice) public
onlyOwner {

tokenPrice = _newTokenPrice;
return;

}

Fig. 5. An Example Function Description in Smart Contract.

a sequence of signature tokens which are suitable for the

deep representation learning described in Section III-B. For

example, we process the function signature in Figure 5 to be

[update, token, price, uint].

B. Representation Embedding

This step aims at producing a numerical representation of

a function signature. This numerical representation is further

leveraged to compute similarities between functions. We re-

mind that to yield practical inputs for a given function of a

smart contract, the overall idea is to ”copy” the inputs of real-

world similar functions. When the deep representation learning

is applied to the training data, it produces embedding models

that have learned to embed all tokens of the training data

into numerical representation vectors. These vectors are also

referred to as embeddings [41].

In the scenario of this paper, we consider an embedding

model, BERT [40], that initially targets natural language data

in terms of the learning algorithm and training data. BERT

requires large datasets for training the embedding model. As

it is now custom in the literature, we instead leverage a

pre-trained 24-layer BERT model, which was trained on a

Wikipedia corpus, to embed the tokenized function signatures.

Token sequences of function signatures are embedded into vec-

tors with BERT since token sequences of function signatures

resemble descriptive sentences.

C. Test Input Generation

With the embedded representations of function signatures,

SMARTGIFT can match the similar functions for the given

smart contract by calculating the cosine similarities of their

numeric vectors. The practical inputs of the similar functions

will be considered as the test inputs for the function of the

smart contract under test.

In the preliminary study, we observe that some functions

can have similar identifiers (i.e., same function name), but

different parameter data type names for the same concept.

This inconsistency could impact the effectiveness of matching

adequate inputs for a contract under test. To resolve such a

problem, we propose to classify the results sorted by similarity

Algorithm 1: Classifying the sorted functions into

three categories.
Input : Fs, a set of similar functions sorted by similarities.
Input : f , the given function.
Output : F1, a set of similar functions in the first category.
Output : F2, a set of similar functions in the second category.
Output : F3, a set of similar functions in the third category.

1 Function classify (Fs,f)
2 foreach fs ∈ Fs do
3 if sameDataTypes (fs.argTypes, f .argTypes) then
4 F1.add(fs);

5 else if compatibleDataTypes (fs.argTypes, f .argTypes) then
6 F2.add(fs);

7 else
8 F3.add(fs);

9 Function sameDataTypes (fs.argTypes, f .argTypes)
10 foreach argType ∈ f .argTypes do
11 if fs.argTypes.contains(argType) then
12 fs.argTypes.remove(argType);

13 else
14 return false;

15 return true;

16 Function compatibleDataTypes (fs.argTypes, f .argTypes))
17 foreach argType1 ∈ f .argTypes do
18 if fs.argTypes.contains(argType1) then
19 fs.argTypes.remove(argType1);

20 else
21 isCompatible ← false;
22 foreach argType2 ∈ fs.argTypes do
23 if isCompatible (argType1, artType2) then
24 fs.argTypes.remove(argType2);
25 isCompatible ← true;
26 break;

27 if !isCompatible then
28 return false;

29 return true;

into three categories according to the data types of parameters,

which is detailed in Algorithm 1:

• C1: The first category strictly constrains that both the

parameters of the given function and the parameters of

its similar functions must have the same data types. As

presented lines 9-15 in Algorithm 1, when the data types

of all parameters for the given function are contained in

the data types of parameters of the similar function, such

a similar function will be classified into this category.

Function name and parameter data types in the function

signatures are named by developers based on their coding

style, knowledge and understanding [39]. It is inevitable

for developers to use different data type names for the

same concept, which could noise the representation learn-

27

[
{
func: {
function_name: transfer,
parameters: [{name: to, type: address},{name: value, type
: uint256}]

}
C1-func_inputs:[{
similar_func: {
function_name: transferTo,
parameters: [{name: to, type: address}, {name: value,
type: uint256}]

},
inputs:[{0x3d57f6f449a35ae49ad11cc2643a047b73a548b4,
3244999999999999737856}, ...]

}]
}

]

Fig. 6. Example of generated C1 inputs for testing a function.

[
{
func: {
function_name: setExchangePrice,
parameters: [{name: price, type: int256}]

}
C1-func_inputs:[],
C2-func_inputs:[{
similar_func: {
function_name: setTokenPrice,
parameters: [{name: _tokenPrice, type: uint256}]

},
inputs:[{3233454417711841}, ...]

}]
}

]

Fig. 7. Example of generated C2 inputs for testing a function.

ing and similarity calculation. Therefore, this category

aims at purifying the similar functions suggested by

similarities. Figure 6 presents an example of generated

inputs in C1 category for testing the function transfer.

• C2: This category relaxes restrictions of parameter data

types. In our preliminary study, we observe that there are

upward-compatible data types in Solidity smart contracts,

such as from uint128 to uint256. In some cases, the

values for uint256-type parameters can be downward-

compatible to the uint128-type parameters when the

values do not overflow the uint128. And in other

cases data can be used between uint and int at the

same time. However, the first category cannot cover such

specific situations. To resolve this limitation, we propose

this category with relaxed restrictions on data types.

Figure 7 shows an example of generating C2 test inputs.

• C3: The third category considers the remaining similar

functions that have not been classified in C1 or C2.

For some specific functions, the previous two categories

(i.e., C1 and C2) cannot seek out any similar functions

for them. Thus, SMARTGIFT relies on the similarities

to recommend functions for them. Figure 8 presents an

example of generated inputs in C3 category for testing

the function move.

In practice, to generate the test inputs of a given smart

contract under test, we consider the practical inputs (i.e.,

execution inputs) of the functions present in Category C1. If

the number of inputs generated from functions in C1 is not

sufficient, we consider C2 and finally C3. In this study, we

[
{
func: {
function_name: move,
inputs: [{name: signer, type: address},{name: amount,
type: uint128}]

}
C1-function_inputs: []
C2-function_inputs: []
C3-function_inputs: [

similar_func: {
function_name: transfer,
parameters: [{name: to, type: address}, {name: value,

type: uint256}]
},
inputs:[{0x4f1b06b5f0bddce0d5556dcd8-16b747a6a7de28,
3000000000000000000}, ...]
}]

]
}

]

Fig. 8. Example of generated C3 inputs for testing a function.

consider the practical inputs of the top-k most similar functions

as the recommended test inputs for a given function of a smart

contract.

IV. EXPERIMENTAL SETTING

Empirical evaluation of SMARTGIFT is performed through

several experiments. Before describing the experimental re-

sults, we present the research questions, the data collection,

and the overall experimental setup.

A. Research Questions

Our investigation into the performance of generating testing

inputs for smart contract functions with SMARTGIFT seeks to

answer the following research questions (RQs):

• RQ1. Can SMARTGIFT effectively generate practical
inputs for executing new smart contracts by learning from
the transaction records of smart contracts deployed on
Ethereum? We mainly aim to assess to what extent the

hypothesis that relevant inputs for the execution of smart

contract functions can be found from their similar coun-

terparts is valid. This RQ allows implicitly to assess the

relevance of the proposed embedded function signatures.

• RQ2. To what extent inputs generated by SMARTGIFT

can be executed successfully? With this RQ we specif-

ically assess the relevance of executing the target smart

contracts with the generated inputs.

• RQ3. Can the inputs generated by SMARTGIFT help
effectively discover vulnerabilities in smart contracts?
Testing is a widely adopted means to discover vulner-

abilities, and various approaches have been proposed in

the literature to generate test inputs (e.g., fuzzing and

mutation). Therefore, we investigate whether the state

of the art in vulnerability detection is improved when

leveraging the inputs generated by SMARTGIFT.

B. Data Collection

To answer the aforementioned research questions, we con-

sider inputs for executing smart contracts from the trans-

action records of smart contracts deployed on Ethereum, a

global, open-source platform for decentralized applications.

28

Etherscan allows to explore and search the smart contracts

transactions, addresses, tokens, prices and other activities

taking place on Ethereum. With the support of its open API

(i.e., eth_getBlockByNumber), we can collect the block

information from Block #10132253 and a total of 5,000 blocks

are collected. We then randomly select 1,000 blocks to extract

the related transaction records. Finally, 89,612 transaction

records are collected. Such transaction records are presented

as binary input data. To identify the function information (i.e.,

function signature) and the input data for testing at the source

code level for each transaction, we leverage the ethereum input

data decoder11 to decode each transaction record. Eventually,

66,528 transactions are successfully resolved with their func-

tion signatures and practical inputs.

C. Experimental Setup

To evaluate the performance of our approach, we implement

a learning pipeline into a prototype tool also named SMART-

GIFT as the approach. In the phase of representation embed-

ding, we use BERT [40] as the deep representation learning

model to embed function signatures and generate the related

representation numeric vectors. BERT is a deep representation

learning model for languages and has been widely used in the

domain of software engineering. For example, Zhou et al. [42]

applied the BERT model to extract semantic features from

code identifiers of programs to perform code recommendation.

Yu et al. [43] leveraged BERT on binary code to identify

similar binaries. Tian et al. [41] used the BERT model to

the semantic similarity between the buggy code and fixed

code to identify the correctness of patches generated program

repair tools. In the experimental scenario of SMARTGIFT,

the bert multi cased L-12 H-768 A-1212 version of BERT is

used to embed functions signatures for smart contracts. All

our experiments are carried out on a server machine of Ubuntu

18.04 operating system with 32GB memory and 4 cores(Intel

i5-9400 CPU, 2.90 GHz).

V. EXPERIMENTAL RESULTS

We now present the experiments that we designed to answer

each research question in this study.

A. RQ1: Generation of Practical Inputs with SMARTGIFT

We investigate to what extent practical inputs can be gener-

ated for smart contracts by exploring similar functions with

SMARTGIFT. To this end, the collected 66,528 transaction

records are randomly divided into two groups: a learning

dataset (90%, 59 876 cases) of SMARTGIFT and a test dataset

(10%, 6 652 cases). For each smart contract sc in the test set,

an input inputr generated by SMARTGIFT is considered to

be a correct input when it is identical to the original input of

sc (excluding its address type). The address is the transaction

object of the current smart contract, which can be an account

or another smart contract. When testing a smart contract before

it is put in production, the address can be a random value

11https://github.com/miguelmota/ethereum-input-data-decoder
12https://tfhub.dev/google/bert multi cased L-12 H-768 A-12/

TABLE III
STATISTICAL RESULTS OF GENERATING PRACTICAL INPUTS.

Category Top-1 Top-5 Top-10
cases Ratio # cases Ratio # cases Ratio

C1 3,828 57.5% 3,837 57.7% 3,848 57.8%
C2 69 1.0% 90 1.4% 92 1.4%
C3 0 0 39 0.6% 39 0.6%

since it is not an important parameter for analyzing the actual

behaviour of the smart contract.

Table III presents the statistical results of our experiments.

Overall, the inputs of most smart contract functions (∼57.5%)

can be successfully generated by SMARTGIFT when restricting

the search space on the first category with the top-1 most

similar function. When increasing the search space to top-

5 and top-10 most similar functions, only a few more inputs

can be successfully recommended (very low increasing margin

points, i.e, around 0.1%). If the first category does not contain

enough inputs (i.e., 10 inputs in this work) for the smart con-

tracts in the test set, the second and third categories can help

generate inputs for some cases. However, once again enlarging

the search space to top-5 and top-10 only improves marginally

the performance of generating practical inputs. Note that, our

search for inputs prioritizes the C1-similar functions over

C2/C3-similar ones. If a function can be matched with C1-

similar functions, C2/C3-similar functions will be discarded.

Therefore, our evaluation does not always assess the inputs of

C2/C3-similar functions.

[RQ1]: SMARTGIFT can effectively generate practical in-
puts for real-world smart contracts functions by learning
from the transaction records of real-world smart contracts
with strict constraints on parameter data types of functions.
However, enlarging the search space with similarities (with
Top-5 & Top-10) does not substantially improve the perfor-
mance of generating practical inputs. Interestingly, relaxing
the constraints on parameter data types (with C2 & C3)
has the potential to complement the input generation with
the first category.

B. RQ2: Test Relevance of SMARTGIFT-generated Inputs

Automatically generating test inputs aims at boosting the

validation of the program by reducing human intervention. In

this section, we further assess to what extent inputs generated

by SMARTGIFT are indeed relevant to enable the successful

execution of the target smart contracts. To this end, we

leverage ExecuWatch [44], an open-source tool that records

the execution details (including the unsuccessfully executed

results) of smart contracts by executing test cases.

ExecuWatch provides a default test input generation with

fuzzing, which allows to compare the relevance (for successful

execution of test cases) of the test inputs generated by SMART-

GIFT vs the test inputs generated by the fuzzing method. In

this experimental scenario, all of the collected 66,528 real-

world smart contract transactions are used as the training data

for input generation with SMARTGIFT. As the test set, we

use the smart contracts proposed in the ExecuWatch paper

29

112 113 112

87

Fig. 9. Comparison on the successfully executed functions, where “SG” stands
for SMARTGIFT (the same as Figure 11).

(i.e., 100 smart contracts collected from real world) to avoid

potential bias from the inconsistent test dataset. Note that,

for assessing the test inputs generated by SMARTGIFT, the

original fuzzing process in ExecuWatch will be disabled. At

the beginning of this experiment, we note that ExecuWatch
can successfully test 60 smart contracts accounting for 188

functions. Moreover, 43 functions do not have any input

parameters. Eventually, 145 (=188-43) functions are selected

as the subjects of this experiment. In this experiment, each of

the 145 functions is tested 10 times (i.e., 10 groups of testing

inputs).

As presented before, SMARTGIFT generates test inputs by

considering the similarities between functions. In this scenario,

like in RQ1, we also consider the top-1, top-5 and top-10

most similar functions to generate test inputs, respectively. For

each of the top-1, top-5 and top-10 cases, ten test inputs are

randomly selected to be fed to ExecuWatch. Note that, we

prioritize the similar functions in the first category (i.e., C1)

over the other two categories. If the test inputs in the first

category are less than 10, SMARTGIFT will generate the test

inputs from the second and third categories.

Figure 9 illustrates the statistical results about the functions

that are successfully tested with the inputs generated by

SMARTGIFT and fuzzing approach, respectively. Overall, the

test inputs generated by SMARTGIFT can be used to success-

fully test 77.2% (=112/145), 77.9% (=113/145) and 77.2%

(=112/145) functions in the top-1, top-5 and top-10 cases,

respectively, which achieves a higher successful ratio with ∼17

percentage points than the fuzzing approach. Note that, we aim

to assess whether the test inputs generated by SMARTGIFT

are the expected inputs for the test set or not. Thus, we only

consider the successfully executed test inputs as the “relevant”

test inputs to assess the relevance of SMARTGIFT-generated

inputs.

We further investigate the complementary situation of func-

tions that are successfully tested by SMARTGIFT and the

fuzzing approach, of which results are presented in Figure 10.

The three cases (i.e., top-1, top-5 and top-10) of SMARTGIFT

have 110 (=36 + 74) identical functions. Only one or two

functions are complementary to each other. Comparing against

the fuzzing approach, 10 functions can be tested with fuzzed

test inputs but cannot be tested with SMARTGIFT’s results. On

the other hand, over 37 (= 36 + 1) functions cannot be tested

with fuzzed test inputs but can be tested with SMARTGIFT’s

results. SMARTGIFT can successfully complement fuzz testing

(and vice-versa) in the generation of relevant test inputs).

Fig. 10. Complementary situation of the successfully executed functions.

49.7%
39.2% 40.9%

45.8%

0.0%

20.0%

40.0%

60.0%

SG_Top-1 SG_Top-5 SG_Top-10 Fuzzing

721

569
593 675

Fig. 11. Comparison on the successfully executed test inputs.

Each of the 145 functions is tested with ten inputs, thus

1,450 trials are proceeded in each of the four cases (i.e.,

SG Top-1, SG Top-5, SG Top-10, and Fuzzing). We inves-

tigate to what extent these trials are successful tests. The

statistical results are illustrated in Figure 11. Overall, the

succeeded ratios of the four cases are less than 50%. In the

top-1 case of SMARTGIFT, 712 tests are successfully executed,

which outperforms the fuzzing approach as well as its top-5

and top-10 cases. It indicates that extending the search space of

the generated test inputs by considering less similar functions

does not effectively improve the performance on finding more

relevant test inputs but can reduce such performance.

[RQ2]: SMARTGIFT can generate relevant inputs for testing
real-world smart contracts, which can be a complementary
resolution for the fuzzing approach.

C. RQ3: Detecting Vulnerabilities with SMARTGIFT-
generated Inputs

In the domain of smart contracts, testing has already been

leveraged to uncover vulnerabilities. In this experiment, we

assess the possibility of detecting vulnerabilities in smart

contracts using the practical inputs generated by SMART-

GIFT. To this end, we feed the practical inputs generated

by SMARTGIFT to a state-of-the-art vulnerability detector,

ContractFuzzer [34], which, by default, relies on a fuzzing

method to generate test inputs. In this scenario, SMARTGIFT

generates test inputs only relying on the top-1 most similar

functions. Note that, when evaluating SMARTGIFT, we disable

the fuzzing-based test input generation of ContractFuzzer.

Experiments target a benchmark released with ContractFuzzer

and which includes a dataset of 459 vulnerable smart contracts.

We are able to successfully deploy 154 of those smart contracts

and will thus rely on them for this experiment. The remaining

305 vulnerable contracts in the dataset of ContractFuzzer are

not provided with the required configuration files, we failed

to deploy them.

As shown in Table IV, when ContractFuzzer is fed with

test inputs generated by Fuzzing, 136 vulnerabilities can

be detected. When ContractFuzzer is fed with test inputs

30

TABLE IV
VULNERABILITIES DETECTED BY CONTRACTFUZZER WITH

FUZZING/SMARTGIFT.

Vulnerability Type # of Vulnerabilities Fuzzing SMARTGIFT
Time Dependency 77 74 71
Number Dependency 25 22 19
Gasless Send 16 13 13
Exception Disorder 25 19 21
Delegate Dangerous 5 5 3
Reentrancy 6 3 4
Total 154 136 131

ContractFuzzer + Fuzzing ContractFuzzer + SmartGift

9 4127

Fig. 12. Comparison between ContractFuzzer with Fuzzing and SMARTGIFT.

generated by SMARTGIFT, 131 vulnerabilities can be detected,

and 4 of them (shown in Figure 12) cannot be detected with

the test inputs generated with Fuzzing. These results indicate

that the test inputs generated by SMARTGIFT can be used to

detect the vulnerabilities in smart contracts, and SMARTGIFT

can be complementary for the state-of-the-art fuzzing approach

to generate test inputs for detecting vulnerabilities in smart

contracts.

For the fuzzing approach, it randomly generates the test

inputs from a big search space. For example, when the fuzzing

approach generates inputs for the integer parameters, the

smallest search space is 256 (i.e., 28 for uint8), while the

search space is sharply increased to 2256 for uint256. With

SMARTGIFT, the experimental results show that the smallest

search space is only one and the biggest one is 45,302 (while

the second biggest search space is just 926). It indicates that

SMARTGIFT can sharply reduce the search space for testing

smart contracts to improve efficiency. However, SMARTGIFT

relies on the practical transactions of real-world smart con-

tracts, which comes to a limitation of generating a few or

zero test input for the specific smart contracts. It further leads

to the Contract Fuzzer with SMARTGIFT failing to find the

vulnerabilities in those contracts. For example, SMARTGIFT

failed to generate test inputs for contracts DSProxy, Videos,

CryptoPoosToken, Videos, and HashToken. It is the main rea-

son why 9 vulnerabilities can be detected by ContractFuzzer

with Fuzzing but cannot be detected with SMARTGIFT. To

address this limitation, the transaction records from more kinds

of smart contracts should be collected as the learning data for

SMARTGIFT, which is considered as a part of our future work.

[RQ3]: The practical test inputs generated by SMARTGIFT

can be used to detect the vulnerabilities in smart contracts,
and present the potential of detecting the vulnerabilities that
cannot be detected by the fuzzing approach. SMARTGIFT

can be a complementary resolution for the fuzzing approach
to detecting vulnerabilities in smart contracts.

D. Discovering Potential Issues in Smart Contracts

In the RQ2 experiment, we observed that the success ratios

of testing some functions in smart contracts are much lower

contract Distrubution {
...
function getHolder(uint _number) external view returns(
address) {
return holders[_number];

}
...

}

Fig. 13. One function case with low successful rate.

than others. Figure 13 shows such function getHolder that

is executed with the inputs generated by SMARTGIFT for a

low successful ratio.

After looking at the code, we note that the function

getHolder is to get one element from the array holders
that saves several account addresses. However, the developer

does not provide any conditional assert to check the value

range of the parameter _number. If the value of _number is

larger than the real length of the array holders, the execution

of the transaction will fail because of the overflow exception. It

is difficult to guarantee that the practical inputs will satisfy the

length of the array holders. To address the potential issues

and improve the robustness of the smart contract, developers

should add the checking for the range of the parameter value.

This is not uncovered by the original test inputs of the contract,

it implies that SMARTGIFT could be capable of generating the

testing inputs for uncovering the issues of corner cases.

VI. THREATS TO VALIDITY

The external threats to validity include the scale of the

dataset collected from the Etherscan. In this paper, we only

collect 66,528 transaction records because of our limitations

in the crawling process. We consider enlarging the dataset as

a part of our future work. The collected transaction records

are decoded into the original values by the ethereum-input-
data-decoder. This decoder is challenged in decoding some

input types like bytes and array, which could generate incon-

sistent data values for parameters and threaten the practical

input generation with SMARTGIFT. We rely on the function

signatures to find similar functions for the given functions.

However, some functions could be named with identifiers that

are inconsistent with their concrete implementation (cf. related

work on method naming inconsistencies by Liu et al. [39]).

To alleviate this threat, it would be necessary to check the

consistency between the function names and implementation

for collecting a more reliable dataset.

The internal threats to validity stem from the deep represen-

tation learning of function signatures: SMARTGIFT relies on

pre-trained BERT model, which is actually better adapted to

natural language, rather than code. To address this limitation,

we are planning to re-train a deep representation learning

model for the similarity of functions in smart contracts, as

well as consider the context of the smart contracts and the

concrete implementation of each function. Two functions have

different names but their bodies may be similar at the AST

level, such similar functions are not covered by our method,

So we plan for future work to consider semantic information

from function implementations (e.g., AST) to further improve

31

the selection of adequate test inputs. The internal threats to

validity could include the practical validation of generated test

cases. To solve this threat, it would be more effective to apply

questionnaire surveys or interviews with professional smart

contract developers, we plan it as the future work to prove the

practicability of SMARTGIFT.

VII. RELATED WORK

Testing for Smart Contracts. Smart contracts are computer

programs written in a domain-specific language (such as Solid-

ity). These programs face the same challenge as the traditional

software programs with issues (i.e., bugs and vulnerabilities)

that should be uncovered and fixed before they are deployed.

Vulnerabilities in smart contracts are further critical since

they are immutable once deployed. To improve the robustness

of smart contract programs, various testing approaches [25],

[29], [30], [31], [33]. have been proposed in the literature for

detecting the vulnerabilities in smart contracts.

Jiang et al. [34] proposed to build seed inputs with the valid

input domain and the inputs frequently used by some types

in smart contracts, to fuzz inputs for testing smart contracts.

ReGuard [35] leveraged the fuzz testing for smart contracts by

iteratively generating random but diverse transactions to detect

reentrancy vulnerabilities in smart contracts. Ma et al. [36]

combined the feedback-directed mutation with the parameter

data types of functions to fuzz test inputs for smart contracts.

Honig et al. [28] proposed a mutation testing framework for

the Solidity contracts deployed on the Ethereum blockchain.

Harvey [27] and sFuzz [32] are proposed by leveraging the

fuzzing approach to discover the vulnerabilities for smart con-

tracts as well. According to analyzing the Solidity documents

and issues about smart contracts listed in GitHub and Stack

Exchange, Liu et al. [37] defined 15 novel mutation operators

for generating inputs to test smart contracts. Inspiring from

the real faults in Solidity smart contracts, Andersta et al. [38]

designed 10 mutation operators for generating test inputs.

The state-of-the-art test case generation for smart contracts,

however, is highly dependent on the quality of existing in-

puts, of which generated test inputs are associated with high

randomness, that could impact the effectiveness of generated

inputs. In addition, the test inputs provided in test suites of

smart contracts are always impractical, which are set with

simple values or randomly provided by developers. Different

from the existing research work, according to mining the

similarities between functions in smart contracts, SMARTGIFT

is to generate the practical test inputs by learning from

the actionable inputs of functions that are encoded in the

transaction records for executing real-world smart contracts.

Deep Representation Learning for Programs. In recent

years, deep representation learning techniques have been

widely studied in the domain of program code. Liu et al. [45]

leveraged the convolutional neural networks to address the pat-

tern mining task. Soto and Le Goues [46] built a probabilistic

model to predict bug fixes for program repair. Hoang et al. [47]

proposed a hierarchical deep learning- based method with fea-

tures extracted from both commit messages and commit code

to identify stable Linux patches. Tian et al. [41] leverage the

representation learning techniques to evaluate the correctness

of patches for buggy programs. Liu et al. [39] and Allamanis

et al. [48], [49] explored the consistent relationship between

the identifiers and the related concrete code implementation.

Godefroid et al. [50] used a learned input probability

distribution to intelligently guide where to fuzz inputs. Zong

et al. [51] proposed a deep-learning-based approach to predict

the reachability of inputs and filter out the unreachable ones to

boost the performance of fuzzing. Wang et al. [52] leveraged

the knowledge in the vast amount of existing samples to learn a

probabilistic context-sensitive grammar to generate seed inputs

for fuzz testing. Our work aims at leveraging the representation

learning technique to embed function signatures of smart

contracts to contribute to the generation of the practical test

inputs.

VIII. CONCLUSION

This paper contributes to the community effort on develop-

ing approaches and tool support for efficiently testing smart

contracts. Our focus has been to improve the generation of

inputs that would be most suitable for uncovering vulnera-

bilities. We propose to that end the SMARTGIFT approach,

which learns from transaction records of real-world smart

contracts in order to generate practical test inputs for new

smart contracts under test. Our prototype implementation

leverages the BERT pre-trained model to embed the signatures

of functions allowing an efficient search of similar functions

from a large dataset of functions implemented in real-world

deployed smart contracts. With 66,528 collected transaction

records, SMARTGIFT was able to generate relevant test inputs

for ∼77% smart contract functions, outperforming a baseline

fuzzing approach. We further show that the inputs gener-

ated by SMARTGIFT are complementary to those obtained

through fuzzing. We further assess the potential of detecting

vulnerabilities in smart contracts with the test inputs generated

by SMARTGIFT. By feeding ContractFuzzer, a state of the

art tool, with test inputs generated by SMARTGIFT, 131 of

154 smart contract vulnerabilities from a benchmark could

be detected correctly. These experimental results show that

the practical inputs generated by SMARTGIFT are meaningful

to test smart contracts and present the potential of detecting

vulnerabilities in smart contracts.

ACKNOWLEDGEMENTS

This research was supported by the National Key R&D

Program of China (No. 2020YFB1005500 and 2020AAA010

7704), the Open Project Program of the State Key Laboratory

of Mathematical Engineering and Advanced Computing (No.

2020A06), and the Open Project Program of the Key Labora-

tory of Safety-Critical Software (NUAA), Ministry of Industry

and Information Technology (No. XCA20026), as well as the

funding from the European Research Council (ERC) under

the European Union’s Horizon 2020 research and innovation

programme (grant agreement No 949014).

32

REFERENCES

[1] M. Swan, Blockchain: Blueprint for a new economy. O’Reilly Media,
Inc., 2015.

[2] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[3] A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocur-
rencies. O’Reilly Media, Inc., 2014.

[4] A. M. Antonopoulos and G. Wood, Mastering ethereum: building smart
contracts and dapps. O’reilly Media, 2018.

[5] J. Reed, “Litecoin: An introduction to litecoin cryptocurrency and
litecoin mining,” 2017.

[6] M. Alharby and A. van Moorsel, “Blockchain-based smart contracts: A
systematic mapping study,” CoRR, vol. abs/1710.06372, 2017. [Online].
Available: http://arxiv.org/abs/1710.06372

[7] W. Zou, D. Lo, P. S. Kochhar, X.-B. D. Le, X. Xia, Y. Feng, Z. Chen,
and B. Xu, “Smart contract development: Challenges and opportunities,”
IEEE Transactions on Software Engineering, 2019.

[8] N. Szabo, “Smart Contracts,” https://www.fon.hum.uva.nl/rob/Courses/
InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.
best.vwh.net/smart.contracts.html, 1994.

[9] P. Hegedus, “Towards analyzing the complexity landscape of solidity
based ethereum smart contracts,” in Proceedings of the IEEE/ACM 1st
International Workshop on Emerging Trends in Software Engineering
for Blockchain. IEEE, 2018, pp. 35–39.

[10] M. Bartoletti and L. Pompianu, “An empirical analysis of smart con-
tracts: platforms, applications, and design patterns,” in Proceedings
of the International conference on financial cryptography and data
security. Springer, 2017, pp. 494–509.

[11] M. del Castillo, “The DAO attacked: Code issue leads to $60
million ether theft,” 2016. [Online]. Available: https://www.coindesk.
com/dao-attacked-code-issue-leads-60-million-ether-theft

[12] R.-R. O’Leary, “Parity team publishes postmortem on $160 million
ether freeze,” 2017. [Online]. Available: https://www.coindesk.com/
parity-team-publishes-postmortem-160-million-ether-freeze

[13] L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 254–269.
[Online]. Available: https://doi.org/10.1145/2976749.2978309

[14] H. Liu, C. Liu, W. Zhao, Y. Jiang, and J. Sun, “S-gram: towards
semantic-aware security auditing for ethereum smart contracts,” in
Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. ACM, 2018, pp. 814–819. [Online].
Available: https://doi.org/10.1145/3238147.3240728

[15] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer
bugs in ethereum smart contracts,” in Proceedings of the 34th
Annual Computer Security Applications Conference. ACM, 2018, pp.
664–676. [Online]. Available: https://doi.org/10.1145/3274694.3274737

[16] E. Albert, P. Gordillo, B. Livshits, A. Rubio, and I. Sergey,
“EthIR: A framework for high-level analysis of ethereum bytecode,”
in Proceedings of the 16th International Symposium on Automated
Technology for Verification and Analysis, ser. Lecture Notes in
Computer Science, vol. 11138. Springer, 2018, pp. 513–520. [Online].
Available: https://doi.org/10.1007/978-3-030-01090-4\ 30

[17] P. Tsankov, A. M. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and
M. T. Vechev, “Securify: Practical security analysis of smart contracts,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2018, pp. 67–82. [Online].
Available: https://doi.org/10.1145/3243734.3243780

[18] E. Albert, J. Correas, P. Gordillo, G. Román-Dı́ez, and A. Rubio,
“SAFEVM: a safety verifier for ethereum smart contracts,” in
Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis. ACM, 2019, pp. 386–389. [Online].
Available: https://doi.org/10.1145/3293882.3338999

[19] C. F. Torres, M. Steichen, and R. State, “The art of the scam:
Demystifying honeypots in ethereum smart contracts,” in Proceedings
of the 28th USENIX Security Symposium. USENIX Association, 2019,
pp. 1591–1607. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/ferreira

[20] Z. Gao, L. Jiang, X. Xia, D. Lo, and J. C. Grundy, “Checking
smart contracts with structural code embedding,” IEEE Transactions
on Software Engineering, pp. 1–1, 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/8979435

[21] J. Frank, C. Aschermann, and T. Holz, “ETHBMC: A bounded
model checker for smart contracts,” in Proceedings of thee 29th
USENIX Security Symposium. USENIX Association, 2020, pp.
2757–2774. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/frank

[22] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. T. Vechev, “VerX: Safety verification of smart contracts,”
in Proceedings of the 41st IEEE Symposium on Security and
Privacy. IEEE, 2020, pp. 1661–1677. [Online]. Available: https:
//doi.org/10.1109/SP40000.2020.00024

[23] S. So, M. Lee, J. Park, H. Lee, and H. Oh, “VERISMART:
A highly precise safety verifier for ethereum smart contracts,”
in Proceedings of the 41st IEEE Symposium on Security and
Privacy. IEEE, 2020, pp. 1678–1694. [Online]. Available: https:
//doi.org/10.1109/SP40000.2020.00032

[24] P. Zhang, F. Xiao, and X. Luo, “Soliditycheck : Quickly detecting
smart contract problems through regular expressions,” CoRR, vol.
abs/1911.09425, 2019. [Online]. Available: http://arxiv.org/abs/1911.
09425

[25] P. Zhang, J. Yu, and S. Ji, “ADF-GA: data flow criterion based test case
generation for ethereum smart contracts,” CoRR, vol. abs/2003.00257,
2020. [Online]. Available: https://arxiv.org/abs/2003.00257

[26] Y. Zhang, S. Ma, J. Li, K. Li, S. Nepal, and D. Gu, “SMARTSHIELD:
automatic smart contract protection made easy,” in Proceedings of the
27th IEEE International Conference on Software Analysis, Evolution
and Reengineering. IEEE, 2020, pp. 23–34. [Online]. Available:
https://doi.org/10.1109/SANER48275.2020.9054825

[27] V. Wüstholz and M. Christakis, “Harvey: A greybox fuzzer for smart
contracts,” CoRR, vol. abs/1905.06944, 2019. [Online]. Available:
http://arxiv.org/abs/1905.06944

[28] J. J. Honig, M. H. Everts, and M. Huisman, “Practical mutation
testing for smart contracts,” in Proceedings of the 2019 International
Workshops on Data Privacy Management, Cryptocurrencies and
Blockchain Technology, ser. Lecture Notes in Computer Science,
vol. 11737. Springer, 2019, pp. 289–303. [Online]. Available:
https://doi.org/10.1007/978-3-030-31500-9\ 19

[29] Y. Huang, B. Jiang, and W. K. Chan, “EOSFuzze: Fuzzing EOSIO
smart contracts for vulnerability detection,” CoRR, vol. abs/2007.14903,
2020. [Online]. Available: https://arxiv.org/abs/2007.14903

[30] Q. Zhang, Y. Wang, J. Li, and S. Ma, “EthPloit: From fuzzing to
efficient exploit generation against smart contracts,” in Proceedings
of the 27th IEEE International Conference on Software Analysis,
Evolution and Reengineering. IEEE, 2020, pp. 116–126. [Online].
Available: https://doi.org/10.1109/SANER48275.2020.9054822

[31] P. H. Hartel and R. Schumi, “Mutation testing of smart contracts
at scale,” in Proceedings of the 14th International Conference
on Tests and Proofs, ser. Lecture Notes in Computer Science,
vol. 12165. Springer, 2020, pp. 23–42. [Online]. Available: https:
//doi.org/10.1007/978-3-030-50995-8\ 2

[32] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sFuzz:
an efficient adaptive fuzzer for solidity smart contracts,” CoRR, vol.
abs/2004.08563, 2020. [Online]. Available: https://arxiv.org/abs/2004.
08563

[33] I. Ashraf, X. Ma, B. Jiang, and W. K. Chan, “GasFuzzer: Fuzzing
ethereum smart contract binaries to expose gas-oriented exception
security vulnerabilities,” IEEE Access, vol. 8, pp. 99 552–99 564, 2020.
[Online]. Available: https://doi.org/10.1109/ACCESS.2020.2995183

[34] B. Jiang, Y. Liu, and W. K. Chan, “ContractFuzzer: fuzzing
smart contracts for vulnerability detection,” in Proceedings of the
33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 2018, pp. 259–269. [Online]. Available: https:
//doi.org/10.1145/3238147.3238177

[35] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe,
“ReGuard: finding reentrancy bugs in smart contracts,” in Proceedings
of the 40th International Conference on Software Engineering:
Companion Proceeedings. ACM, 2018, pp. 65–68. [Online]. Available:
https://doi.org/10.1145/3183440.3183495

[36] F. Ma, Y. Fu, M. Ren, W. Sun, Z. Liu, Y. Jiang, J. Sun, and J. Sun,
“GasFuzz: Generating high gas consumption inputs to avoid out-of-gas
vulnerability,” CoRR, vol. abs/1910.02945, 2019. [Online]. Available:
http://arxiv.org/abs/1910.02945

[37] Z. Li, H. Wu, J. Xu, X. Wang, L. Zhang, and Z. Chen, “MuSC: A tool
for mutation testing of ethereum smart contract,” in Proceedings of
the 34th IEEE/ACM International Conference on Automated Software

33

Engineering. IEEE, 2019, pp. 1198–1201. [Online]. Available:
https://doi.org/10.1109/ASE.2019.00136

[38] E. Andesta, F. Faghih, and M. Fooladgar, “Testing smart contracts
gets smarter,” CoRR, vol. abs/1912.04780, 2019. [Online]. Available:
http://arxiv.org/abs/1912.04780

[39] K. Liu, D. Kim, T. F. Bissyandé, T. Kim, K. Kim, A. Koyuncu,
S. Kim, and Y. L. Traon, “Learning to spot and refactor inconsistent
method names,” in Proceedings of the 41st International Conference
on Software Engineering. IEEE, 2019, pp. 1–12. [Online]. Available:
https://doi.org/10.1109/ICSE.2019.00019

[40] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, 2019, pp.
4171–4186. [Online]. Available: https://doi.org/10.18653/v1/n19-1423

[41] H. Tian, K. Liu, A. K. Kaboreé, A. Koyuncu, L. Li, J. Klein, and
T. F. Bissyandé, “Evaluating representation learning of code changes
for predicting patch correctness in program repair,” in Proceedings
of 35th IEEE/ACM International Conference on Automated Software
Engineering. ACM, 2020.

[42] S. Zhou, B. Shen, and H. Zhong, “Lancer: Your code tell me what you
need,” in Proceedings of the 34th IEEE/ACM International Conference
on Automated Software Engineering. IEEE, 2019, pp. 1202–1205.
[Online]. Available: https://doi.org/10.1109/ASE.2019.00137

[43] Z. Yu, R. Cao, Q. Tang, S. Nie, J. Huang, and S. Wu, “Order
matters: Semantic-aware neural networks for binary code similarity
detection,” in Proceedings of the 34th AAAI Conference on Artificial
Intelligence. AAAI Press, 2020, pp. 1145–1152. [Online]. Available:
https://aaai.org/ojs/index.php/AAAI/article/view/5466

[44] D. Wang, K. Liu, and L. Li, “On the need of understanding the failures
of smart contracts,” IEEE Software, vol. 37, no. 4, pp. 49–54, 2020.

[Online]. Available: https://doi.org/10.1109/MS.2020.3003921
[45] K. Liu, D. Kim, T. F. Bissyandé, S. Yoo, and Y. Le Traon, “Mining

fix patterns for findbugs violations,” IEEE Transactions on Software
Engineering, 2018.

[46] M. Soto and C. Le Goues, “Using a probabilistic model to predict bug
fixes,” in Proceedings of the 25th International Conference on Software
Analysis, Evolution and Reengineering. IEEE, 2018, pp. 221–231.

[47] T. Hoang, J. Lawall, Y. Tian, R. J. Oentaryo, and D. Lo, “PatchNet:
hierarchical deep learning-based stable patch identification for the
linux kernel,” CoRR, vol. abs/1911.03576, 2019. [Online]. Available:
http://arxiv.org/abs/1911.03576

[48] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names,” in Proceedings of the 10th Joint Meeting on
Foundations of Software Engineering. ACM, 2015, pp. 38–49.

[49] M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention
network for extreme summarization of source code,” in Proceedings of
the 33nd International Conference on Machine Learning. JMLR.org,
2016, pp. 2091–2100.

[50] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: machine learning
for input fuzzing,” in Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 2017, pp.
50–59. [Online]. Available: https://doi.org/10.1109/ASE.2017.8115618

[51] P. Zong, T. Lv, D. Wang, Z. Deng, R. Liang, and K. Chen, “FuzzGuard:
Filtering out unreachable inputs in directed grey-box fuzzing through
deep learning,” in Proceedings of the 29th USENIX Security Symposium.
USENIX Association, 2020, pp. 2255–2269. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/zong

[52] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed
generation for fuzzing,” in Proceedings of the 2017 IEEE Symposium on
Security and Privacy. IEEE, 2017, pp. 579–594. [Online]. Available:
https://doi.org/10.1109/SP.2017.23

34

